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Abstract
Background: Total sequence decomposition, using the web-based MASIA tool, identifies areas of
conservation in aligned protein sequences. By structurally annotating these motifs, the sequence
can be parsed into individual building blocks, molecular legos ("molegos"), that can eventually be
related to function. Here, the approach is applied to the apurinic/apyrimidinic endonuclease (APE)
DNA repair proteins, essential enzymes that have been highly conserved throughout evolution.
The APEs, DNase-1 and inositol 5'-polyphosphate phosphatases (IPP) form a superfamily that
catalyze metal ion based phosphorolysis, but recognize different substrates.

Results: MASIA decomposition of APE yielded 12 sequence motifs, 10 of which are also
structurally conserved within the family and are designated as molegos. The 12 motifs include all
the residues known to be essential for DNA cleavage by APE. Five of these molegos are sequentially
and structurally conserved in DNase-1 and the IPP family. Correcting the sequence alignment to
match the residues at the ends of two of the molegos that are absolutely conserved in each of the
three families greatly improved the local structural alignment of APEs, DNase-1 and synaptojanin.
Comparing substrate/product binding of molegos common to DNase-1 showed that those
distinctive for APEs are not directly involved in cleavage, but establish protein-DNA interactions 3'
to the abasic site. These additional bonds enhance both specific binding to damaged DNA and the
processivity of APE1.

Conclusion: A modular approach can improve structurally predictive alignments of homologous
proteins with low sequence identity and reveal residues peripheral to the traditional "active site"
that control the specificity of enzymatic activity.

Background
Genomic cloning has revealed that most of the enzyme
families essential for maintaining cell growth have been
conserved throughout evolution [1]. However, mammali-
an enzymes with different functional activity may have
evolved by combining elements from several bacterial an-

cestral genes. Even small proteins may contain several in-
dividual domains that link them to different superfamilies
[2]. While many endonucleases share a common active
site that is highly conserved across many subfamilies,
identifying residues that control substrate specificity re-
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quires sophisticated analysis that combines both se-
quence conservation and structural data [3–5].

In this paper we distinguish, using a word-based "mole-
go" approach, structural elements that control substrate
specificity. We postulate here that elements conserved in
all the members of related protein families dictate com-
mon structures and also common "functions", i.e., indi-
vidual steps in a complex reaction. Areas that affect
substrate specificity will be less conserved in the super-
family than they are in subfamilies of enzymes that cata-
lyze specific activities. We have chosen to illustrate this
approach using the multifunctional family of DNA repair
proteins, the apurinic/apyrimidinic endonucleases
(APEs), which have a clearly defined bacterial ancestor, E.
coli exonuclease III (ExoIII), and are distantly related to
several enzymes with varying substrate specificity.

APEs are essential for mammalian cell growth and bacte-
rial survival in the presence of ionizing radiation and
DNA mutagens [6]. They initiate repair of an abasic DNA
site by cleaving the phosphodiester backbone 5' of the
phosphodeoxyribose. This generates the necessary 3' hy-
droxyl group for DNA polymerases (pol β, δ or ε, in eu-
karyotes) to insert the correct nucleotide in later steps in
the base excision repair pathway (BER-pathway) [7,8]. Re-
cent crystal structures of huAPE1 complexed with DNA
containing an abasic site [9–11], combined with sequence
analysis and site-directed mutagenesis, have defined the
residues that participate in metal ion based cleavage of the
phosphate backbone of the DNA [12–17].

Mutations that greatly diminish the enzymatic activity of
huAPE1 do not affect, and may even increase binding to
damaged DNA, while non-specific DNA binding remains
low [16,18]. Further, mutations that have little effect on
APE activity in vitro prevent complementation of DNA re-
pair deficient E. coli. As seen with other DNA repair en-
zymes [19], specificity determining residues, as yet
unidentified for APEs, must be distinct from those in-
volved in phosphorolysis.

To better assess which residues determine specificity, we
assume that functions unique to APEs will be determined
by motifs that are not conserved in a similar fashion in
families with a different activity spectrum of functions.
Besides cleaving the phosphate backbone, to achieve spe-
cificity APEs must coordinate a series of functions, includ-
ing: interaction with target DNA in a series of small,
possibly repetitive steps (scanning), locating damage
sites, establishing the transition state complex, complet-
ing the cleavage, re-adjusting the charge status within the
active site, and regulating release of product after interac-
tion with the next enzyme in the BER pathway [20–25]. A
finer breakdown of these functions can be achieved at the

molecular level once all the residues in the reaction mech-
anism are known. APEs also have RNase H, 3'-exonucle-
ase, and 3'-phosphodiester activities that are particularly
high in the bacterial members of the family [26,13].

Our web-based MASIA program [27] was used to rapidly
decompose the sequences of APEs and related protein
families into motifs, areas of significant conservation in
members of identical function, which could then be cor-
related structurally using data from crystal structures. Hav-
ing determined that 12 motifs were common to all
APE1's, we compared the structure of the subset of these
that occurred in both DNase 1 and synaptojanin, a mem-
ber of the IPP family. These shared motifs had a similar
3D structure in representatives of these functionally di-
verse families, and we therefore called these motifs "mo-
legos" (molecular legos). We then demonstrated that the
shared molegos served a similar role in substrate binding
by comparing the DNA binding profile of huAPE1 with
that for the less specific enzyme DNase 1. The molegos
present in both enzymes interact with target DNA in a
similar fashion, while residues in molegos distinctive for
APE1 control specificity by binding primarily to the bases
around the apurinic site. Matching of molegos, guided by
the degree of conservation of individual residues across
the three families, allowed a better alignment of the indi-
vidual secondary structure elements among the proteins
than DALI achieved. This word based, sequence (motif) to
structure (molego) to function method has clear implica-
tions for genomic analysis and template based homology
modeling, as well as immediate application in recogniz-
ing specificity determinants in proteins that share active
sites common to many enzymes [28].

Results
Total sequence decomposition of human Ape1 with MASIA
MASIA identified 12 motifs as conserved in all members
of the APE family (Figure 1 and Table 1). As table 1, last
column, illustrates, these motifs include all the residues
known to be essential for DNA cleavage. Most of the high-
ly conserved (greater than 90%) residues have been
shown by previous mutagenesis studies to affect activity.
The 12 motifs are also structurally conserved, as demon-
strated by the low RMSD values between segments in the
crystal structures of bacterial ExoIII and of huAPE1. These
two proteins are only 26% identical (based on a DALI,
structure based alignment) and most of the similar seg-
ments are contained in the molegos. As the third column
of the table demonstrates, the backbone deviation of the
segments is overall <1 Å and for 5 of the motifs, <0.5 Å.
We have chosen the name "molegos" for the structural
units associated with motifs, which are presented pictori-
ally in Figures 2 and 3. Most of the DNA and metal ion
binding molegos form individual β-strands at the core of
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the protein that orient the absolutely conserved residues
toward the substrate, but several have a helical or hydro-
gen bonded coil structure.

The 12 motifs, which account for about half of the pro-
tein, are bridged by areas that vary in the different mem-
bers of the APE family. These connecting regions may
account for the differing activities of the bacterial and
mammalian proteins. The longest molego, 7, was broken
down into two areas, with the contiguous region labeled
7a. The first 7 residues of the 7a area molego are quite sim-
ilar in the bacterial and mammalian APE. However, the
end is differently conserved in eukaryotes. The endonucle-
ase activity of DNase 1 is reduced many fold by integrating
this loop from E. coli exonuclease III, but the mutant
cleaves at abasic sites in DNA with low efficiency [29].
Thus additional residues in the APEs control specificity
while still allowing a reasonable rate of phosphorolytic
cleavage.

Finding APE molegos in the DNase 1 superfamily
In an effort to functionally annotate the molegos of APE1,
we next sought to find them in other proteins that shared
some structural similarity to APE. The APEs, DNase-1 and
inositol 5'-polyphosphate phosphatases (IPP) have been
grouped according to the SCOP database [30] as the
DNase-1 like superfamily. Although DNase 1 has only
18% overall sequence identity and the IPP domain of syn-
aptojanin, 14%, to APE1, we could show that most of the
areas of identity were in molegos common to all three
proteins. Motifs in other protein families were identified
by genomic cross-networking with PSIBLAST (see meth-
ods for details). Our analysis identified 5 molegos that are
common to the DNase 1, IPP and APE families, which
roughly correspond to areas of sequence similarity identi-
fied previously [31,32]. The structural similarities of mo-
legos 1,2, 7, 11 and 12 (i.e., the segmental RMSD's)
between APE1 and representatives of the distantly related
DNase 1 and IPP families are comparable to those found
between members of the APE family (Figure 4 and Table
1 &2).

Figure 1
MASIA converts complex sequence alignments into easily readable blocks of conserved sequences.  A part of 
the CLUSTALW alignment of the APE family used for the results in Table 1 is shown, with a section of the corresponding 
MASIA output that includes motifs 1 and 2.

huApe1     ----LKICSWNVDGLRAWIKKK---GLDWVKEEAPDILCLQETKCSEN--- 102
bovAPE    ----LKICSWNVDGLRAWIKKK---GLDWVKEEAPDILCLQETKCSEN--- 102
ratAPE     ----LKICSWNVDGLRAWIKKK---GLDWVKEEAPDILCLQETKCSEN--- 101
muAPE      ----LKICSWNVDGLRAWIKKK---GLDWVKEEAPDILCLQETKCSEN--- 101
APEcrisgri ----LKICSWNVDGLRAWIKKK---GLDWVKEEAPDILCLQETKCSEN--- 101
Dromrecrep ----LKICSWNVAGLRAWLKKD---GLQLIDLEEPDIFCLQETKCAND--- 467
CeleAPE    ----WKFVCWNVAGLRACVKKS---DFKEVLAEEPDLVFLGETKCK-E--- 73
HelpyAPE   ----MKLISWNVNGLRACMTKG---FMDFFNSVDADVFCIQESKMQQE--- 41
Bacsub3'exo----MKLISWNVNGLRAVMRKMD--FLSYLKEEDADIICLQETKIQDG--- 42
DicdisAPE  ----MKIISWNVAGFKSVLSKG---FTECVEKENPDVLCLQETKINPS--- 145
ArathalAPE GTKCVKVMTWNVNGLRGLLKFESFSALQLAQRENFDILCLQETKLQVK--- 319
TcruzAPE   -KHMLKFITWNVAGLRGLLRKDDQAIQRLLEEEGPDALCLQETKLNPDDP- 151
LeishAPE   -SRMYKFITWNVAGLRGLLKKNASALRAFMEAEKPDVLCLQETKLNVDEAD 176
AthalAPE   QNEPSKFMTWNANSFLLRVKNDWSQFSKFVSDFDPDVIAIQEVRMPAAGGK 411
PlasfalExA KNDVKIIVTWNMNSITVRYKNKKKWDEFMNFFNNLNADVLCFQEVRLPAMN 347
Mettherape -MTVLKIISWNVNGLRAVHRK---GFLKWFMEEKPDILCLQEIKAAPE--- 44
BburgexoA  ----MKLISWNVNGIRAVLKK---GFLEFVKEYTPDILCIQETKALRE--- 41
TreppaexoA MRPVQRIISWNVNGIRAIERK---DFLSWLAREAPDVLCLQEIKAHES--- 45
CoxburAPE  ----MRIITLNLNGIRAAARRG---FFDWLKRQKADIVCLQETKACLE--- 41
ScoeExoA   RAGMLTVTSVNVNGLRAAAKKG---FVEWLAGTSADVLCLQEVRAEPH--- 49
SyneccysE3 ----MDIASWNVNSVRSRQQH----ILDWLGTNPVDVLCLQETKVVDE--- 50
MyctubxthA RSPLLRLATWNVNSIRTRLDR----VLDWLGRADVDVLAMQETKCPDG--- 63
ArchfulgE3 ---MLKIATFNVNSIRSRLHI----VIPWLKENKPDILCMQETKVENR--- 41
RprowxthA  ----MKVVTWNINSLRLRIDL----LRKLAYEHQPDIILLQETKVANS--- 40
Exo3Ecol   ----MKFVSFNINGLRARPHQ----LEAIVEKHQPDVIGLQETKVHDD--- 40
StyphExo3  ----MKFVSFNINGLRARPHQ----LEAIVEKHQPDVIGLQETKVHDE--...

MASIA

Sequence       ----TSPSGKPA-TLKICSWNVDGLRAWIKK
-----------------------------------------------
consens40      ....        . MKI SWNVNGLRA   K
consens50      ....        .  K  SWNVNGLRA
consens60      ....        .  K  SWNVNGLRA
consens70      ....        .  K    N    R
consens80      ....        .       N    R
consens90      ....        .       N. 

Sequence        EEAPDILCLQETKCSEN-
----------------------------------------------
consensus        E PDVLCLQETK    .. 
consensus          PD LCLQETK    .. 
consensus          PD  CLQETK    .. 
consensus           D    QE K    .. 
consensus           D    QE K    .. 
consensus           D     E      ..
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Common molegos form a similar active site in two distant 
relatives
The 12 conserved molegos form the β-barrel core of
huAPE1. The completely conserved residues of huAPE1
concentrate, for the most part, at one end of this frame-
work to form the metal ion binding active site (Figure 4).
This core is also common to DNase 1 and synapto-
janin(an IPP family member), which share the functions
of metal ion based cleavage of a phosphate backbone. The
shared molegos define an active site architecture con-
served in all three proteins, including the orientation of
the substrate toward the metal binding site.

Molegos define functional areas common to DNase 1 and 
APE1
A contact plot of huAPE1 with the DNA in the 1DE8 crys-
tal structure (Figure 5) shows that motifs 1–3,5–8, and
10–12 all have residues close to the substrate, an oligonu-
cleotide containing an abasic site (AP-DNA). The N-termi-
nal motifs 1–3 and 5 bind primarily 5' to the apurinic site
and to the 3' end of the undamaged strand. The other mo-
tifs bind more to the area 3' of the damage site. Motifs 10
and 12 span both strands of the DNA. Although motif 12
contains several highly conserved residues that, according
to mutagenesis results (Table 1) contribute to APE1 activ-
ity, only His309 is very close to the abasic site in the DNA.

Figure 2
APE1 Molegos near the DNA. The structures for the motifs of Table 1 are taken from a minimized 1DE8 crystal structure 
of APE1 bound to an uncleaved 11mer DNA with an abasic site. One Mg2+ ion was inserted at the position seen in the 1DE9 
minimized structure based on 1DE8 (huAPE1/Mg2+/11 bp (cleaved) AP-containing oligonucleotide). The molegos contain resi-
dues bind to DNA and have corresponding molegos in other proteins identified in the PSIBLAST search.
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Molegos 4 and 9 contain no residues in contact with the
DNA or metal ion. Comparing the binding of APE in a
substrate complex (Figure 6, left) suggests that APE's bind-
ing to the 5' end of the DNA after cleavage (Fig. 5), espe-
cially that mediated by molego 3, is stronger, while the
distance from the protein to the DNA 3' of the cleavage
site increases.

The contact plots of APE1 and DNase1 with their respec-
tive substrates (Figure 6) documents that the similar mo-
legos in the proteins serve similar functions. The N-
terminal 100 residues of both proteins, including mole-
gos 1 and 2, bind 5' of the cleavage site and to the 3' end
of the opposite DNA strand. Molegos 7, 11 and 12 bind to
one base 5' and the next base 3' of the cleavage site in both
proteins. Overall, the pattern of protein contacts to the
cleavage site, the area 5' of the cleavage site, and the 3' end
of the opposite strand are common to both proteins, sug-
gesting that the functions of forming the substrate com-
plex and the actual phosphorolysis are similar in both
proteins.

While the length of the DNA in both cases is similar,
DNase 1 clearly has less binding to bases opposite and 3'

of the cleavage site. The extensive contacts that APE1
makes to these positions are mediated by molegos it does
not share with DNase 1. Molegos 6, 7a and 10 all have res-
idues within hydrogen bonding distance of the three base-
pairs 3' of the AP-site. This redundancy of binding to the
3' side is unique to APE, as is its strong binding to the
DNA opposite the abasic site.

The importance of such bonds for activity was shown in
other work, where huAPE1's binding to the DNA back-
bone is only inhibited by ethylation of the phosphates
two and three positions 3' to an abasic site [18]. Mutation
of R177A, at the end of Molego 6, that binds to this region
and to the bases opposite the AP-site had enhanced activ-
ity [11], while mutations at W280 (Molego 11) and F266
(Molego 10) [33] reduce activity and, in the latter case,
substrate selectivity.

In work from this group that will be described separately,
we used this analysis to generate mutants of APE1 with al-
tered activity. An alanine substitution mutant, N226A, of
a conserved residue at the end of molego 7a that forms a
hydrogen bond with the second phosphate group down-
stream of the abasic site, had enhanced APE activity but

Figure 3
Other APE1 Molegos. These molegos either contain no residues that bind DNA (molegos 4 and 9) or differ significantly (5 
and 7a) between the mammalian and bacterial APEs.

7a 94 5
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Table 1: Motifs characteristic of the APE family.

^ corresponds to the PROSITE motif 1 for the APE family, [APE]D [LIVMF]2x [LIVM]QExK * motifs correspond to PROSITE motif 2, D [ST] [FY]R 
[KH]-x(7,8) [FYW] [ST] [FYW]2 **corresponds to PROSITE motif 3, NxGxR [LIVM]D [LIVMFYH]x [LV]xS. Completely conserved residues are 
bold, underlined letters are conserved to >70%. The first column shows the sequence of huApe1 with the MASIA consensus motif (50% conserva-
tion over 37 sequences) below it. The third column is the backbone RMSD between the indicated motif sequences in 1BIX (huAPE1) and the1AKO 
(E. coli ExoIII) crystal structures (both files are for the respective protein without DNA), with the number of atoms indicated in parentheses. The 
last column shows the effect of mutations in the motifs on APE activity and DNA binding.
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increased Km and Kd values, similar to an alanine mutant
of R177, which binds to the same site, reported previously
[34]. A combination of the two mutants, N226A and
R177A, substantially reduced the ability of APE1 to bind
to DNA containing an abasic site (Izumi et al., in prepara-
tion). Thus, molegos can effectively guide the redesign of
enzymes to alter specificity.

Molegos to improve structural alignment
Using molegos may also help in aligning proteins for tem-
plate based modeling, by determining the end points of
secondary structure elements in alignments with many
gaps and insertions. According to MASIA analysis, the res-
idues K/R and DI at the N-termini of motifs 1 and 2 are ab-
solutely conserved in the three families, APEs, DNase1s
and IPPs. However, matching these conserved residues be-
tween synaptojanin and DNase1 or APE requires a gap-
ping that would not be consistent with CLUSTALW or a
structural (DALI [35]) alignment of these proteins (Table

2). If the local alignment with synaptojanin is gapped to
align these residues in the three proteins (Table 2,
gapped), the RMSD for the two sections separated by the
gap is much lower than that if one tries to align the whole
ungapped segment. As Fig. 7 illustrates, the local environ-
ments of both conserved residue pairs DI and QE are
structurally equivalent in all three proteins, indicating
that a motif based alignment with a two residue gap is cor-
rect. The first two β-strand molegos in synaptojanin are 2
residues longer than in APE or DNase 1. By regarding
these elements as simple lego style blocks, and recogniz-
ing the connectivity, molego based alignment correctly
defined the changing length of the secondary structure el-
ements.

Discussion
Previously, a "lego® block" approach described for organic
synthesis [36–38] was used to describe the reshuffling of
large sections of plant genomes [39] and as a rational

Figure 4
APE Motifs common to DNase-1 and Synaptojanin have similar structure. Conserved areas of huAPE1 (from PDB 
file 1DE9) form the β-barrel core (left side). The motifs common to DNase1 (1DNK) and Synaptojanin (1I9Z) form a similar 
catalytic site, with the substrate (from the appropriate structure file) directed to the top of the β-strands and the metal ion 
binding site. The strands in the middle and right figures are colored according to their identity (green) or similarity (blue) to 
APE1. Residues that differ are red, the insertions needed for correct alignment in synaptojanin are yellow.
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method to build novel protein structures in the lab
[36,40]. Here we demonstrate that the concept is also use-
ful to define the structural and functional role of con-
served amino acids. Combining the MASIA
decomposition approach to sequence analysis (Figure 1
and Tables 1 and 2) with data from crystal structures and
site directed mutagenesis (Figure 2,3,4,5,6,7) showed that
molegos can indicate areas of the protein that control in-
dividual functions that contribute to enzymatic activity
and improve alignments for template based modeling of
homologues with low identity (Table 2 and Figure 7).
Most of the MASIA-motifs were near the DNA, metal ions,
or both in the co-crystal structures of huAPE1.

Further, functional roles could be assigned to motifs
based on their occurrence in related protein families. The
similarity of the 3D structures of these motifs in three dis-
tantly related proteins and even their modes of binding
substrate (Table 2, Figs. 2,3,4,5,6,7) imply that these mo-
legos will be found in even more distantly related pro-
teins. Several molegos can contribute to the same
interacting surface and can thus define domains that are

not linearly located in the protein sequence. The com-
bined structural/sequence definition allows much more
flexibility in defining a functional element than is possi-
ble with purely sequence based approaches such as
PROSITE [41].

Is the specificity of APE determined by binding 3' to an 
abasic site?
Crystal structure data, coupled with molego analysis, out-
lined the areas of APE1 that distinguish its mode of DNA
binding from the less specific DNase 1. Contact maps
(Figure 6) illustrate how the conserved motifs direct DNA
binding in the distributive (i.e., rapidly releasing sub-
strate/product), relatively non-specific DNase1 as op-
posed to the processive, highly specific huAPE1. Both
enzymes cleave only one DNA strand in a duplex and bac-
terial Xth cleaves ssDNA containing an abasic site [42].
The additional contacts huAPE1, compared to DNase 1
(Figure 6), makes 3' to the damage site and to the opposite
strand lower its turnover rate and its potential to cleave
normal DNA. The residues contacting the region 3' to the
abasic site come from three different uniquely conserved

Table 2: Aligning sequences according to MASIA motif analysis improves the correlation between structures.

The segmental RMSD between homologous motifs from huAPE1 (from PDB file 1DE9), DNase 1 (1DNK) and synaptojanin (I9Z) are shown first 
ungapped, from a simple alignment, and then gapped to match conserved residues (Motifs 1 and 2) and allow insertions in the secondary structure 
elements. Motif 12 is shown as an example of the RMSD where the molegos are spelled in a similar fashion in all three proteins.
Page 8 of 14
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areas of APEs (molegos 6,7a, 10) as well as 11, a molego
that is similar to that in DNase-1. These observations, cou-
pled with DNA ethylation data [18], indicates that 3'
binding is a key element in specific recognition by APEs.

This is confirmed by site directed mutagenesis studies. Of
the four protein areas that bind to the DNA 3' of the abasic
site, mutating F266 (molego 10) or W280 (middle of mo-
lego 11) decreases APE activity [33]. The F266 mutation is
particularly interesting, as the mutants at this position had
reduced substrate specificity and enhanced 3'-exonuclease
activity. However, an R177A mutant had enhanced APE
activity [11], as do mutations at N226 (Izumi et al., in
preparation). Combining these mutations however great-

ly decreases substrate binding (Izumi et al., in prepara-
tion). The 3' approach to the DNA [34] and the wide area
covered by the protein on both sides of the abasic site [14]
are both consistent with the need to hold the product un-
til the correct polymerase moves in 5' to 3' to complete the
repair [25]. This implies that the mammalian enzyme has
evolved to be processive, to facilitate more efficient func-
tioning of the overall BER pathway, and may not be opti-
mized for simple catalysis. Processivity is an important
facit of the activity of enzymes that function in complex
pathways [43]. Reduced processivity may explain, for ex-
ample, the repair deficits in Xeroderma pigmentosum
(XPA) cells [44]. Our molego approach provides a basis

Figure 5
Protein DNA contact plots for huAPE1. Protein/DNA contact plots for huAPE1 binding to substrate DNA taken from 
the minimized IDE8 structure described in Figure 2. Blocks, black at 1.5 Å, lighten with increasing distance of residues from the 
DNA up to 7.5 Å. Most of the MASIA motifs (Table 1) for the APE family are near the DNA interface. The motifs are indicated 
by numbers; the abasic site at position 6 is indicated by arrows.
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for exploring the role of segments of the protein in its
functions, rather than relying only on data from missense
mutations.

Using molegos to detect structural and functional homo-
logues
We have demonstrated here the derivation and uses of
molegos for analyzing the specificity of enzymes, based
on those derived from the APE family. The methodology
can be used to complement searches with programs such
as PSIBLAST and PROSITE [41] to detect distantly related
functional or structural homologues in sequences re-
vealed by genome sequencing. PSIBLAST searches often
reveal areas of local similarity in proteins that have no sig-
nificant overall sequence identity. Molego analysis could
be useful to analyze the significance of such findings. The
combined sequence and structure definition makes mole-
gos more flexible for defining shared protein elements
than methods such as PROSITE that require a strict one-
dimensional definition. An improved motif definition

method, based on physical property similarity [42], which
has been incorporated into our MASIA tool] also promises
to enhance the usefulness of the method. This may even-
tually lead to a method to find functional relationships
between proteins with even lower overall sequence simi-
larity.

Another potential area for applying the molego approach
is in homology modeling. Molegos may prove useful in to
check alignments for template based modeling of homo-
logues with low identity (Table 2 and Figure 7), if the "an-
choring" residues are conserved in sequence or property
across the members of both subfamilies. Our molego ap-
proach is closest in principle to that of the ROSETTA pro-
gram [45] whereby the latter seeks only to connect
structure, not function, to a sequence element. We are cur-
rently testing the usefulness of the molego approach in
modeling in the CASP5 competition.

Figure 6
Comparison of DNA contacts in APE1 and DNase 1. Comparison of the DNA-contact plots of huAPE1 with product 
(cleaved DNA, from the 1DE9 structure) and DNase 1 (uncleaved substrate, from 1DNK) illustrates the similar mode of bind-
ing by the areas conserved between the two proteins. The scissile bonds in both DNAs, 5' of the abasic site in APE1, C315 in 
1DNK [53], are indicated by arrows.
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Conclusions
The MASIA program can parse sequences into discrete
blocks of significant conservation. The motifs identified in
the APE family could be structurally annotated using crys-
tal data to derive molegos, words in the protein sequence
that correlate with structural elements. These molegos
could in turn be functionally annotated by comparing the
DNA binding profile of APE1 with that of the less specific
nuclease DNase 1. This analysis indicated that residues
binding 3' to the site of phosphorolytic cleavage control
the substrate specificity of APE1. These results indicate
that molegos can provide a useful basis for identifying
specificity determining regions in enzymes with similar
active sites but different activity spectra [46,28,3]. Site di-
rected mutagenesis based on these results can define the
function of the unique elements of the APEs, and aid in
the design of enzymes with altered specificity.

Materials and Methods
Sequence alignment
A BLAST [47]http://www.ncbi.nlm.nih.gov/BLAST/
search of the "non-redundant" protein database using the
whole sequence of human APE1 yielded over 100 related
sequences. Some sequence entries represented the same
protein, called by different names or isolated in different
screens, including many entries for huAPE1,Drosophila
Rrp 1 protein (~40% identical to the mammalian APE1 in
the C-terminal third of the protein), Xth from E. coli, and
counterparts of this and exodeoxyribonuclease (exo A) se-
quences from many bacteria, which are about 25% iden-
tical to mammalian APE1. The mammalian sequences are
highly conserved, with only 6 non-conservative residue
variations between the human and murine sequences, 5
of which occur in the apparently unstructured N-termi-
nus. Several proteins with more distant relationship to
APE1, such as mammalian and yeast APEIIs, and the CRC
protein from Pseudomonas, which has no APE activity [48]
were in the BLAST list, but were not used for this analysis.
To derive functional motifs, the BLAST list was culled to

Figure 7
Molegos can improve structural alignments. Molegos 1 and 2 have a similar structure in all three proteins, but the β-
strand is 2 amino acids longer in synaptojanin. The amino acids around the N-terminal ends of the molegos that form hydrogen 
bonds to the conserved aspartate (D90 in huAPE1) are shown.
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37 unique sequences with identity ranging from 25% to
98%. These were aligned using the default parameters of
CLUSTALW [49,50]http://www2.ebi.ac.uk/clustalw/. Se-
quences were the APE1 protein from human, bovine,
monkey, rat murine, Arabidopsis thaliana (Mouse-ear
cress) Dictyostelium discoideum (Slime mold), Schizosaccha-
romyces pombe (Fission yeast), Caenorhabditis elegans, Sac-
charomyces cerevisiae (Baker's yeast), Thermoplasma
acidophilum, Neisseria meningitidis. Methanobacterium ther-
moautotrophicum, Leishmania major, Trypanosoma cruzi,
Coxiella burnetii; the Rrp1 protein of Drosophilia; exonucle-
ase III from E. coli, Bacillus subtilis, Mycobacterium tubercu-
losis, Haemophilus influenzae, Salmonella typhimurium,
Helicobacter pylori, Rickettsia prowazekii, Archaeoglobus fulg-
idus, Actinobacillus actinomycetemcomitans, Streptomyces coe-
licolor, Synechocystis sp. PCC 6803, Haemophilus influenzae;
Exonuclease A from Steptococcus pneumonia, Treponema
pallidum, Borrelia burgdorferi. Plasmodium falciparum. Dif-
ferent set conditions and sequence lists were tested in
CLUSTALW for their effect on alignment and subsequent
motif definition with MASIA. Areas peripheral to the en-
donuclease domain, such as the 50 amino acid mamma-
lian and the 428 residue Drosophila Rrp-1 N-terminal
regions were eliminated to improve the consensus.

Identification of motifs using MASIA
Motifs were identified in the aligned sequences using the
MASIA consensus macro http://www.scsb.utmb.edu/ma-
sia/masia.html. Motifs start when at least 3 of 4 consecu-
tive positions are more than 40% conserved according to
the dominant criterion [51], and extend until at least 2 po-
sitions in a row are less than 40% conserved. To allow for
mistakes in the alignment of all the sequences, essential
residues are those >90% conserved by MASIA criteria over
all sequences in the alignment.

Genomic cross-networking with PSIBLAST
A PSIBLAST search, using huAPE1 as the founder se-
quence, with an e-value of 0.1 per iteration, did not con-
verge after 6 iterations, but few new sequences were added
in the last 2 cycles. Searches with an e-value of 0.01/itera-
tion had similar results, but members of several families
were not included until later cycles. Members of the
DNase 1, LINE-1 repeats, inositol 5'-polyphosphate phos-
phatase, Nocturnin, CCR4, cytolethal distending toxin,
neutral sphingomyelin phosphodiesterase, and amino
acid methyltransferase families were found with expecta-
tion values of 10-4 or less to be significantly similar to
APE1. To determine the presence of motifs in these rela-
tives, a CLUSTALW alignment of at least 5 representatives
of a protein family was prepared and analyzed with MA-
SIA for significant areas of conservation. In some cases,
alignments taken from literature references (e.g., for IPPs
[32]) were used to confirm MASIA results. The motifs
common to these families were compared with the APE

motifs of Table 1. Criteria for inclusion (presence of mo-
tif) included conservation of residues >90% conserved
(side chains shown in blue in the tables) and patterns of
polarity (as determined with a macro included in the MA-
SIA packet as a user specified feature).

Molego building and comparison
The drawings of "molego blocks" and structures (Figures
2,3,4 and 7), contact plots of protein/DNA (Figures 5,6),
and calculation of the RMSD between similar segments
(Table 2) were done with MOLMOL http://www.mol.bi-
ol.ethz.ch/wuthrich/software/molmol/[52]. The RMSD
values in Table 1 were calculated using SwissPDB viewer
and the "fit selected residues" option.
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