
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Optimization of neural network architecture using genetic
programming improves detection and modeling of gene-gene
interactions in studies of human diseases
Marylyn D Ritchie, Bill C White, Joel S Parker, Lance W Hahn and
Jason H Moore*

Address: Program in Human Genetics and Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville,
TN, 37232-0700, USA

Email: Marylyn D Ritchie - ritchie@phg.mc.vanderbilt.edu; Bill C White - bwhite@phg.mc.vanderbilt.edu;
Joel S Parker - parkerjs@email.unc.edu; Lance W Hahn - hahn@phg.mc.vanderbilt.edu; Jason H Moore* - moore@phg.mc.vanderbilt.edu

* Corresponding author

Abstract
Background: Appropriate definition of neural network architecture prior to data analysis is
crucial for successful data mining. This can be challenging when the underlying model of the data is
unknown. The goal of this study was to determine whether optimizing neural network architecture
using genetic programming as a machine learning strategy would improve the ability of neural
networks to model and detect nonlinear interactions among genes in studies of common human
diseases.

Results: Using simulated data, we show that a genetic programming optimized neural network
approach is able to model gene-gene interactions as well as a traditional back propagation neural
network. Furthermore, the genetic programming optimized neural network is better than the
traditional back propagation neural network approach in terms of predictive ability and power to
detect gene-gene interactions when non-functional polymorphisms are present.

Conclusion: This study suggests that a machine learning strategy for optimizing neural network
architecture may be preferable to traditional trial-and-error approaches for the identification and
characterization of gene-gene interactions in common, complex human diseases.

Background
The detection and characterization of genes associated
with common, complex diseases is a difficult challenge in
human genetics. Unlike rare genetic disorders which are
easily characterized by a single gene, common diseases
such as essential hypertension are influenced by many
genes all of which may be associated with disease risk pri-
marily through nonlinear interactions [1,2]. Gene-gene
interactions are difficult to detect using traditional para-
metric statistical methods [2] because of the curse of

dimensionality [3]. That is, when interactions among
genes are considered, the data becomes too sparse to esti-
mate the genetic effects. To deal with this issue, one can
collect a very large sample size. However, this can be pro-
hibitively expensive. The alternative is to develop new sta-
tistical methods that have improved power to identify
gene-gene interactions in relatively small sample sizes.

Neural networks (NN) have been used for supervised pat-
tern recognition in a variety of fields including genetic

Published: 07 July 2003

BMC Bioinformatics 2003, 4:28

Received: 12 March 2003
Accepted: 07 July 2003

This article is available from: http://www.biomedcentral.com/1471-2105/4/28

© 2003 Ritchie et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all
media for any purpose, provided this notice is preserved along with the article's original URL.
Page 1 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/4/28
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12846935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1471-2105-4-28
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
epidemiology [4–12]. The success of the NN approach in
genetics, however, varies a great deal from one study to
the next. It is hypothesized that for complex human dis-
eases, we are dealing with a rugged fitness landscape
[9,13], that is, a fitness landscape with many local minima
which make it more difficult to find the global minimum.
Therefore, the inconsistent results in genetic epidemiol-
ogy studies may be attributed to the fact that there are
many local minima in the fitness landscape. Training a
NN involves minimizing an error function. When there
are many local minima, a NN using a hill-climbing algo-
rithm for optimization may stall on a different minimum
on each run of the network [9].

To avoid stalling on local minima, machine learning
methods such as genetic programming [14] and genetic
algorithms [15] have been explored. Genetic program-
ming (GP) is a machine learning methodology that gener-
ates computer programs to solve problems using a process
that is inspired by biological evolution by natural selec-
tion [16–20]. Genetic programming begins with an initial
population of randomly generated computer programs,
all of which are possible solutions to a given problem.
This step is essentially a random search or sampling of the
space of all possible solutions. An example of one type of
computer program, called a binary expression tree, is
shown in Figure 1.

Binary expression tree example of a GP solutionFigure 1
Binary expression tree example of a GP solution. This figure is an example of a possible computer program generated
by GP. While the program can take virtually any form, we are using a binary expression tree representation, thus we have
shown this type as an example.
Page 2 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
Next, each of these computer programs are executed and
assigned a fitness value that is proportional to its perform-
ance on the particular problem being solved. Then, the
best computer programs, or solutions, are selected to
undergo genetic operations based on Darwin's principle
of survival of the fittest. Reproduction takes place with a
subset of the best solutions, such that these solutions are
directly copied into the next generation. Crossover, or
recombination, takes place between another subset of
solutions. This operation is used to create new computer
programs by combining components of two parent pro-
grams. An example of a crossover event between two solu-
tions is shown in Figure 2.

Thus, the new population is comprised of a portion of
solutions that were copied (reproduced) from the previ-
ous generation, and a portion of solutions that are the
result of recombination (crossover) between solutions of
the parent population. This new population replaces the
old population and the process begins again by executing
each program and assigning a fitness measure to each of
them. This is repeated for a set number of generations or
until some termination criterion is met. The goal is to find
the best solution, which is likely to be the solution with
the optimal fitness measure.

Koza [17,18] and Koza et al. [19] give a detailed descrip-
tion of GP. A description of GP for bioinformatics appli-
cations is given by Moore and Parker [13]. Evolutionary

GP crossoverFigure 2
GP crossover. This figure shows a crossover event in GP between two binary expression trees. Here, the left sub-tree of
parent 1 is swapped with the left sub-tree of parent 2 to create 2 new trees.
Page 3 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
computation strategies such as GP have been shown to be
effective for both variable and feature selection with
methods such as symbolic discriminant analysis for
microarray studies [13,16,21]. Koza and Rice [14] have
suggested GP for optimizing the architecture of NN.

The goal of this study was to implement a GP for optimiz-
ing NN architecture and compare its ability to model and
detect gene-gene interactions with a traditional back prop-
agation NN. To achieve this goal we simulated data from
a set of different models exhibiting epistasis, or gene-gene
interactions. We applied the back propagation NN
(BPNN) and the GP optimized NN (GPNN) to these data
to compare the performance of the two methods. We con-
sidered the GPNN to have improved performance if 1) it
had improved prediction error, and/or 2) it had improved
power compared to the BPNN. We implemented cross val-
idation with both the BPNN and GPNN to estimate the
classification and prediction errors of the two NN
approaches. Based on our results, we find that GPNN has
improved prediction error and improved power com-
pared to the BPNN. Thus, we consider the optimization of
NN architecture by GP to be a significant improvement to
a BPNN for the gene-gene interaction models and simu-
lated data studied here. In the remainder of this section,
we will provide background information on the BPNN,
the GPNN strategy, and the cross validation approach
used for this study.

Back propagation NN (BPNN)
The back propagation NN (BPNN) is one of the most
commonly used NN [22] and is the NN chosen for many
genetic epidemiology studies [4–12]. In this study, we
used a traditional fully-connected, feed-forward network
comprised of one input layer, zero, one, or two hidden
layers, and one output layer, trained by back propagation.
The software used, the NICO toolkit, was developed at the
Royal Institute of Technology, http://www.speech.kth.se/
NICO/index.html.

Defining the network architecture is a very important
decision that can dramatically alter the results of the anal-
ysis [23]. There are a variety of strategies utilized for selec-
tion of the network architecture. The features of network
architecture most commonly optimized are the number of
hidden layers and the number of nodes in the hidden
layer. Many of these approaches use a prediction error fit-
ness measure, such that they select an architecture based
on its generalization to new observations [23], while oth-
ers use classification error, or training error [24]. We chose
to use classification error rather than prediction error as a
basis for evaluating and making changes to the BPNN
architecture because we use prediction error to measure
the overall network fitness. We began with a very small
network and varied several parameters including the

number of hidden layers, number of nodes in the hidden
layer, and learning momentum (the fraction of the previ-
ous change in a weight that is added to the next change)
to obtain an appropriate architecture for each data set.
This trial-and-error approach is commonly employed for
optimization of BPNN architecture [24,25].

A Genetic Programming Neural Network (GPNN) Strategy
We developed a GP-optimized NN (GPNN) in an attempt
to improve upon the trial-and-error process of choosing
an optimal architecture for a pure feed-forward BPNN.
The GPNN optimizes the inputs from a larger pool of var-
iables, the weights, and the connectivity of the network
including the number of hidden layers and the number of
nodes in the hidden layer. Thus, the algorithm attempts to
generate appropriate network architecture for a given data
set. Optimization of NN architecture using GP was first
proposed by Koza and Rice [14].

The use of binary expression trees allow for the flexibility
of the GP to evolve a tree-like structure that adheres to the
components of a NN. Figure 3 shows an example of a
binary expression tree representation of a NN generated
by GPNN. Figure 4 shows the same NN that has been
reduced from the binary expression tree form to look
more like a common feed-forward NN. The GP is con-
strained in such a way that it uses standard GP operators
but retains the typical structure of a feed-forward NN. A
set of rules is defined prior to network evolution to ensure
that the GP tree maintains a structure that represents a
NN. The rules used for this GPNN implementation are
consistent with those described by Koza and Rice [14].
The flexibility of the GPNN allows optimal network archi-
tectures to be generated that contain the appropriate
inputs, connections, and weights for a given data set.

The GP has a set of parameters that must be initialized
before beginning the evolution of NN models. First, a dis-
tinct set of inputs must be identified. All possible variables
can be included as optional inputs, although the GP is not
required to use all of them. Second, a set of mathematical
functions used in weight generation must be specified. In
the present study, we use only the four basic arithmetic
operators. Third, a fitness function for the evaluation of
GPNN models is defined by the user. Here, we have des-
ignated classification error as the fitness function. Finally,
the operating parameters of the GP must be initialized.
These include initial population size, number of genera-
tions, reproduction rate, crossover rate, and mutation rate
[14].

Training the GPNN begins by generating an initial ran-
dom population of solutions. Each solution is a binary
expression tree representation of a NN, similar to that
shown in Figure 3. The GP then evaluates each NN. The
Page 4 of 14
(page number not for citation purposes)

http://www.speech.kth.se/NICO/index.html
http://www.speech.kth.se/NICO/index.html

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
best solutions are selected for crossover and reproduction
using a fitness-proportionate selection technique, called

roulette wheel selection, based on the classification error
of the training data [26]. A predefined proportion of the

GPNN representation of a NNFigure 3
GPNN representation of a NN. This figure is an example of one NN optimized by GPNN. The O is the output node, S
indicates the activation function, W indicates a weight, and X1-X4 are the NN inputs.

Feed-forward BPNN representation of the GPNN in Figure 3Figure 4
Feed-forward BPNN representation of the GPNN in Figure 3. To generate this NN, each weight in Figure 3 was com-
puted to produce a single value.
Page 5 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
best solutions will be directly copied (reproduced) into
the new generation. Another proportion of the solutions
will be used for crossover with other best solutions. Cross-
over must take place such that the rules of network con-
struction still apply. Next, the new generation, which is
equal in size to the original population, begins the cycle
again. This continues until some criterion is met at which
point the GPNN stops. This criterion is either a classifica-
tion error of zero or the maximum number of generations
has been reached. In addition, a "best-so-far" solution is
chosen after each generation. At the end of the GP run, the
one "best-so-far" solution is used as the solution to the
problem [14,16].

While GPNN can be effective for searching highly nonlin-
ear, multidimensional search spaces, it is still susceptible
to stalling on local minima [14]. To address this problem,
GPNN can be run in parallel on several different proces-
sors. Several isolated populations, or demes, are created
and a periodic exchange of best solutions takes place
between the populations. This is often referred to as an
"island model" [27]. This exchange increases diversity
among the solutions in the different populations. Follow-
ing the set number of generations, the best-so-far solu-
tions from each of the n processors are compared and a
single best solution is selected. This solution has the min-
imum classification error of all solutions generated [28].

Cross-Validation
While NN are known for their ability to model nonlinear
data, they are also susceptible to over-fitting. To evaluate
the generalizability of BPNN and GPNN models, we used
10 fold cross-validation [29,30] (CV). Here, the data are
divided into 10 parts of equal size. We use 9/10 of the data
to train the BPNN or the GPNN, and we use the remaining
1/10 of data to test the model and estimate the prediction
error, which is how well the NN model is able to predict
disease status in that 1/10 of the data. This is done 10
times, each time leaving out a different 1/10 of data for
testing [29,30]. A prediction error is estimated as an aver-
age across the 10 cross-validations. Cross-validation con-
sistency is a measure of the number of times each variable
appears in the BPNN or GPNN model across the 10 cross-
validations [21,31,32]. That is, we measured the consist-
ency with which each single nucleotide polymorphism
(SNP) was identified across the 10 cross-validations. The
motivation for this statistic is that the effects of the func-
tional SNPs should be present in most splits of the data.
Thus, a high cross-validation consistency (~10) lends sup-
port to that SNP being important for the epistasis model.
Further detail regarding the implementation of cross-vali-
dation can be found in the Data Analysis section of the
paper.

Results
Three different analyses were conducted to compare the
performance of the BPNN and the GPNN. First, a trial-
and-error procedure for selecting the optimal BPNN archi-
tecture for a subset of the data was performed. This step
established the motivation for optimizing the NN archi-
tecture. Next, the ability to model gene-gene interactions
by both the BPNN and GPNN was determined by compar-
ing the classification and prediction error of the two meth-
ods using data containing only the functional SNPs.
Finally, the ability to detect and model gene-gene interac-
tions was investigated for both the BPNN and GPNN. This
was determined by comparing the classification and pre-
diction errors of the two methods using data containing
the functional SNPs and a set of non-functional SNPs. The
details of the implementation of these three analyses are
reported in the Data Analysis section of the paper. The
results of these three analyses are presented in the follow-
ing sections.

Trial-and-error procedure for the back propagation NN
(BPNN)
The results of our trial-and-error optimization technique
for selecting the traditional BPNN architecture indicate
the importance of selecting the optimal NN architecture
for each different epistasis model. Table 1 shows the
results from the traditional BPNN architecture optimiza-
tion technique on one data set from each epistasis model
generated with the two functional SNPs only. A schematic
for each of the best architectures selected is shown in Fig-
ure 5. Note that the optimal architecture varied for each of
the epistasis models. For example, the optimal architec-
ture for Model 1 was composed of 2 hidden layers, 15
nodes in the first layer and 5 nodes in the second layer,
and a momentum of 0.9. In contrast, for Model 2 the opti-
mal architecture included 2 hidden layers, 20 nodes in the
first layer and 5 nodes in the second layer, and a momen-
tum of 0.9. Different architectures were optimal for mod-
els 3, 4, and 5 as well. Similar results were obtained using
the simulated data containing the two functional and
eight non-functional SNPs as well (data not shown). This
provides further motivation for automating the optimiza-
tion of the NN architecture in order to avoid the uncer-
tainty of trial-and-error experiments.

Modeling gene-gene interactions
Table 2 summarizes the average classification error (i.e.
training error) and prediction error (i.e. testing error) for
the BPNN and GPNN evaluated using 100 data sets for
each of the five epistasis models with only the two func-
tional SNPs in the analyses. GPNN and the BPNN
performed similarly in both training the NN and testing
the NN through cross-validation. In each case, the NN
solution had an error rate within 4 percent of the error
inherent in the data. Due to the probabilistic nature of the
Page 6 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
penetrance functions used to simulate the data, there is
some degree of noise simulated in the data. The average
error in the 100 datasets generated under each epistasis
model are 24%, 18%, 27%, 36%, 40% for Model 1, 2, 3,
4, and 5, respectively. Therefore, the error estimates
obtained by the BPNN or GPNN are very close to the true
error rate. There is also little opportunity for either
method to over-fit the data here, since only the functional
SNPs are present in the analysis. These results demon-
strate that the BPNN and GPNN are both able to model
the nonlinear gene-gene interactions specified by these
models.

Detecting and modeling gene-gene interactions
Table 3 shows the average classification error and predic-
tion error for the BPNN and GPNN evaluated using 100
data sets for each of the five epistasis models with the two
functional and eight non-functional SNPs. GPNN consist-
ently had a lower prediction error than the BPNN, while

the BPNN consistently had a lower classification error.
The lower classification error seen with the BPNN is due
to over-fitting. These results show that when non-func-
tional SNPs are present, the BPNN has a tendency to over-
fit the data and therefore have a higher prediction error
than GPNN. GPNN is able to model gene-gene interac-
tions and develop NN models that can generalize to new
observations.

Table 4 shows the power to detect the two functional
SNPs for GPNN and the BPNN using 100 data sets for
each of the five epistasis models with both the two func-
tional and eight non-functional SNPs in the analyses. For
all five models, GPNN had a higher power than the BPNN
to detect both SNPs. These results demonstrate the high
power of GPNN in comparison to a BPNN when
attempting to detect gene-gene interactions in the pres-
ence of non-functional SNPs.

Table 1: Trial and Error Optimization of BPNN with only functional SNPs

HL U/L M Epistasis Models

1 2 3 4 5

0 0 .1 0.48786 0.49460 0.49560 0.49160 0.49545
0 0 .5 0.48786 0.49460 0.49560 0.49160 0.49545
0 0 .9 0.48786 0.49460 0.49560 0.49160 0.49545
1 5 .1 0.47317 0.45883 0.49568 0.49160 0.49553
1 5 .5 0.36422 0.34229 0.48754 0.49010 0.49543
1 5 .9 0.31206 0.23181 0.34522 0.44670 0.48905
1 10 .1 0.47430 0.46820 0.49607 0.49150 0.49559
1 10 .5 0.35916 0.36446 0.49284 0.49020 0.49542
1 10 .9 0.31209 0.23193 0.34524 0.44660 0.49136
1 15 .1 0.48495 0.47508 0.49599 0.49160 0.49552
1 15 .5 0.37511 0.36221 0.49364 0.49150 0.49542
1 15 .9 0.31217 0.23203 0.34525 0.44670 0.49399
1 20 .1 0.48630 0.49240 0.49583 0.49160 0.49549
1 20 .5 0.40750 0.34406 0.49469 0.49070 0.49544
1 20 .9 0.31217 0.23216 0.34511 0.44660 0.49402
2 5:5 .1 0.49965 0.49997 0.49997 0.50000 0.49996
2 5:5 .5 0.49628 0.49980 0.49996 0.49990 0.49995
2 5:5 .9 0.31205 0.23704 0.41740 0.44670 0.49471
2 10:5 .1 0.49623 0.49980 0.49987 0.49980 0.49972
2 10:5 .5 0.49024 0.49854 0.49929 0.49950 0.49847
2 10:5 .9 0.31201 0.23158 0.35430 0.45450 0.49477
2 15:5 .1 0.49398 0.49944 0.49954 0.49940 0.49913
2 15:5 .5 0.48697 0.49578 0.49850 0.49530 0.49700
2 15:5 .9 0.31199 0.23584 0.35993 0.44740 0.49465
2 20:5 .1 0.49160 0.49849 0.49946 0.49840 0.49889
2 20:5 .5 0.48700 0.49212 0.49808 0.49290 0.49596
2 20:5 .9 0.31199 0.23157 0.34657 0.44750 0.49519

Results from the trial and error optimization of the BPNN on one dataset from each epistasis model. We used 27 different architectures varying in
HL – hidden layer, U/L – units per layer, M – momentum. The average classification error across 10 cross-validations from each data set generated
for each of the five epistasis models are shown. The best architecture is shown in bold and in Figure 5. This was the most parsimonious architecture
with the minimum classification error.
Page 7 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
Discussion
We have implemented a NN that is optimized by GP using

the approach outlined by Koza and Rice [14]. Based on
the results of the trial and error architecture optimization,

Optimal architecture from BPNN trial and error optimizationFigure 5
Optimal architecture from BPNN trial and error optimization. This figure shows the result of the BPNN trial and
error procedure on one data set from each epistasis model. This shows the NN architecture for the best classification error
selected from Table 1.

Table 2: Results from the BPNN and GPNN analyses of datasets with only functional SNPs.

Epistasis Model BPNN GPNN

Classification Error Prediction Error Classification Error Prediction Error

1 0.238 0.233 0.237 0.237
2 0.180 0.179 0.181 0.181
3 0.268 0.268 0.287 0.301
4 0.370 0.386 0.375 0.398
5 0.405 0.439 0.405 0.439

Table 3: Results from the BPNN and GPNN analyses of data sets with both functional and non-functional SNPs

Epistasis Model BPNN GPNN

Classification Error Prediction Error Classification Error Prediction Error

1 0.008 0.340 0.237 0.237
2 0.008 0.303 0.242 0.243
3 0.009 0.398 0.335 0.360
4 0.013 0.477 0.387 0.431
5 0.012 0.486 0.401 0.479
Page 8 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
we have shown that the selection of optimal NN architec-
ture can alter the results of data analyses. For one example
data set from each of the epistasis models, the best archi-
tecture was quite different, as shown in Table 1 and Figure
5 for functional SNP only data. This was also the case for
data containing functional and non-functional SNPs
(data not shown). Since we only tried 27 different archi-
tectures, there may have been more appropriate
architectures for these data sets. In fact, since enumeration
of all possible NN architectures is impossible [24], there is
no way to be certain that the global best architecture is
ever selected. Thus, the ability to optimize the NN archi-
tecture using GPNN may dramatically improve the results
of NN analyses.

Using simulated data, we demonstrated that GPNN was
able to model nonlinear interactions as well as a tradi-
tional BPNN. These results are important because it is well
known that traditional BPNN are universal function
approximators [22]. When given the functional SNPs, one
would expect the BPNN to accurately model the data.
Here, we have shown that GPNN is also capable of accu-
rately modeling the data. This demonstrates that GPNN is
able to optimize the NN architecture such that the NN
evolved is able to model data as well as a BPNN.

GPNN had improved power and predictive ability com-
pared to a BPNN when applied to data containing both
functional and non-functional SNPs. These results pro-
vide evidence that GPNN is able to detect the functional
SNPs and model the interactions for the epistasis models
described here with minimal main effects in a sample size
of 200 cases and 200 controls. In addition, these are the
two criteria we specified for considering GPNN an
improvement over the BPNN. Therefore, in situations
where the functional SNPs are known and the user is
attempting to model the data, either GPNN or a BPNN
would be equally useful. However, in situations where the
functional SNPs are unknown and the user wants to per-
form variable selection as well as model fitting, GPNN
may be the preferable method. This distinction can be

made due to the increase in power of GPNN and the fact
that GPNN does not over-fit the data much like the tradi-
tional BPNN.

We speculate that GPNN is not over-fitting because while
the GPNN is theoretically able to build a tree with all of
the variables as inputs, it is not building a fully connected
NN. This may be preventing it from over-fitting the way
that the BPNN has done. Secondly, it is possible that the
strong signal of the correct solution in the simulated data
caused the GP to quickly pick up that signal, and propa-
gate trees with components of that model in the
population. Because we have mutation set to 0%, there is
never a large change to the trees to lead them to explore in
the other areas of the search space. As a result, the GPNN
converges quickly on a small solution instead of exploring
the entire search space. We plan to explore whether GPNN
over-fits in certain situations and if so, to develop strate-
gies to deal with this issue, such as the three-way data split
discussed by Roland [33].

In an attempt to estimate the power of these NN methods
for a range of genetic effects, we selected epistasis models
with varying degrees of heritability. Heritability, in the
broad sense, is the proportion of total phenotypic vari-
ance attributable to genetic factors. Thus, higher heritabil-
ity values will have a stronger genetic effect. The five
disease models we used varied in heritability from 0.008
to 0.053. To calculate the heritability of these models, we
used the formula described by Culverhouse et al. [34].
Heritability varies from 0.0 (no genetic component) to
1.0 (completely genetically-specified).

We selected models with varying heritability values to
obtain a more accurate comparison of the two NN
methods in the presence of different genetic effects. Inter-
estingly, the results showed that GPNN had greater than
80% power for all heritability values tested in the range of
0.012 to 0.053. In addition, GPNN had 100% power for
all models with a heritability of 0.026 or greater. How-
ever, the BPNN had greater than 80% power only for

Table 4: Power (%) to detect each functional SNP by BPNN and GPNN analyses of data sets with both functional and non-functional
SNPs

Epistasis Model BPNN GPNN

SNP 1 SNP 2 SNP1 SNP 2

1 88 90 100 100
2 80 82 100 100
3 41 50 100 100
4 3 0 92 87
5 0 1 44 47
Page 9 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
heritability values greater than 0.051. Therefore, the
BPNN has low power to detect gene-gene interactions that
have an intermediate to weak genetic effect (i.e. heritabil-
ity value in the range from 0.008 to 0.026), while GPNN
maintains greater than 80% power, even for an epistasis
model with a relatively weak genetic effect (i.e. 0.012).
The power of GPNN falls below 80% for a heritability
value that is very small (i.e. 0.008). Thus, GPNN is likely
to have higher power than the BPNN for detecting many
gene-gene interaction models with intermediate to small
genetic effects.

While GPNN has improved power and predictive ability
over the BPNN, there are some advantages and disadvan-
tages to this approach. An advantage of GPNN is its mod-
eling flexibility. With commercial BPNN software, such as
the BPNN used here, the user must define the inputs, the
initial values of the weights, the number of connections
each input has, and the number of hidden layers. Often,
the algorithm parameters that work well for one data set
will not be successful with another data set, as demon-
strated here. With the GP optimization, the user only
needs to specify a pool of variables that the network can
use and the GP will select the optimal inputs, weights,
connections, and hidden layers. An important disadvan-
tage of GPNN is the required computational resources. To
use GPNN effectively, one needs access to a parallel
processing environment. For a BPNN, on the other hand,
a desktop computer is the only requirement. Another dis-
advantage is the interpretation of the GPNN models. The
output of GPNN is a NN in the form of a binary expres-
sion tree. A NN in this form can be difficult to interpret, as
it can get quite large (up to 500 nodes).

While we have demonstrated the ability of GPNN to
model and detect gene-gene interactions, further work is
needed to fully evaluate the approach. For example, we
would like to know whether using a local search algo-
rithm, such as back propagation or simulated annealing
[35], to refine the weights of a GPNN model is useful. This
sort of approach has been employed for a genetic algo-
rithm approach to optimizing NN architecture for classifi-
cation of galaxies in astronomy [36]. However, as
described above, a local search could lead to increased
over-fitting. Next, the current version of GPNN uses only
arithmetic operators in the binary expression trees. The
use of a richer function set, including Boolean operators
and other mathematical operators, may allow more flexi-
bility in the NN models. Third, we would like to evaluate
the power of GPNN for a variety of high order epistasis
models (such as three, four, and five locus interaction
models). Finally, we would like to develop and distribute
a GPNN software package.

Conclusions
The results of this study demonstrate that GP is an excel-
lent way of automating NN architecture design. The NN
inputs, weights, and interconnections are optimized for a
specific problem while decreasing susceptibility to over-
fitting which is common in the traditional BPNN
approach. We have shown that GPNN is able to model
gene-gene interactions as well as a BPNN in data contain-
ing only the functional SNPs. We have also shown that
when there are nonfunctional SNPs in the data (i.e. poten-
tial false positives), GPNN has higher power than a
BPNN, in addition to lower prediction error. We antici-
pate this will be an important pattern recognition method
in the search for complex disease susceptibility genes.

Methods
Data simulation
The goal of the data simulation was to generate data sets
that exhibit gene-gene interactions for the purpose of
evaluating the classification error, prediction error, and
power of GPNN and a traditional BPNN. As discussed by
Templeton [1], epistasis, or gene-gene interaction occurs
when the combined effect of two or more genes on a phe-
notype could not have been predicted from their inde-
pendent effects. Current statistical approaches in human
genetics focus primarily on detecting the main effects and
rarely consider the possibility of interactions [1]. In con-
trast, we are interested in simulating data using different
epistasis models that exhibit minimal independent main
effects, but produce an association with disease primarily
through interactions. We simulated data with two func-
tional single nucleotide polymorphisms (SNPs) to com-
pare GPNN to a BPNN for modeling nonlinear epistasis
models. In this study, we use penetrance functions as
genetic models.

Penetrance functions model the relationship between
genetic variations and disease risk. Penetrance is defined
as the probability of disease given a particular combina-
tion of genotypes. We chose five epistasis models to sim-
ulate the data. The first model used was initially described
by Li and Reich [37] and later by Culverhouse et al. [34]
and Moore et al. [38] (Table 5). This model is based on
the nonlinear XOR function that generates an interaction
effect in which high risk of disease is dependent on
inheriting a heterozygous genotype (Aa) from one SNP or
a heterozygous genotype from a second SNP (Bb), but not
both. The high-risk genotype combinations are AaBB,
Aabb, AABb, and aaBb with disease penetrance of 0.1 for
all four. The second model was initially described by
Frankel and Schork [39] and later by Culverhouse et al.
[34] and Moore et al. [38] (Table 6). In this model, high
risk of disease is dependent on inheriting two and exactly
two high-risk alleles, either "a" or "b" from two different
Page 10 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
Table 5: Penetrance functions for Model 1.

Table penetrance Margin penetrance

AA (.25) Aa (.50) aa (.25)

BB (.25) 0.00 0.10 0.00 0.05
Bb (.50) 0.10 0.00 0.10 0.05
bb (.25) 0.00 0.10 0.00 0.05

Margin penetrance 0.05 0.05 0.05

Each cell represents the probability of disease given the particular combination of genotypes [p(D|G)]. This model has a heritability of 0.053.

Table 6: Penetrance functions for Model 2.

Table penetrance Margin penetrance

AA (.25) Aa (.50) aa (.25)

BB (.25) 0.00 0.00 0.10 0.025
Bb (.50) 0.00 0.05 0.00 0.025
bb (.25) 0.10 0.00 0.00 0.025

Margin penetrance 0.025 0.025 0.025

Each cell represents the probability of disease given the particular combination of genotypes [p(D|G)]. This model has a heritability of 0.051.

Table 7: Penetrance functions for Model 3.

Table penetrance Margin penetrance

AA (.25) Aa (.50) aa (.25)

BB (.25) 0.00 0.04 0.00 0.02
Bb (.50) 0.04 0.02 0.00 0.02
bb (.25) 0.00 0.00 0.08 0.02

Margin penetrance 0.02 0.02 0.02

Each cell represents the probability of disease given the particular combination of genotypes [p(D|G)]. This model has a heritability of 0.026.

Table 8: Penetrance functions for Model 4.

Table penetrance Margin penetrance

AA (.25) Aa (.50) aa (.25)

BB (.25) 0.00 0.02 0.08 0.03
Bb (.50) 0.05 0.03 0.01 0.03
bb (.25) 0.02 0.04 0.02 0.03

Margin penetrance 0.03 0.03 0.03

Each cell represents the probability of disease given the particular combination of genotypes [p(D|G)]. This model has a heritability of 0.012.
Page 11 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
loci. For this model, the high-risk genotype combinations
are AAbb, AaBb, and aaBB with disease penetrance of 0.1,
0.05, and 0.1 respectively.

The subsequent three models were chosen from a set of
epistasis models described by Moore et al. [38] (Table
7,8,9). All five models were selected because they exhibit
interaction effects in the absence of any main effects when
allele frequencies are equal and genotypes are generated
using the Hardy-Weinberg equation. In addition, we
selected models within a range of heritability values. As
mentioned previously, heritability, in the broad sense, is
the proportion of total phenotypic variance attributable
to genetic factors. Thus, higher heritability values will
have a stronger genetic effect. We selected models with
varying heritability values to obtain a more accurate com-
parison of the two NN methods in the presence of varying
genetic effects. The heritabilities are 0.053, 0.051, 0.026,
0.012, and 0.008 for Models 1, 2, 3, 4, and 5 respectively.
Although the biological plausibility of these models is
unknown, they represent the worst-case scenario for a dis-
ease-detection method because they have minimal main
effects. If a method works well with minimal main effects,
presumably the method will continue to work well in the
presence of main effects.

Each data set consisted of 200 cases and 200 controls,
each with two functional interacting SNPs. SNPs generally
have two possible alleles, and in our study, they were sim-
ulated with equal allele frequencies (p = q = 0.5). We used
a dummy variable encoding for the genotypes where n-1
dummy variables are used for n levels [40]. We simulated
100 data sets of each epistasis model with two functional
SNPs. Based on the dummy coding, these data would have
four variables and thus four NN inputs. Next, we simu-
lated 100 data sets of each model with eight non-func-
tional SNPs and two functional SNPs. Based on the
dummy coding, these data would have 20 variables and
thus 20 NN inputs. These two types of data sets allow us
to evaluate the ability to either model gene-gene interac-
tions or to detect gene-gene interactions.

Data analysis
In the first stage of analysis, we posed the following ques-
tion: Is GPNN able to model gene-gene interactions as
well or better than a traditional BPNN? First, we used a
fully connected, feed-forward BPNN to model gene-gene
interactions in the simulated data containing functional
SNPs only. The BPNN was trained for 1000 epochs.
Although there are an effectively infinite number of possi-
ble NN architectures, for each data set we evaluated the
classification ability of 27 different architectures. We
chose the best architecture as the one that minimized the
classification error and was most parsimonious (i.e. sim-
plest network) in the event of two or more with equal clas-
sification error. We began with a very small network (4
inputs: 1 output) and varied the number of hidden layers
(0,1,2), number of nodes in the hidden layers (5:0, 10:0,
15:0, 20:0, 5:5, 10:5, 15:5, 20:5), and learning momen-
tum (0.1, 0.5, 0.9). We used this optimization procedure
to analyze 100 data sets of each epistasis model. We used
10 fold cross-validation to evaluate the predictive ability
of the BPNN models. After dividing the data into 10 equal
parts, the architecture optimization procedure is run on
the first 9/10 of the data to select the most appropriate
architecture. Next, the best architecture is used to test the
BPNN on the 1/10 of the data left out. This is done 10
times, each time leaving out a different 1/10 of the data
for testing. We then estimated the prediction error based
on the average predictive ability across the 10 cross-valida-
tions for all 100 data sets generated under each epistasis
model.

Next, we used the GPNN to analyze the same 100 data sets
for each of the five epistasis models. The GP parameter
settings included 10 demes, migration of best models
from each deme to all other demes every 25 generations,
each deme had a population size of 200, 50 generations,
a crossover rate of 0.9, reproduction rate of 0.1, and muta-
tion rate of 0.0. Fitness was defined as classification error
of the training data. As with the BPNN, GPNN was
required to use all four inputs in the NN model for this
stage of the analysis. Again, we used 10 fold cross-valida-

Table 9: Penetrance functions for Model 5.

Table penetrance Margin penetrance

AA (.25) Aa (.50) aa (.25)

BB (.25) 0.00 0.04 0.08 0.04
Bb (.50) 0.06 0.04 0.02 0.04
bb (.25) 0.04 0.04 0.04 0.04

Margin penetrance 0.04 0.04 0.04

Each cell represents the probability of disease given the particular combination of genotypes [p(D|G)]. This model has a heritability of 0.008.
Page 12 of 14
(page number not for citation purposes)

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
tion to evaluate the predictive ability of the GPNN mod-
els. We then estimated the prediction error of GPNN
based on the average prediction error across the 10 cross-
validations for all 100 data sets for each epistasis model.

The second aspect of this study involves answering the fol-
lowing question: In the presence of non-functional SNPs
(i.e. potential false-positives), is GPNN able to detect
gene-gene interactions as well or better than a traditional
BPNN? First we used a traditional BPNN to analyze the
data with eight non-functional SNPs and two functional
SNPs. We estimated the power of the BPNN to detect the
functional SNPs as described below. In this network, all
possible inputs are used and the significance of each input
is calculated from its input relevance, R_I, where R_I is the
sum of squared weights for the ith input divided by the
sum of squared weights for all inputs. Next, we performed
1000 permutations of the data to determine what input
relevance was required to consider a SNP significant in the
BPNN model. The range of critical relevance values for
determining significance was 10.43% – 11.83%.

Next, we calculated cross-validation consistency
[21,31,32]. That is, we measured the consistency with
which each SNP was identified across the 10 cross-valida-
tions. The basis for this statistic is that the functional
SNPs' effect should be present in most splits of the data.
Thus, a high cross-validation consistency (~10) lends sup-
port to that SNP being important for the epistasis model.
Through permutation testing, we determined an empirical
cutoff for the cross-validation consistency that would not
be expected by chance. We used this cut-off value to select
the SNPs that were functional in the epistasis model for
each data set. For the BPNN, a cross-validation consist-
ency greater than or equal to five was required to be statis-
tically significant. We estimated the power by calculating
the percentage of datasets where the correct functional
SNPs were identified. Either one or both of the dummy
variables could be selected to consider a locus present in
the model. Finally, we estimated the prediction error
based on the average predictive ability across 100 data sets
for each epistasis model.

Next, we used the GPNN to analyze 100 data sets for each
of the epistasis models. In this implementation, GPNN
was not required to use all the variables as inputs. Here,
GPNN performed random variable selection in the initial
population of solutions. Through evolution, GPNN
selects those variables that are most relevant. We calcu-
lated the cross-validation consistency as described above.
Permutation testing was used to determine an empirical
cut-off to select the SNPs that were functional in the
epistasis model for each data set. For the GPNN, a cross-
validation consistency greater than or equal to seven was
required to be statistically significant. We estimated the

power of GPNN as the number of times the functional
SNPs were identified in the model divided by the total
number of runs. Again, either one or both of the dummy
variables could be selected to consider a locus present in
the model. We also estimated the prediction error of
GPNN based on the average prediction error across 100
data sets per epistasis model.

Authors' contributions
JSP, LWH, and BCW performed the computer program-
ming of the software. MDR participated in the design of
the study, statistical analyses, and writing of the manu-
script. JHM participated in the design and coordination of
the study and preparation of the final draft of the manu-
script. All authors read and approved the final
manuscript.

Acknowledgements
This work was supported by National Institutes of Health grants HL65234,
HL65962, GM31304, AG19085, AG20135, and LM007450. We would like
to thank two anonymous reviewers for helpful comments and suggestions.

References
1. Templeton AR: Epistasis and complex traits In: Epistasis and Evo-

lutionary Process Edited by: Wade M, Brodie III B, Wolf J. Oxford, Oxford
University Press; 2000.

2. Moore JH and Williams SM: New strategies for identifying gene-
gene interactions in hypertension Ann Med 2002, 34:88-95.

3. Bellman R: Adaptive Control Processes Princeton, Princeton Univer-
sity Press 1961.

4. Bhat A, Lucek PR and Ott J: Analysis of complex traits using neu-
ral networks Genet Epidemiol 1999, 17:S503-S507.

5. Curtis D, North BV and Sham PC: Use of an artificial neural net-
work to detect association between a disease and multiple
marker genotypes Ann Hum Genet 2001, 65:95-107.

6. Li W, Haghighi F and Falk C: Design of artificial neural network
and its applications to the analysis of alcoholism data Genet
Epidemiol 1999, 17:S223-S228.

7. Lucek PR and Ott J: Neural network analysis of complex traits
Genet Epidemiol 1997, 14:1101-1106.

8. Lucek P, Hanke J, Reich J, Solla SA and Ott J: Multi-locus nonpara-
metric linkage analysis of complex trait loci with neural
networks Hum Hered 1998, 48:275-284.

9. Marinov M and Weeks D: The complexity of linkage analysis
with neural networks Hum Hered 2001, 51:169-176.

10. Ott J: Neural networks and disease association studies Am J
Med Genet 2001, 105:60-61.

11. Saccone NL, Downey TJ Jr, Meyer DJ, Neuman RJ and Rice JP: Map-
ping genotype to phenotype for linkage analysis Genet
Epidemiol 1999, 17:S703-S708.

12. Sherriff A and Ott J: Applications of neural networks for gene
finding Adv Genet 2001, 42:287-298.

13. Moore JH and Parker JS: Evolutionary computation in microar-
ray data analysis In: Methods of Microarray Data Analysis Edited by:
Lin S, Johnson K. Boston: Kluwer Academic Publishers; 2001.

14. Koza JR and Rice JP: Genetic generation of both the weights
and architecture for a neural network IEEE Press 1991, II:.

15. Gruau FC: Cellular encoding of genetic neural networks Mas-
ter's thesis Ecole Normale Superieure de Lyon 1992:1-42.

16. Moore JH, Parker JS and Hahn LW: Symbolic discriminant analy-
sis for mining gene expression patterns In Lecture Notes in Artifi-
cial Intelligence 2167 Edited by: De Raedt L, Flach P. Springer-Verlag,
Berlin; 2001:372-381.

17. Koza JR: Genetic Programming: On the programming of
computers by means of natural selection Cambridge, MIT Press
1993.

18. Koza JR: Genetic Programming II: Automatic discovery of
reusable programs Cambridge, MIT Press 1998.
Page 13 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12108579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12108579
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10597483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10597483
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11415525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11415525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11415525
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10597440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10597440
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9433631
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9748698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9748698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9748698
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11173968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11173968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11425001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10597517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10597517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11037328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11037328

BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/28
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

19. Koza JR, Bennett FH, Andre D and Keane MA: Genetic Program-
ming III: Automatic programming and automatic circuit
synthesis Cambridge, MIT Press 1999.

20. Banzhaf W, Nordin P, Keller RE and Francone FE: Genetic Pro-
gramming: An Introduction San Francisco, Morgan Kauffman
Publishers 1998.

21. Moore JH, Parker JS, Olsen NJ and Aune TS: Symbolic discrimi-
nant analysis of microarray data in autoimmune disease
Genet Epidemiol 2002, 23:57-69.

22. Schalkoff RJ: Artificial Neural Networks, New York, McGraw-Hill
Companies Inc 1997.

23. Utans J and Moody J: Selecting neural network architectures
via the prediction risk application to corporate bond rating
prediction In: Conference Proceedings on the First International Confer-
ence on Artificial Intelligence Applications on Wall Street 1991.

24. Moody J: Prediction risk and architecture selection for neural
networks In: From Statistics to Neural Networks: Theory and Pattern
Recognition Applications Edited by: Cherkassky V, Friedman JH, Wechsler
H. NATO ASI Series F, Springer-Verlag; 1994.

25. Fahlman SE and Lebiere C: The Cascade-Correlation Learning
Architecture Masters thesis Carnegie Mellon University School of Com-
puter Science 1991.

26. Mitchell M: An Introduction to Genetic Algorithms Cambridge,
MIT Press 1996.

27. Cantú-Paz E: Efficient and Accurate Parallel Genetic
Algorithms Boston, Kluwer Academic Publishers 2000.

28. Koza JR: Survey of genetic algorithms and genetic program-
ming In: Wescon 95: E2. Neural-Fuzzy Technologies and Its Applications
IEEE, San Francisco 1995:589-594.

29. Hastie T, Tibshirani R and Friedman JH: The Elements of Statisti-
cal Learning New York, Springer-Verlag 2001.

30. Ripley BD: Pattern Recognition and Neural Networks Cam-
bridge, Cambridge University Press 1996.

31. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF and
Moore JH: Multifactor dimensionality reduction reveals high-
order interactions among estrogen metabolism genes in
sporadic breast cancer Am J Hum Genet 2001, 69:138-147.

32. Moore JH: Cross validation consistency for the assessment of
genetic programming results in microarray studies In: Lecture
Notes in Computer Science 2611 Edited by: Corne D, Marchiori E. Berlin,
Springer-Verlag; 2003.

33. Roland JJ: Generalisation and model selection in supervised
learning with evolutionary computation LNCS 2003, 2611:119-
130.

34. Culverhouse R, Suarez BK, Lin J and Reich T: A Perspective on
Epistasis: Limits of Models Displaying No Main Effect Am J
Hum Genet 2002, 70:461-471.

35. Sexton RS, Dorsey RE and Johnson JD: Optimization of neural
networks: a comparative analysis of the genetic algorithm
and simulated annealing Eur J Operat Res 1999, 114:589-601.

36. Cantú-Paz E: Evolving neural networks for the classification of
galaxies In: Proceedings of the Genetic and Evolutionary Algorithm Con-
ference Edited by: Langdon, WB, Cantu-Paz E, Mathias K, Roy R, Davis D,
Poli R, Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA,
Schultz AC, Miller JF, Burke E, Jonoska. San Francisco, Morgan Kaufman
Publishers; 2002:1019-1026.

37. Li W and Reich J: A complete enumeration and classification of
two-locus disease models Hum Hered 2000, 50:334-349.

38. Moore JH, Hahn LW, Ritchie MD, Thornton TA and White BC:
Application of genetic algorithms to the discovery of com-
plex genetic models for simulations studies in human genet-
ics In: Proceedings of the Genetic and Evolutionary Algorithm Conference
Edited by: Langdon WB, Cantu-Paz E, Mathias K, Roy R, Davis D, Poli R,
Balakrishnan K, Honavar V, Rudolph G, Wegener J, Bull L, Potter MA,
Schultz AC, Miller JF, Burke E, Jonoska N. San Francisco, Morgan Kaufman
Publishers; 2002:1150-1155.

39. Frankel WN and Schork NJ: Who's afraid of epistasis? Nature
Genetics 1996, 14:371-373.

40. Ott J: Neural networks and disease association Am J Med Genet
2001, 105:60-61.
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12112248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12112248
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11404819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11404819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11404819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11791213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11791213
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10899752
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8944011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11425001
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Back propagation NN (BPNN)
	A Genetic Programming Neural Network (GPNN) Strategy
	Cross-Validation

	Results
	Trial-and-error procedure for the back propagation NN (BPNN)
	Table 1

	Modeling gene-gene interactions
	Table 2

	Detecting and modeling gene-gene interactions
	Table 3
	Table 4

	Discussion
	Conclusions
	Methods
	Data simulation
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9

	Data analysis

	Authors' contributions
	Acknowledgements
	Acknowledgements

	References

