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Abstract

Background: To explain the vastly different phenotypes exhibited by the same organism under
different conditions, it is essential that we understand how the organism's genes are coordinately
regulated. While there are many excellent tools for predicting sequences encoding proteins or
RNA genes, few algorithms exist to predict regulatory sequences on a genome wide scale with no

prior information.

Results: To identify motifs involved in the control of transcription, an algorithm was developed
that searches upstream of operons for improbably frequent dimers. The algorithm was applied to
the B. subtilis genome, which is predicted to encode for approximately 200 DNA binding proteins.
The dimers found to be over-represented could be clustered into 317 distinct groups, each thought
to represent a class of motifs uniquely recognized by some transcription factor. For each cluster of
dimers, a representative weight matrix was derived and scored over the regions upstream of the
operons to predict the sites recognized by the cluster's factor, and a putative regulon of the
operons immediately downstream of the sites was inferred. The distribution in number of operons
per predicted regulon is comparable to that for well characterized transcription factors. The most
highly over-represented dimers matched c#, the T-box, and oW sites. We have evidence to suggest
that at least 52 of our clusters of dimers represent actual regulatory motifs, based on the groups'
weight matrix matches to experimentally characterized sites, the functional similarity of the
component operons of the groups' regulons, and the positional biases of the weight matrix
matches. All predictions are assigned a significance value, and thresholds are set to avoid false
positives. Where possible, we examine our false negatives, drawing examples from known

regulatory motifs and regulons inferred from RNA expression data.

Conclusions: We have demonstrated that in the case of B. subtilis our algorithm allows for the
genome wide identification of regulatory sites. As well as recovering known sites, we predict new

sites of yet uncharacterized factors. Results can be viewed at http://www.physics.rockefeller.edu/

~mwangi/.

Background BLAST) to hand curated proteins or motifs with already
Bacterial genome annotation has generally been confined  characterized functions. Information about protein inter-
to the prediction of sequences encoding proteins and  actions can be extracted by finding how genes group into
prominent families of RNA genes. The predicted ORF'sare ~ operons [1] and searching for homologs to protein

grouped into categories by comparing them (e.g. using
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domains that reside on distinct proteins in one species
and are joined into a single protein in another [2,3].

The comparison between the genomes of the model meta-
zoans (fly, worm, and plant) with the human genome has
confirmed the widely held belief of evolutionary and
developmental biologists that much of the diversity of life
stems from changes in regulation and not the creation of
novel proteins. For bacteria, there is much more horizon-
tal gene transfer, and it is an unresolved question of how
regulation of these genes is coordinated with the host.
When it is realized that even for E. coli less than 20% of
the operons have been thoroughly examined upstream for
regulatory motifs and less than 1/4 of the 300 or more
putative DNA binding proteins have known sites, it is
apparent that the automatic methods for inferring regula-
tory motifs must approach those used for inferring pro-
tein coding sequences and function if the full potential of
the 'genomic revolution' is to be realized.

The inference of improbably frequent motifs from a col-
lection of sequences is a recognized branch of bioinfor-
matics. Algorithms can be categorized by the search
strategy used to find a motif and the model used to assess
the probability of the frequency of the motif's occurrence.
Most algorithms operate on the regulatory sequenes of
clusters of genes with related function and return one or a
few motifs [4-10]. The probability of the frequency of
occurrence of a given motif in the set of regulatory
sequences is usually assessed based on the contrast
between the set of sequences and the rest of the genome.
When the genomes of other related species are available,
motif predictions can by interspecies comparisons some-
times be made on a gene by gene basis [11-14]. Compu-
tational methods, though imperfect, are an essential step
in interpreting genome wide experiments and doing a pre-
liminary screen for targets that merit further laboratory
investigation.

In this article, we extend a strategy originally applied to E.
coli [15] that considers the entire genome at once and
finds all improbably frequent motifs in parallel. It uses an
exhaustive search, so it misses nothing within the category
of motifs it searches for. Probability is assessed internally
since there is no plausible set of sequences to compare
against. This approach has the obvious merits of presum-
ing nothing about regulons, being quick to implement,
and using all the available sequences that may share regu-
latory motifs. It has the obvious demerits of not using the
protein annotations or information about co-expression
such as available from microarray experiments. Instead,
these resources are used to check the validity of the puta-
tive regulons predicted from the sequence alone.

http://www.biomedcentral.com/1471-2105/4/18

In bacteria, a regulatory protein often recognizes and
binds to a class of similar dimers, where a dimer W,N, W,
consists of two specific words W, , separated by x non-spe-
cific bases. If a dimer is observed to occur n times in a set
of sequences, a p-score can be assigned to the frequency n
by computing the probability of observing n or more
instances of the dimer under a null model that assumes
the instances of the words W, , are distributed in the
sequences at random. For the p-score to be considered sig-
nificant, it must fall below an appropriately chosen
threshold. Since many regulatory proteins bind to dimers
with identical or reverse complementary words W, ,,
these classes of dimers are given special consideration,
and a different threshold is used than in the general case.
Because secondary structure motifs also have dimer form,
dimers with significant p-scores do not always represent
protein binding sites, e.g. the T-box.

Essential to the success of our strategy is the way in which
we cluster over-represented dimers, derive weight matri-
ces, and infer regulons. Dimers are clustered into distinct
groups based on sequence similarity. Weight matrices for
the clusters are derived from the actual sequences
matched by the dimers and scored over the regions
upstream of the operons to predict sites. The set of oper-
ons immediately downstream of the matches to a particu-
lar weight matrix are inferred to be a regulon. We find in
Results that the number of predicted regulons as well as
the number of operons per predicted regulon is in line
with expectations. For only a sixth of our clusters of dim-
ers could evidence for function be deduced from the avail-
able information for B. subtilis. We validated these
clusters by comparing their weight matrix matches with
known regulatory sites, examining the operons compos-
ing their regulons for common function (either manually
using the detailed gene annotations or automatically
using the COG categories), and inspecting their weight
matrix matches for positional biases (with respect to
translation start or predicted o4 sites).

Algorithm

Our algorithm for identifying regulatory elements in
prokaryote genomes is an extension of [15] and consists
of the following steps.

1. Identify operons and extract upstream sequences.

2. Enumerate statistically over-represented dimers of the
form W,;N, W, in upstream sequences.

3. Cluster the dimers into similar groups.
4. Construct for each cluster a weight matrix, derived from

the matches in the upstream regions to the cluster's
dimers.
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5. Predict regulatory elements by using standard informa-
tion theory to score the upstream sequences against the
weight matrices.

For B. subtilis, the rate limiting steps 2 and 3 take ~1/2
and ~3 hr respectively to execute on a 500 MHz Pentium
I workstation. Our predicted regulatory sites can be

viewed at the URL http://www.physics.rockefeller.edu/
~mwangi/.

Putative operons and upstream sequences

We group adjacent ORF's on the same strand into putative
operons if (a) the two ORF's are separated by no more
than m bases or (b) the two ORF's are both not hypothet-
ical, are separated by no more than n bases, and have
names differing only in their last letters, which would sug-
gest that the ORF's protein products have related func-
tions. Tests involving E. coli K12 suggest that the optimal
values of m and n are m = 32 and n = 130. At these values,
we correctly predict ~70% of the ~400 operons in E. coli
K12 listed in RegulonDB [16] as having some supporting
experimental evidence. To construct the set of upstream
sequences most likely to contain regulatory elements, we
extract from immediately upstream of the translation start
sites of our predicted operons a maximum of 300 bases,
limited so as not to include any coding sequence (ORF)
on either strand. The upper limit of 300 is chosen because
it includes almost all the known regulatory sites in E. coli
K12 [17]. Using the REPuter program [18], we discard all
exact repeats of length 16 or more bases from the
upstream contiguous sequences to eliminate potential
insertion sequences and transposons. From the set of frag-
ments generated by the removal of the repeats, we discard
any fragment with less than 50 bases to obtain our final
set of upstream sequences. Of the 471289 bases of
upstream sequence in B. subtilis, 98.3% remained after
the removal of the repeats, and 95.9% remained after
imposing the minimum fragment length of 50.

Enumeration of dimers

We search in the upstream sequences for statistically over-
represented dimers of the form W,N W, with word strings
W;and W, of a, ¢, g and t of lengths 4-5 and a spacing x
in the range 3-30. When we include words with length 3
or less, we find it virtually impossible to cluster the over-
represented dimers, probably because dimers with short
word lengths occur frequently in the whole genome and
can be part of regulatory elements recognized by different
transcription factors. When we use words with length 6 or
greater, the large sample space of dimers searched for
necessitates that we be exceedingly stringent with our
thresholds for significance, so only the most improbably
infrequent motifs are detected. Since the conserved por-
tions of the consensus sequences of known regulatory ele-
ments are rarely observed to be separated by more than

http://www.biomedcentral.com/1471-2105/4/18

~20 bases [19], it is natural to constrain x to the interval
3-30. To enumerate the dimers, we tabulate the positions
of all words W in our set U of upstream sequences in a
three dimensional table, the entries of which are indexed
by the string W and the sequence S in U that contains the
occurrence of W. We then use the table to count the
number of occurrences n(D) of the dimer D = W,N, W, in
U. Denoting the length of a word or dimer M as L(M), the
expected number of occurrences of D under the null
hypothesis that the occurrences of W, and W, are uncorre-
lated is

n(Wp) n(w,)
Lo (W1 ) Legr (W3)

y(D) =L (D) (1)

where n(W) is the total number of occurrences of a word
Win Uand L{(M) = g [L(S) - L(M) + 1] is the number
of independent positions in U that a motif M can be
placed. The probability P of observing n(D) or more
occurrences of D under our null hypothesis is then given
by the Poisson distribution:

A dimer is considered over-represented if
P<1/N, (3)

where N, is the number of dimers considered, that is (44
+45)2-31 ~ 50,000,000. Because the binding sites of tran-
scription  factors are frequently symmetric (e.g.
acctNsacct) or reverse complement symmetric (e.g.
ccctNsaggg) [19], we score these separately using N, = (44
+ 4°)-31 ~ 40,000. Under our null model, no dimer
would satisfy Eq. 3 by chance. However, our null model is
inaccurate for sequences consisting of long stretches of the
same nucleotide (A or T being the most common cases in
practice) since a sequence like AAAAAAN, TTTTTT can for
x <y contain multiple instances of the dimer AAAAN,TTTT
displaced relative to each other by one base. In contradic-
tion to our null model, the occurrences of the words AAAA
and TTIT are manifestly correlated, leading to extra
instances of the dimer AAAAN,TTTT and an over-estima-
tion of the significance of the frequency of the dimer's
occurrence. To circumvent the problem, we ignore all
words that consist of only the same nucleotide and so
miss motifs like AAAANTTTT recognized by ComK. It is
however important to note that the frequency of occur-
rence of a dimer like TAAAAN.TTTTA is properly assessed
since the problem is not the abundance of any particular
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nucleotide in a dimer but the translational symmetry that
results when each word is a continuous uninterrupted
string of the same nucleotide. We therefore believe that
our statistical model is misrepresenting a negligible
number of motifs even in the poly A/T rich genome of B.
subtilis.

Clustering of dimers

Since many of our over-represented dimers represent dif-
ferent but overlapping versions of the conserved cores of
the binding sites of the same factor, it is necessary for us
to cluster our over-represented dimers into distinct
groups. For example, the following two dimers

ttgaNNNNNNNNNNNNNNNNNNNNataat
tgcctNNNNNNNNNNNNNNNNNNTtata

in B. subtilis should belong to the same group since they
are both related to the consensus sequence
TTGACAN,,TATAAT recognized by the sigma factor o4
[20].

To cluster our dimers, we first compute for each pair of
dimers D, and D, a pairwise similarity score S(D;, D,). We
define the score of an alignment of D, and D, to be a sum
over the pairs of overlapping bases: matches are scored as
+1, mismatches as -1, and N paired with anything scores
as 0. We define S(D,, D,) to be the maximum score pro-
duced by all possible alignments between D, and D, sub-
ject to the constraint that the left (and similarly right)
words in the two dimers must partially overlap by at least
2 bases. When the aforementioned constraint cannot be
satisfied, we define S(D,, D,) = 0. Hence, for the above
two dimers, S(D,, D,) =5 - 1.

Define a pairwise dis-similarity score between D, and D,
as D(leDz):InaXDl,D2 S(D,,D,)-S(D,,D,) .
define a graph G, = (V, E,,) with vertices V representing our
dimers and edges E, having lengths D(D,, D,). In such a
graph, highly similar dimers would tend to form spatially
compact clusters. In practice, these compact clusters tend
to be connected by long chains of edges since through a
series of substitutions, insertions, and deletions a dimer D
can be transformed into a highly dis-similar dimer D'.
Because of these long chains of edges, many clustering
algorithms have difficulty properly delineating the com-
pact clusters. For example, as the agglomerative algorithm
CAST [21] constructs clusters starting with our individual
dimers, it fails to merge many highly similar groups
together, probably because the algorithm has a difficult
time deciding which groups the dimers on the long chains
of edges belong to. In the divisive SPC algorithm [22], our
dimers are represented as spins in a Pott's model, and

Now,
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clusters are mapped out using a spin-spin correlation
function. As the temperature is raised, the increase in ther-
mal energy disrupts the correlation between many of the
dimers in the compact clusters before it disrupts the corre-
lations over the long chains of edges between the clusters,
leading to many highly similar groups often each consist-
ing of one dimer. We devised an algorithm, the weakest-
link-clustering (WLC) algorithm, to specifically seek out
and severe the long chains of edges to generate compact
clusters.

Starting with G, = (V, E,), our WLC algorithm in each iter-
ation generates from a graph G, ; = (V, E;;) anew graph G;
= (V, E;). Our clusters of dimers are defined as the con-
nected components of the current graph G;. To generate
G;, we compute all the shortest finite paths in G, ; between
all pairs of dimers (D,, D,) € V. Multiple paths may run
across a given edge (D;, D,) € E;;. Let P(D;, D,) be the
mean length of these paths. The weakest link in G, is
defined as the edge (D,, D,) € E;;, D, #D,, at which P(D;,
D,) is a maximum. When P(D,, D,) is a maximum at mul-
tiple edges, then the edge to be designated the weakest
link is chosen at random. Irrespective of the exact edge
chosen to be the weakest link, the edge will undoubtedly
be part of one of the aforementioned long chains of edges
in G,. To generate compact clusters of dimers, our algo-
rithm severs the weakest link in G; ; to produce G,.

Define the intra-cluster affinity A(C) of a connected com-
ponent C = (V,, E_) as

_ 2Dl,DzeVC,(Dl,D2 )eE, S(Dl,Dz )

Vel

A(C)

(4)

Note that the sum of similarity scores S(D;, D,) in the
numerator is performed over all pairs of dimers in C (or
equivalently edges in E,) regardless of whether or not the
dimers are currently connected by an edge in C. A(C) is
therefore the average pairwise similarity score of dimers in
C. Every time two new connected components C; and C,
are formed by severing a weakest link in a connected com-
ponent P, our algorithm computes the ratio

[A(C1)+A(C2)]/2

A

(5)

of the mean of the infra-cluster affinities of the child clus-
ters C, and C, to the intra-cluster affinity of the parent
cluster P. Hence, our algorithm produces a series of R val-
ues until the trivial state of every dimer being in its own
cluster is reached.
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The optimal number of clusters can be inferred from a
plot of R versus the number of clusters, e.g. Figure 1. R
declines rapidly as the highly non-compact clusters are
severed and plateaus when a succession of clusters are
encountered that exhibit the same degree of compactness
from parent to children. R can then increase, e.g. around
370 clusters in Figure 1, when formerly compact clusters
are fragmented into yet better children. To make our clus-
ters as generic as possible, we choose the cluster number
to be the in the first plateau in R.

Weight matrices

For each cluster of dimers generated by our WLC algo-
rithm, we extract from our upstream sequences all unique
segments that match any dimer. Using a multiple align-
ment of the dimers in the cluster, we align the segments
and pad each to the left and right with up to ~5 bases from
the genome to create a column of equal length segments.
We compute a matrix n, , that gives the number of occur-

rences of the base a in the i column of the alignment. We
prune the matrix n, , by performing a chi-squared test over
awindow of length I = 3 columns running over the length
of the matrix. For a given position of the window, we com-
pute the probability [23] that the observed matrix entries
were obtained by sampling the background distribution

of frequencies f2, f0, fgO ,and f of the bases a, ¢, g, and

t respectively in our upstream sequences. When the prob-
ability exceeds 1%, we block out the middle column in
the window and do not use it to score sequences against
the matrix. Although the outer low significance columns
are eliminated from the matrix, the inner blocked out col-
umns are retained to preserve the spacing. The final matrix
typically has a dimeric pattern, but monomeric, trimeric,
and even more complex patterns are occasionally
observed.

To predict regulatory sites, we in accordance with a scor-
ing scheme by Berg and von Hippel [24] first convert the
pruned matrix n; , to a weight or surrogate binding energy
matrix w, ,. For an unblocked column i, w;, = log,, (f; ./

19) where f,, = (n,, + 1) /Z, (n;, + 1) is the relative fre-
quency of the base alpha in the i*" column with a pseudo

count of 1 added due to the Bayesian estimate. For a
blocked column i, w; , = 0.

The consensus sequence for a weight matrix is computed
according to the prescription outlined in [25]. Denote the
total number of counts X, n; , recorded in the i column
of the matrix n; , by N. If n; ,/N > 0.5 for some base a. and
n; > 2-mg for all bases B # a, then the i site in the
sequence is assigned the consensus o. Otherwise, if (n; , +
n;)/N > 0.75 for some pair of bases o and B, then the site
is assigned the co-consensus [o/B]. If neither criterion is

http://www.biomedcentral.com/1471-2105/4/18

satisfied or if the column i was blocked out because it did
not satisfy the chi-squared test, the site is assigned a N.

Predicting regulatory sites
The score of a sequence b;b,...b; to a weight matrix w; , is

defined by the sum s = Zi Wip, + which correlates with
= Yi

the binding affinity of the factor to the DNA sequence
[24]. When a weight matrix is scored over many distinct
segments, the histogram of scores s can usually be approx-
imated by some normal distribution N(s; m, c) with mean
m and variance 2. Hence, we characterize a weight matrix

by the mean m, and variance cf of the scores of the matrix

to the N defining segments used to compute the matrix
and by the mean m and variance o2 of the scores of the
matrix against all the distinct segments of length [ in our
upstream sequences. The more separated N(s; m,, ¢,) and
N(s; m, o) are, the better the matrix can distinguish poten-
tial sites from background sequences. The sites predicted
by a weight matrix are those with a score larger than a cut-

off s,. The false positive rate is given by Lo N(s; m, o)

N
and the false negative rate by I_So N(s; m, o). Since a

decrease in the false positive rate can only occur at the
expense of an increase in the false negative rate, care must
be taken in choosing s,. We choose s, to be max{m; - z,
Oy M + Z,q,0 }, with the two parameters z,,;and z;,,, called
the critical self and background z-scores respectively, typ-
ically having the values 1 and 3 to ensure a false positive
hit rate no greater than 0.2%.

Running time

The rate limiting steps of our algorithm are the exhaustive
search for and the clustering of the over-represented dim-
ers. The exhaustive search executes in O(Np, + L L) time
where N, is the number of dimers searched for, L, is the
combined length of the upstream sequences, and L, is the
sum of the different word lengths considered (e.g. 9 if
word lengths 4 and 5 are considerd). To reach the trivial
state that every dimer is in its own cluster, our current
implementation of our WLC algorithm executes in
O(|E|?|V|log,|V|+|E||V|3) time on the graph G = (V, E)
and uses a breadth first search to identify the connected
components and Dijkstra's algorithm to compute the
shortest paths between all over-represented dimers. The
stated running time of our WLC algorithm however
should be interpreted as an upperbound that can in cer-
tain instances be a gross overestimate depending on the
precise topology of the graph G.
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Number of clusters

WLC Algorithm. Choosing the correct number of clusters. The ratio R (Eq. 5) of the mean child to parent infra-cluster affini-
ties versus the number of clusters for B. subtilis generated by our WLC algorithm. As weakest links are severed, the number
of clusters increases from 29 to 732. Note the stabilization at and around 350 clusters, the optimal cluster number-.
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Table I: The top 10 most significant dimers (column I). Dimers searched for had word lengths 4-5 and a spacer 3-30. Coding sequence
was not considered. Listed are the number of occurrences in the dataset (column 2) and the statistical significance -log,o P (column 3),

with P calculated from Eq. 2.

Dimer Number observed Significance
ttgaNjataat 48 21.1
gcegeN,| geggc 10 15.9
ggtggN;cgeg 10 14.6
ttgaN, gtata 70 14.5
gaaacN ,Cgta 17 14.4
ttgaN, taat 58 13.8
agggtN ccgeg 8 13.7
geegeN,Cgge 12 13.7
ttgaN,;ataa 75 13.6
ttgacN qataat 18 13.6

Web site Overview

Our website http://www.physics.rockefelleredu/ ~ We applied our algorithm to the well studied gram posi-

~mwangi/ presently lists our regulatory site predictions
for B. subtilis and several other species. For each, we list

1. the regulon defined by each weight matrix with the
operons' annotations,

2. each upstream region with the predicted regulatory
sites,

3. all matrices with significant number of multiple
matches in a upstream region,

4. pairs of our matrices that frequently co-occur in the
same upstream region,

5. the observed and expected distributions of positions of
a matrix's matches relative to translation start,

6. the observed and expected distributions of positions of
a matrix's matches relative to our best primary sigma fac-
tor binding site predictions,

7. input files for the DNA sequence viewer and annotation
tool ARTEMIS [26].

Results

Nomenclature

To simplify terminology, we will use the term 'operon' in
what follows to denote our putative operons predicted as
described in "Putative operons and upstream sequences."
Since a particular weight matrix is thought to represent
sites uniquely recognized by some transcription factor,
the term 'regulon' will be used for the group of operons
having a match to the matrix directly upstream, i.e. direct
targets of the factor.

tive bacteria B. subtilis. We grouped the 4100 prokaryote's
ORF's into 2729 putative operons and found after the
removal of poly a/t patterns 732 over-represented dimers
with both words between 4-5 in length and a spacer
between 3 and 30. In the list of our 10 most significant
dimers in Table 1, the four dimers ttgaN,jataat,
ttgaN,otata, ttgaN,taat, and ttgacN,,ataat all correspond
to the consensus sequence TTGACAN,,TATAAT recog-
nized by the primary sigma factor o2 [20], the two dimers
ggtggN.cgcg and agggtN,ccgcg correspond to the T-box
[27] with a known consensus sequence AANNAGGGT-
GGTACCGCGNN involved in the alternate transcription
termination regulation of the aminoacyl-tRNA syn-
thetases, and the consensus sequence TGAAACN, ;CGTA
recognized by the antimicrobial resistance sigma factor
oW [20] is represented by the dimer gaaacN, ccgta.

Figure 1 shows the ratio R (Eq. 5) of the mean child to par-
ent intra-cluster affinity versus the number of clusters
when we clustered the 732 over-represented dimers. There
was a plausible plateau at 350 clusters, 97 of which con-
tained 2 or more dimers. We found that 317 of the 350
clusters matched 3 or more sequences and converted these
clusters to weight matrices for further study. Of the 317
matrices, we were able to identify 52, listed in Table 2, that
met at least one of our criteria for significance. Of the 52
matrices, 10 represent experimentally characterized regu-
latory factors, 30 have regulons that contain a dispropor-
tionate number of operons with related functions, and 32
have matches exhibiting some positional bias. A total of
28 of the matrices listed in Table 2 were derived from a
cluster of two or more dimers. To further demonstrate our
algorithm, we also searched for longer symmetric dimers
with word lengths 6 that could overlap coding sequence
and applied our algorithm to the subset of sequences
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Table 2: 52 unique biologically significant weight matrices. Listed are the matrix's identifier (column I), consensus sequence (column
2), regulon size (column 3), and annotation (column 4). The matrices are sub-divided into categories according to the means by which
they were identified: by comparison to documented regulatory mechanisms, by inspecting the operons in a matrix's regulon for related
functions, and by examining the matrix's matches for positional biases. If a matrix was identified by several means, all listings for the
matrix except the first in the top-most category are marked with pluses. Where applicable, the statistical significance - log,, P is
reported in (), and entries in a category are sorted according to significance.

Weight Consensus sequence Regulon  Annotation
matrix size
Documented regulatory mechanisms
DBTBS database[28]
Sigma factors [20]
WMI N, TTGAN ;TATAATAN, 1141 o*, housekeeping
WMI 18 [G/TIGTTTAN,; [A/C]GGGAA [G/T] 8 oB, general stress response
WMI | NTGAAACNTTTN,,CGTAT [A/T] 16 oW, antimicrobial resistance
WM212 TGGCA [C/TIN,CTTGCAT 5 ol', levanase and amino acid catabolism
Miscellanous
WM2 AANNAGGGTGGTACCGCGNN 24 T-box, alternate transcription termination regulation of aminoacyl-tRNA
synthetases [2/]
WM22 [A/TJAAN [A/C]JGAACNN [A/TINGTTCNNTTN 29 LexA, SOS response [36]
WM71 NT [A/T]ITGTAN,,ACA [A/T]AN 11 TnrA, pleiotropic regulator involved in global nitrogen regulation [37]
WM3I17 [AITITGTAA [A/G]CG [C/T]TT [A/TIN [A/T] 54 CcpA, carbon catabolite repression [59]
Two-component response regulators [43,44]
WM298 NTAATN,,ATTAN 27 YceG-YecH (3.4)
WM259 TGCGN,,CGCA 5 YclK-Ycl) (3.3)
Novel predictions
Regulons which operons have highly related functions
Identified by detailed manual inspection
WMI71 TGGGN, GGGA 2 Sec-dependent protein export machinery
WMI 16 AATTC [A/T]N, [AITIGAATT 4 Cell lysis
WM266 TGGACAN,GCAGA 3 Extracellular proteins
WM304 AGTGTN,;AGACT 4 Transport
WMé69 TATCTN, [A/TITCGAGA 5 Transport
WM233 NGGGAN,;TGCGG 7 Antimicrobial resistance
WM290 NTTGAN,, TGTTAN;T 18 DNA synthesis and repair
WM47 A [AITIAGAGN (CTCTTT [C/TIN 27 DNA synthesis and repair
WMI24 NTTAG [A/TIN,TTAGN 17 Transport
Identified using COG functional categories
+WM2 AANNAGGGTGGTAGGGCGNN 24 T-box, translation, ribosomal structure, and biogenesis (12)
+WM3 17 [AITITGTAA [A/G]GG [C/T]TT [A/T]N [A/T] 54 CcpA, carbohydrate transport and metabolism (6.5), energy production
and conversion (3.0)
WMI30 N,TTGAN 4 [A/TIN,TGAAAN 38 Posttranslational modification, protein turnover, and chaperones (4.2)
+WMI N,;TTGAN ;TATAATAN, 1141 o*, transcription (3.3)
+WM212 TGGCA [C/TIN,GTTGCAT 5 ol, energy production and conversion (3.1)
WM255 NCTGAAN,, TTCAGN 3 Cell motility and secretion (2.9)
+WM22 [A/TJAAN [A/C]GAACNN [A/TINGTTCNNTTN 29 LexA, DNA replication, recombination, and repair (2.6)
WM39 [A/GINNTGCTN;,AGCAN 21 Secondary metabolites biosynthesis transport, and catabolism (2.5)
WM228 NGCAGAN;TCTGCN 3 Secondary metabolites biosynthesis transport, and catabolism (2.5)
WM283 AGCTGN ;GAGGTT 3 Translation, ribosomal structure, and biogenesis (2.4)
WMB80 NGTTTN,,AAACN 86 Energy production and conversion (2.3)
WM223 NATTTN,;AAATN 69 Transcription (2.3)
WMI6 NCCGGC [C/T]N(GCCGGN [G/T]TTTT 27 Signal transduction mechanisms (2.3)
WMI7 [A/GINCGGCNg [A/GINGCCGN 40 Cell motility and secretion (2.3)
WM23 [AITICGAAN,, TTCG [A/T] 25 Amino acid transport and metabolism (2.2)
WM22| NGCGGN,,CGGCN 6 Amino acid transport and metabolism (2.2)
WMI 19 NAATANGTATTN 62 Cell envelope biogenesis, outer membrane (2.1)
+WM304 AGTGTN,;ACACT 4 Inorganic ion transport and metabolism (2.1)
WM46 NTATAN;AAAGGAG [A/G]N 109 DNA replication, recombinaion, and repair (2.1)
WM75 [G/TIN;CTACNyGN,CTACA 5 Secondary metabolites biosynthesis transport, and catabolism (2.0)
WM3I NTGTTN;AACAN 58 Carbohydrate transport and metabolism (2.0)
Positions of binding sites are highly biased with respect to o* sites.
+WM46 NTATAN ;AAAGGAG [A/G]N 109 Repressor (17)
WM2I AANGCGN ;GGGNTTTTTT 128 Activator (7.9)
WM33 NAAGC [A/T]GN,,C [A/T]GCTTN 96 Activator (4.7)
WM50 NNGGTTTTTTTATTN 152 Activator (3.6)
WMI73 NAAAGN [A/G]INGGAAN, 35 Repressor (3.0)
WMI69 NAAAGN;GTGAN 40 Repressor (2.9)
WMI3 [A/G] [A/C] [A/G]CGG [G/T]... [G/TINgGGG [G/T] [G/T]TT [A/TIT 21 Activator (2.8)
WMI80 [A/TIAGAGN;AGAGN 15 Repressor (2.6)
WM58 NAAAGANAN ;TGTTTTN 42 Activator (2.6)
WM79 NTTGT[A/T N,TTGTN 67 Activator (2.5)
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Table 2: 52 unique biologically significant weight matrices. Listed are the matrix's identifier (column I), consensus sequence (column
2), regulon size (column 3), and annotation (column 4). The matrices are sub-divided into categories according to the means by which
they were identified: by comparison to documented regulatory mechanisms, by inspecting the operons in a matrix's regulon for related
functions, and by examining the matrix's matches for positional biases. If a matrix was identified by several means, all listings for the
matrix except the first in the top-most category are marked with pluses. Where applicable, the statistical significance - log,, P is
reported in (), and entries in a category are sorted according to significance. (Continued)

WM84 AN;AACATN;GGAGGN 19 Repressor (2.4)

WM7 NAAAGN 4 [G/T]JCTTTN;, 90 Activator (2.3)

+WMI7 [A/GINGGGGN, [A/CINGCCGN 40 Activator (2.1)
Absolute positions of binding sites are highly biased.

+WM46 NTATA-17-AAAGGAG [A/G]N 109 6l)

+WMI N,;TTGAN ;TATAATAN, 1141 oA (16)

+WMI 69 NAAAGN;GTGAN 40 (10)

+WM21 AANCCGN ;CGGNTTTTTT 128 (6.3)

+WM2 AANNAGGGTGGTAGGGGGNN 24 T-box (4.8)

+WMI 6 NCGGGG [C/T]-6-GGCGGN [G/T]TTTT 27 4.1)

+WMI3 [A/G] [A/C] [A/G]CCCI[G/T ... 21 (3.9

+WM58 NAAAGANA-I5-TGTTTTN 42 (34)

+WMI | NTGAAACNTTTN,,CGTAT [A/T] 16 a¥(3.1)

+WMI7 [A/GINCGGCNg [A/CINGCCGN 40 (3.0

WM25 NNGTTT-17-GG [A/T]A [A/T] 59 (3.0

WM37 NAAGC [A/T]-19-GCTTT 25 (3.0

WMI4 N3;CGGCN, ,GCCGN; 197 Tends to co-occur with T-box (3.0)

WMI43 NCGTCN,,TTATN 25 (2.8)

WMI85 NAACC-I5-GGTTNNTT 15 2.7)

+WM47 A [A/TJAGAGN (CTCTTT [C/TIN 27 (2.6)

+WM33 NAAGG [A/T]GN,C [A/TIGCTTN 96 .1)

WM28 [A/GJAAAGC-21- [A/G]GCTT [C/T]TT 30 (2.0

Unusually high number of matches in a single promter.
WM34 NCACA [A/T]N [A/TITGTGN 17 Three repeats overlap dnaA boxes TTATCCAGA [60], may inhibit chro-

mosome replication, (7.8)

upstream of operons identified to be co-expressed in vari-
ous studies.

Regulon sizes

To validate our methods, we began with a collection of
transcription factors with experimentally characterized
recognition sites collected in the DBTBS database [28] and
by Helmann [29]. We restricted our attention to the 34
factors each with at least two sites, giving 600 sites in total.
In the histograms of regulon sizes in Figure 2, size is
reported in terms of number of operons. In (a), a regulon
of a factor is defined as the set of our predicted operons
that have immediately upstream a site documented in the
DBTBS database to be recognized by the factor. Similarly,
a regulon of a weight matrix in (b) or (c) consists of the
operons that have immediately upstream a match to the
matrix. A matrix in (b) for a factor was computed from the
sites listed in the DBTBS database for the factor. For fac-
tors like 64 and DegU that recognize dimers with variable
spacing x, we computed separately a matrix for each spac-
ing x. The matrices in (c) are our 317 matrices derived
from our clusters of over-represented dimers. As noted in
the caption, a number of matrices have regulons contain-
ing more than 400 operons. Some of these matrices, like
those for ¢ and oK, were derived from experimental sites
exhibiting little consensus. Others represent factors like
ComK that recognize ubiquitous motifs like

AAAANTTTT, which may not all be functional. An excep-
tion is the matrix for the factor SpoOA with 824 operons
in its regulon. SpoOA is the master regulator of sporula-
tion and may have many targets [30].

The expressions in "Predicting regulatory sites" for the
rates of false negative and positive predictions for a weight
matrix's matches assumed a Gaussian distribution of val-
ues. We used the 600 DBTBS sites to test the expressions
by computing for each factor's weight matrix in Figure
2(b) the percentage of its sites and the percentage of sites
annotated for another factor that the weight matrix
matched. The false negative rate can be deduced from the
former percentage, and the false positive rate is given
directly by the latter. The results agree well with the Gaus-
sian assumption.

More than half of the regulons for our matrices in Figure
2(c) contain 10 or fewer operons. The five largest regulons
with sizes 1141, 903, 518, 320, and 281 belong to the
matrices WM1, WM5, WM29, WM4, and WM90 with con-
sensus sequences N,TTGAN, , TATAATAN N [A/T]TTT
[A/T|N,AAAT[A/T][A/T|N;, NAAATTAN [A/T|N, TAATTT

NN, N, [A/TJAAATT[A/T|N,A[A/T|TT[A/TIN;, and N[C/
T]TTAC[A/TIN,;GTAA[A/G]NN respectively. Since WM1
represents the primary sigma factor o4, it is not surprising
that its regulon contains nearly half of all our predicted
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(a) Experimental sites from DBTBS database
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(b) Weight matrices derived from DBTBS database
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(c) Our weight matrices derived from clusters of over-represented dimers
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Figure 2
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Histogram of regulon sizes. A regulon for a factor in (a) is defined as the set of our predicted operons that have immediately
upstream a site documented in the DBTBS database to be recognized by the factor. A regulon for a weight matrix in (b) and (c)
is defined as the set of our predicted operons that have immediately upstream a match to the matrix. The matrices in (b) were
derived from the experimental verified sites in the DBTBS database. The matrices in (c) were derived from our clusters of
over-represented dimers. The several regulons in (b) (%, 66, ok, ComK, GItC, GlItR, Hpr, LevR, and SpoOA) and the three
regulons in (c) with more than 400 members are discussed further in the text.
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operons. The matrices WM5, WM29, and WM4, represent-
ing ubiquitous poly a/t patterns, may correspond to UAS
and UP elements [31]. The matrices that correlate well
with the known factors o5, 6%, T-box, ol, LexA, TnrA, and
CcpA (see next section) have regulons containing 8, 16,
24, 5,29, 111, and 54 of our operons respectively. It is
clear from our literature search that we underestimate the
number of operons directly targeted by of and o%. To
date, at least 35 operons have been shown experimentally
to be transcribed from of dependent promoters [32].
Moreover, various genetic and reverse genetic approaches
and array technologies suggest that over 200 genes are o
dependent, although some indirectly [33]. Using consen-
sus search, run-off transcription followed by macroarray
analysis, and transcriptional profiling, [34] identified 30
oW dependent promoters. Our underestimates of the oB
and o regulons can be attributed to the high specificity of
our weight matrices and highlight a weakness in our algo-
rithm. Our o8 matrix was derived from a cluster of only
one dimer, and our 6" matrix was derived from a cluster
of 7 dimers with no mismatches. Although the factors' rec-
ognition consensuses are very well reflected by the dimers
in these clusters, no dimers representing allowed varia-
tions to these consensuses in both sequence and spacer
met our criterion for over-representation, so our 68 and c%
clusters and hence their derivative matrices were too spe-
cific and matched only the strongest of sites. To remedy
this weakness, we would have to search not for over-rep-
resented dimers but over-represented classes of dimers
with mismatches and variable spacers. Notwithstanding
this, the sizes of our other matrix regulons compare favo-
rably with those documented in the literature. Of the 21
aminoacyl-tRNA synthetase operons, 14 are known to be
regulated by the T-box [35]. Reference [20] estimates that
the ol regulon contains 6 operons, and according to [36],
some 20 operons are direct targets of LexA. We could not
find any recent estimates of the sizes of the TnrA and CcpA
regulons. Both factors are believed to regulate many genes
[37,38], and CcpA according to the DBTBS database is
believed to directly target at least 34 sites. Excluding WMS5,
WM29, and WM4, our 317 matrices predict on average 3.5
sites per upstream region. On our web site, we mark
simultaneously all predictions from our 317 matrices and
the matrices derived from the experimental sites.

Weight matrices correlating with known factors

To correlate our 317 weight matrices with known factors;
we scored them over the 600 DBTBS and Helmann sites.
The number e of sites for a factor f expected to match a
matrix w is

S

e=) (I -1, +1)p, (6)

1
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where N, is the number of sites listed for the factor, [;is the
length of the i site s;, 1, is the number of columns in w,
and p,, is the probability that a randomly chosen segment
of length I, will match w. The probability P(w, f) of
observing by chance that n of the sites s; bound by f con-
tain a segment that matches w is then given by the Poisson
distribution. For P(w,f) to be significant, we insisted that
itbe less than 10-4, roughly the inverse of the total number
of matrices times factors being compared.

If P(w, f) happened to meet this cutoff, we manually
checked that it was the most conserved positions in the
experimental sites for a factor that matched our matrix. By
these criteria, we could correlate at least one of our matri-
ces with one of seven factors (o4, 68, 6%, ol, LexA, TnrA,
and CcpA) in our collection of 34 factors, a 21% success
rate. We missed the factors ComA, CtsR, Fnr, HrcA, RocR,
YqhN, and Zur even though these factors are quite spe-
cific. In most cases, it is because the dimers that are part of
the conserved core of the binding sites of the factor did
not satisfy criterion Eq. 3. When we only considered dim-
ers with word lengths 4, the number of dimers considered
decreased ~16-fold in the general case (~4-fold in the
symmetric cases), and we found that under the new less
stringent criteria given by Eq. 3 that at least one of our
matrices correlated with one of nine factors (o4, o8, %,
LexA, CcpA, ComA, Fnr, GItC, and GItR) or ~26% of the
factors in our collection. Unfortunately, we missed the
factors o and TnrA since their representative dimers all
contain length 5 words.

For o4, we can compare our predictions with those of Ref-
erence [39]. Using a hidden Markov model (HMM) fitted
to known o4 sites that allowed for variable spacing
between the -35 and -10 elements, [39] predicted 881 4
sites in our upstream sequences, 625 with a spacer 17 cap-
tured by our weight matrix WM1. Our matrix WM1 has
1580 matches upstream of 1141 operons, of which 413
agree with one of the 625 from [39]. Moreover, WM1
matched with no training 109 out of the 132 sites listed in
[29]. It is unclear if we are seriously over-predicting since
[39] estimates that their HMM misses 30% of real sites,
and some of our WM1 matches could represent other
spacings, which would be expected to yield a dispropor-
tionately large number of false positives. Our prediction
that ~40% of our operons directly depend on the domi-
nant sigma factor does not seem excessive. Our WM1
matches also have a very strong positional bias (see
below).

Noticeably absent from our list are matrices that represent
the very specific HrcA and Fur factors. HrcA binds to the
CIRCE elements TTAGCACTCN,GAGTGCTAA [40]
directly upstream of the genes hrcA and groES. Although
Fur recognizes the 15 bp consensus TGAtAATNATTaTCA,
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Matches to our o* weight matrix WMI exhibit a clear positional bias. Histograms of positions of the matches to our oA weight
matrix WMI between (a) divergent and (b) convergent operons. In (a), positions are measured relative to translation start. In
(b), positions are measured relative to the downstream end of the region. In either case, the first upstream base is assigned the
position -1. The expected distribution, under the null hypothesis that the matches are uniformly distributed in their upstream
regions, is denoted by *. Probability P of the observed distribution under the null hypothesis is reported as the significance

score -log,oP.
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many of the 20 operons known to be targeted by Fur are
regulated by two overlapping Fur sites with the classic 19
bp consensus GATAATGATNATCATTATC [41]. One of the
two CIRCE elements (that upstream of the groE operon)
overlaps coding sequence and so was not in our search
space of upstream sequences. We examined all dimers
with word lengths 4-5 and spacing 1-11 that matched the
given 15 and 19 bp Fur consensuses. The most significant
dimer taatNNttatc occurred 15 times in our search space
of upstream sequences with a probability -log,,P = 3.6.
Although the Fur sites display a high degree of conserva-
tion along their length, it appears that due to variations at
individual sites no dimer met our criterion for over-repre-
sentation. For example, the dimer tgataNstatca only
occurs twice in the 21 known Fur sites listed in Figure 4 in
[41] because of variations at the fourth and twelfth sites
highlighted in lowercase in the consensus TGAtAATNAT-
TaTCA. This illustrates a known shortcoming of our
method, which ignores dimers that, though not signifi-
cant individually, are significant as a cluster. Because
words like taat and ttatc occur frequently, note that the
significance of the occurrence of the dimer taatNNttatc is
much lower than might be expected. Under a null model
ignoring nucleotide correlations, the dimer taatNNttatc
would in our search space of ~0.5 Mb be expected to be
seen ~1/49 - 500000 ~ 2 times. Hence, the probability of
seeing the dimer 15 times would by Poisson statistics be
~215/151 €2~ 107,

Observing that both the HrcA and Fur consensuses are
long and reverse complement symmetric, we decided to
search for over-represented symmetric and reverse com-
plement symmetric dimers with word lengths 6 and spac-
ers 1-30. We also augmented our search space to 300 bp
upstream of each operon irrespective of whether this
includes coding sequence. We clustered the 64 dimers we
found into 35 clusters. Our third largest cluster had two
dimers gcactcNogagtge and tagcacN, ;gtgcta that matched
the CIRCE element and an additional two dimers
acacgcN.gegtg and aagctcN,;gagett that may define a
broader recognition consensus for HrcA. There were no
plausible matches to the Fur consensuses.

Known sets of coregulated genes

Drawing from microarray studies, known regulons, CHip-
CHip studies, etc., we compiled 39 sets, each containing
genes believed to be targeted by some factor either directly
or indirectly. The list of factors considered includes seven
sigma factors (D, E, F, G, K, and X [20] and H [42]), the
two-component systems DegU, ComA, and PhoP [43], 24
other two-component systems [44], AbrB [28], Fur [41],
PucR [45], and PurR [46]. In what follows, we work with
our operons predicted as discussed in "Putative operons
and upstream sequences." If in a set a gene in one of our
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operons is listed to be a target of a factor, then the entire
operon is considered to be a target.

For each of our 39 sets except those for the sigma factors,
we asked which if any of our weight matrices had a regu-
lon containing a disproportionate number of the set's
operons. A weight matrix identified in this way could cor-
respond either to the master factor believed to co-regulate
the set's genes or some downstream factor activated later
in the regulatory cascade. The probability that one of our
regulons and one of the 32 sets considered share n oper-
ons by chance can be assessed using Poisson statistics. A
probability cutoff of < 10-4is used appropriate to our sam-
ple size of 32-317. None of our weight matrices were
found to have a regulon containing a disproportionate
number of the targets listed in a set. (Of the 3 (18) oper-
ons identified as being regulated by the two-component
system YccG-YccH (YclK-Ycl]), 2 (2) were contained in the
regulon for our matrix WM298 (WM259) with a size 27
(5) for a significance of ~10-3 (~10-3). We report these two-
component systems in Table 2 because we think they
might be real.)

To see why we did so poorly, we examined in more detail
the 69 operons listed in the microarray study [43] to be
targeted by DegU. Only 2 of these operons could be found
among the 13 listed in the DBTBS database to be part of
the DegU regulon. This suggests that the microarray study
produced a considerable number of false negatives. It is
possible that many of the targets listed in the study are
indirect targets controlled by a cascade of regulatory fac-
tors and that no single factor directly binds to enough sites
for its recognition consensus to be identifiable in our
whole genome wide analysis.

For 13 of the factors we considered (sigma D, E, F, G, X,
and H, DegU, PhoP, AbrB, Fur, PucR, and PurR), the rec-
ognition consensuses are known. For each factor, we
applied our algorithm to the regions upstream of the
operons listed in our sets to be coregulated by the factor.
Since for each of these factors only 5-70 operons are listed
to be targets, we had to search for only length 2-3 words
in order to have reasonable counts. For 2/5 of the factors,
at least one of our three topmost significant dimers
matched the known consensus. For gene sets this small,
other methods however may be preferable (see
Discussion).

Regulons identified by operon functions

A detailed manual examination reveals that the constitu-
ent operons of many of the regulons of our 317 weight
matrices have highly related functions. For instance, the
two operons prsA and sipA in the regulon for WM171 are
both part of the Sec -dependent protein export machinery
[47]. In addition, the regulon for WM304 of size four con-
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tains at least three transporters, and the regulons for
WM290 and WM47 contain a disproportionate number
of genes involved in DNA synthesis and repair.

To attach a putative function to our 317 matrices automat-
ically, we made use of ~20 COG functional categories
assigned to the ORF's in the protein table (PTT) file for B.
subtilis [48]. We defined the category of one of our oper-
ons to be the category of the first gene and inspected each
of our matrix regulons for over-represented categories by
using Poisson statistics to assess the number of operons
belonging to any category. For significance, we used a
probability threshold of 0.01, roughly the inverse of the
number of regulons considered. (The probability thresh-
old 0.001, corresponding to the inverse of the number of
regulon-category pairs considered, would be too stringent
since the over-representation of a particular category in
one of our regulons often excludes the over-representa-
tion of another category.) The 21 of our matrices whose
regulons contain an over-represented category are listed in
Table 2 along with their significance scores. For a category
to be over-represented in a given matrix regulon, note that
the majority of the operons in the regulon need not
belong to the category, just a disproportionately large
number. Since many of the genes in B. subtilis have yet to
be assigned a COG and since many regulons might con-
tain operons belonging to a diverse set of categories, this
form of automatic functional scoring is rather haphazard.
Indeed, only one of the matrices WM304 that we identi-
fied manually (using the more extensive information
available at  http://genolist.pasteur.fr/SubtiList/[49])
came up in our automatic screen. When we searched the
regulons consisting of our operons immediately down-
stream of the experimental verified sites listed in the
DBTBS database and by Helmann, the regulons for 5 out
of the 11 sigma factors and 6 out of the 23 other transcrip-
tion factors contained an over-represented category.

Weight matrices with positional bias

When we score our matrices over the whole genome, the
matches to some of our matrices exhibit clear positional
biases. Not only do many of these matches prefer to fall in
non-coding as opposed to coding sequence, which can be
expected since the matrices themselves are derived from
non-coding sequence, but the matches tend to cluster into
various intervals upstream of the translation starts. Of par-
ticular interest are the positions of the matches to our
matrix WM1 representing o4, for these matches define the
transcription start sites and thus can be used to determine
whether a putative site is bound to by either an activator
or a repressor. We defined a regulatory subset R of the
non-coding sequence to be the regions upstream of the
translation starts of divergently transcribed operons.
Hence, for each divergent pair of operons, there are two
sequences in R. We restricted the sequences to be each a
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maximum of 300 bases, and when the inter-operon dis-
tance was < 600 bases, we included the middle overlap-
ping segment (with the appropriate orientation) in both
sequences. Because the o4 matrix is far from reverse com-
plement symmetric, this ostensible double counting is not
a problem. For comparison, we defined an analogous
non-regulatory subset NR of the non-coding sequence to
be the sequences downstream of the translation stop
codons of pairs of convergently transcribed operons.
Although the numbers of segements in the two sets are
neary equal, there are 175500 independent ways of plac-
ing a WM1 match in R versus 49500 in NR. Hence, the
regions between divergent operons are longer than
between convergent operons. Still, there are 806 matches
to WML1 in R versus 99 in NR. Hence, the density of
matches is 2.2 greater in the regulatory set.

In addition to the greater number of matches, the actual
distribution of matches in the regulatory set deviated
more from random (see Figure 3). For each set, we defined
the random distribution as that expected if each position
for a WM 1 match in the sequences was equally likely. We
then normalized the distribution so that the total number
of matches was equal to that observed and binned the
counts to obtain the histogram in Figure 3. The deviation
between the actual and random distributions was scored
with the Kolmogorov Smirnov test [23]. For the interval [-
70, -40), there is a 5x greater probability of occurrence of
a WM1 match in R versus NR and 6x greater than for cod-
ing sequence (after accounting for the different number of
samples). We also looked at all analogous sequences
between tandemly transcribed operons, comparing the
conventional upstream regulatory region of the down-
stream operon (R) with the same size region immediately
downstream of the upstream operon (NR). We scored
WM1 over the latter region in the opposite sense to tran-
scription to distinguish from perhaps distant sites regulat-
ing the downstream operon. Once again, the WMI1
matches exhibited a clear positional bias for matching seg-
ments in the regulatory set, in particular the [-70, -40)
interval. However, the difference between the two sets was
less substantial: there was only a 3x greater probability of
occurrence of a WM1 match in R versus NR in the interval
[-70, -40).

We tested the matches to the remainder of our 317 matri-
ces for positional biases. For each matrix, we compared
the distribution of the matrix's matches in our search
space of upstream regions defined in Algorithm with a
random distribution defined as the distribution expected
if each position for a match were equally likely. Eighteen
matrices had biased distributions at a significance level P
< 0.01 as assessed by the Kolmogorov Smirnov test. The
six most significant distributions discounting WM1 are
shown in Figure 4. The matches for one of the 18 matrices,
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Figure 4
Other weight matrices with matches exhibiting a clear positional bias. Histograms of positions of the matches in all upstream
sequences to the six non-c# weight matrices with the most positionally biased matches, using the same conventions as Figure 3.
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WM14, tend to occur in the same upstream sequences as
the T-box. The ¢/g richness and the reverse complement
symmetry of WM14's consensus -3-CGGC-11-GCCG-3
suggest that the motif is capable of forming a stem loop
structure that may interact with the alternate structures
formed by the T-box.

A more ambitious test, since it relies on the quality of our
o4 predictions, distinguishes matrices representing activa-
tors and repressors by their matches' positions relative to
the o4 predictions. The position of a matrix match relative
to a WM1 match in the same upstream region in our
search space is measured center to center. The position -1
indicates that the center of the matrix match is 1 base
upstream of the center of the WM1 match. Relative to the
center of the 670site in E. coli, the centers of activator sites
are concentrated upstream in the -20 to -70 interval, and
the centers of repressor sites tend to fall downstream of
the -20 position [17]. At a significance level P < 0.01, the
matches of 13 matrices (excluding those representing c4)
exhibited biases relative to our WM1 matches (see Table
2). The six most significant cases are shown in Figure 5,
and only WM46 appears to be a repressor. In the case of
WMA46, the positional bias may come simply from the
similarity of the 5' end of WM46, TATA, with the 3' end of
WM1 with consensus N, TTGAN,, TATAATAN . Neverthe-
less, if WM46 represents an actual factor, it would act as a
repressor.

The matches to WM22 did not exhibit a positional bias
with respect to our WM1 matches, even though WM22 is
a good representative of the canonical repressor LexA (of
the 35 matches to WM22, 18 agreed with one of the 30
experimentally verified LexA sites in [36]). In our set of
upstream sequences, only 9 of the 35 WM22 matches
have a WM1 match to compare with in the same
sequence, suggesting that the gA recognition sites are weak
for LexA regulated genes. When a comparison can be
made, the centers of the WM22 matches tend to fall
upstream of the WM1 matches, which is consistent with
the observation that LexA sometimes prevents
transcription initiation by binding upstream of the RNA
polymerase binding element to inhibit the interaction of
the RNA polymerase a-subunit with the a/t rich UP ele-
ment [36]. A histogram of the positions, again measured
center to center, of the 30 experimentally verified LexA
sites relative to the known sigma site has the most weight
in the upstream interval [-40,-20).

We also checked the weight matrices derived from the
experimentally verified recognition sites for the 23 non-
sigma factors in the DBTBS database. No matrix had
matches exhibiting a positional bias with respect to our
WM1 matches at a significance level P < 0.01. In a number
of cases (e.g. AraR, RocR, CtsR, and HrcA), the total
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number of matches is small and thus does not define a sig-
nificant distribution; in other cases (e.g. CcpA, Degl,
SpoOA, and TnrA), the regulators act as both activators
and repressors; finally, for the factors with more than 400
matches in Figure 2(b), we expect that many of the
matches are false positives for reasons stated above.

Other applications

Pathogenicity islands (PAI's) [50] transferred between
bacteria present interesting cases for study, for it is not
clear if and how the PAI's are coordinately regulated with
the host genome. Any cross regulation that exists may not
have any profound significance but could occur by chance
and not be deleterious. A well studied case is the PAI SPI-
1 in S. typhimurium LT2 [51], which encodes two tran-
scription factors HilA and InvF [52] that regulate genes
within the island. When we applied our algorithm to the
entire S. typhimurium LT2 genome, we did find a mar-
ginal match to the HilA recognition consensus but the sta-
tistics were poor. There were numerous matrices though
that recognized sites within and outside the island, sug-
gesting that the pathogenicity genes are coregulated with
the remainder of the genome. We also ran our algorithm
on just the SPI-1 island itself but found nothing over-rep-
resented that matched the known HilA and InvF recogni-
tion consensuses.

Discussion

There are a number of motif finding algorithms (Consen-
sus [4], Gibbs [5], MEME [6]) that construct a weight
matrix directly and are suitable for locating similar pat-
terns in groups of tens of operons. They are thus the best
tools for which to process gene clusters obtained from
microarrays. (For bacterial applications, their sensitivity is
much improved if they fit to dimer patterns with symme-
try.) They evaluate significance by reference to a model of
random bases (which is far from the truth, even if poly A/
T sequences are excluded) and may not converge to the
optimal pattern. They also do not use information from
beyond the genes being analyzed. Reference [7] search for
over-represented monomers of length 6 in a target set. Sig-
nificance is assessed by contrasting the counts in the target
set to the counts genome wide. They are then faced with
an assembly problem for the various 6-mers that scored
significant and the possibility that a degenerate pattern is
significant even when none of the words that overlap it
are.

There are a number of algorithms that exploit the dimer
symmetry of bacterial motifs [8,10,9]. They differ in how
they assign significance. Reference [8] searches for dimers
of world length 3 in a subset of sequences and assesses the
frequency of occurrence by either contrasting the subset
with the genome or using actual word counts and com-
puting a probability from Poisson statistics based on the
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spacing, as we do. They do not attempt to cluster the word
pairs thereby obtained nor do they attempt genome wide
applications. Reference [9] compute significance from a
Markov Model applied to the entire dimer. They score
degenerate patterns defined by IUPAC symbols and
resolve overlapping motifs with a greedy algorithm [53].

Our algorithm is a direct extension of [15], who worked
with E. coli. Our principal technical innovations involved
the clustering of the dimers, the construction of weight
matrices from sites, and the detailed manner in which we
validated our predictions using the available B. subtilis
information. When applied to E. coli, our clustering pro-
cedure gave about half the number of clusters as in the ear-
lier paper (if clusters containing one dimer are counted)
and generally reduced the number of nearly equivalent
weight matrices. When we computed weight matrices, we
did not use low information matrix columns in subse-
quent scans with the matrix across the genome. This elim-
inated a certain amount of noise and generally gave us
putative regulons of comparable size to the more sophis-
ticated inference method developed by [54].

When we compared our results with the DBTBS and Hel-
mann databases, we hit a smaller fraction (~21%) of the
known recognition sites than in the parallel study for E.
coli, probably because for many factors only a few sites
with a poorly defined consensus are listed. We did do bet-
ter with sigmas sites, and our most significant dimers cor-
responded to the consensus recognized by o4, the
functional homologue of the primary sigma factor 670 in
E. coli. Although o4 and 670 recognize the same consen-
sus, failure to recover the 670 matrix in [15] was not due to
difference in method but rather the inherent greater vari-
ability of the E. coli sites. In contrast to some weight
matrix scans in E. coli that generalized from experimental
sites, e.g. [19], most of our dimers generated matrices
(with the exception of the poly A/T dimers) that gave very
reasonable regulon sizes. Our surrogate ¢ matrix, WM1,
had a regulon of size 1141 and matched 109 out of 132
experimental sites documented by Helmann with the
same spacing. Evidence that a matrix represents an actual
regulatory factor could be deduced for a total of 52 of our
317 weight matrices using either matches to known sites,
correlations in operons functions, or biases in matches'
positions. For comparison, the B. subtilis genome is pre-
dicted to encode for 200 DNA binding proteins [55].
Some of our predictions may correspond to translation
control motifs, which sometimes operate though con-
served stems in the mRNA. We tended to set our signifi-
cance thresholds high so as to minimize false positives.
For these reasons, we missed specific factors such as
ComA, CtsR, and Fnr. In counting dimers, we insisted that
any prediction have a probability < 107 of occurring by
chance given our statistical model, i.e. there is about one
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random prediction among the set of 107 dimers we
searched through. A less stringent cutoff could be used for
symmetric and reverse complement symmetric dimers
since there are fewer cases to examine.

The most serious shortcoming of our algorithm is that it
enumerates and scores ACGT words rather than more
degenerate patterns. Thus a fairly specific pattern such as
the Fur box TGAtAATNATTATCA, with a variable site in
the center of each word, does not yield any single dimer
that passes our cutoffs for significance. Another shortcom-
ing is our relatively crude method of predicting operons.
A more sophisticated method could be used, like the ones
outlined in [56] and [57]. A more fundamental problem
is that a transcription factor can distinguish its preferred
binding sites in the genome even when it is impossible to
discern these sites by searching for statistical over-repre-
sentation [58]. Interspecies comparisons are an obvious
source of additional sequence information, and one can
envision a generalization of our counting procedure to
handle multiple genomes. Other extensions would use
sequence information along with expression or annota-
tion data to assign higher weight to marginal sites falling
within a cofunctional gene group.

Contributions
Both authors contributed to the refinement and imple-
mentation of the algorithm and the analysis of the results.
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