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Abstract

Background: With the rapid development of high-throughput technologies, researchers can sequence the whole
metagenome of a microbial community sampled directly from the environment. The assignment of these
metagenomic reads into different species or taxonomical classes is a vital step for metagenomic analysis, which is
referred to as binning of metagenomic data.

Results: In this paper, we propose a new method TM-MCluster for binning metagenomic reads. First, we represent
each metagenomic read as a set of “k-mers” with their frequencies occurring in the read. Then, we employ a
probabilistic topic model – the Latent Dirichlet Allocation (LDA) model to the reads, which generates a number of
hidden “topics” such that each read can be represented by a distribution vector of the generated topics. Finally, as
in the MCluster method, we apply SKWIC – a variant of the classical K-means algorithm with automatic feature
weighting mechanism to cluster these reads represented by topic distributions.

Conclusions: Experiments show that the new method TM-MCluster outperforms major existing methods, including
AbundanceBin, MetaCluster 3.0/5.0 and MCluster. This result indicates that the exploitation of topic modeling can
effectively improve the binning performance of metagenomic reads.

Introduction
Due to the limitations of biological experiments, tradi-
tional microbial genomic studies focus on individual
bacterium genomes. However, microorganisms in an
environment often have various functional effects on
each other. For example, the diversity of microbes in
humans has been shown to be associated with common
diseases such as Inflammatory Bowel Disease (IBD) [1]
and gastrointestinal disturbance [2]. Metagenomics
(Environmental Genomics or Ecogenomics) is an area
that studies the genetic materials recovered directly
from environmental samples such as human guts, soil,
dust from air conditioners, and so on. With the rapid
development of next-generation sequencing (NGS) tech-
nologies, we can directly sequence the DNA reads of

multiple species obtained from the mixed environmental
DNA samples.
Metagenomic reads are from multiple microorganism

genomes, and usually the microorganism species of most
metagenomic reads are unknown. A crucial step in meta-
genomic analysis is to group DNA fragments from the
same species together. This task is referred to as binning of
metagenomic reads [3]. So far, a number of computational
methods have been proposed by researchers to tackle this
problem. These methods roughly fall into two major cate-
gories: similarity-based methods and composition-based
methods.
Similarity-based methods first aligns metagenomic

reads to known genomes, and then group reads accord-
ing to the alignment result. One typical similarity-based
method is MEGAN [4]. Obviously, this type of methods
does not work when the microorganism genomes are
unavailable. Composition-based methods usually adopt
supervised techniques to assign reads to different groups.
The features are directly extracted from the nucleotide
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sequences, including oligonucleotide frequencies, GC-
content, codon usage etc. Up to now, SVM [5], naïve
Bayes [6], KNN [7], Interpolated Markov model [8] etc.
have been used to bin metagenomic reads. However, the
performance of these methods still relies heavily on the
availability of known genomes, which are used as training
samples.
To overcome the drawbacks of the methods above,

unsupervised or semi-supervised techniques were pro-
posed to deal with metagenomic data from unknown
species. Wu et al [9] proposed a method called Abun-
danceBin that extracts k-mers from sequence reads and
bins reads based on the coverage of their k-mers, which
can separate reads of very different abundance ratios.
However, AbundanceBin does not work well when the
datasets consist of reads of identical abundance ratios.
Leung et al. [10] developed the MetaCluster 3.0 method
that uses 4-mers to build the feature vectors. It first
groups the reads into many small clusters by the
K-median algorithm, then merges smaller clusters to lar-
ger ones so that sequences from species of low abun-
dance ratios can be grouped into isolated clusters.
MetaCluster 3.0 outperforms AbundanceBin on both
evenly and unevenly distributed datasets with reads of
1000 bp. Later, Wang et al. introduced two improved
versions of MetaCluster 3.0, which are MetaCluster 4.0
[11] and MetaCluster 5.0 [12], for the purpose of pro-
cessing short reads. MetaCluster 4.0 can deal with short
reads less than 500 bp by first concatenating short reads
to longer ones based on sequence overlapping. However,
it can not bin reads of low abundance. MetaCluster 5.0
is an extension of MetaCluster 4.0 for handling reads of
low abundance. Recently, Wang et al. developed
MetaCluster-TA [13], an assembly-assisted binning-
based annotation tool for taxonomic annotation of
reads. It assembles reads into long “virtual contigs”, and
then applies a method like MetaCluster 5.0 to clustering
these contigs and reads, and finally assigns all resulting
clusters to a taxonomy. The series of MetaCluster algo-
rithms can automatically determine the number of clus-
ters, which is extremely important for binning of
metagenomic reads as most samples are from unknown
species in real datasets.
We also recently proposed a novel unsupervised

method called MCluster for binning metagenomic reads
[14]. MCluster uses N-grams to extract sequence fea-
tures and automatic feature weighting to improve the
performance of the basic K-means clustering algorithm.
Experimental results show that MCluster achieves
obviously better overall performance than Abundance-
Bin and MetaCluster 3.0 on long metagenomic reads;
while compared with MetaCluster 5.0, MCluster obtains
a larger sensitivity, and a comparable yet more stable
F-measure on short metagenomic reads.

In this paper, we try to boost the performance of
MCluster by using probabilistic topic modeling to repre-
sent DNA sequences, and develop a new approach
TM-MCluster, which is the abbreviation of Topic Model
based Metagenomic reads Clustering. The approach
consists of three steps: 1) representing reads by vectors
of k-mers with frequencies; (2) transforming the fre-
quency vectors of reads to topic distribution vectors
based on the topic model LDA [15], and 3) clustering
the transformed reads by the SKWIC algorithm [16], as
in MCluster [14]. We evaluate the new method with
both simulated and real datasets, and compare it with
four typical existing binning methods, including
MetaCluster 3.0/5.0, AbundanceBin and MCluster.
Experimental results show that TM-MCluster outper-
forms the four existing methods over most tested
datasets.
Note that in machine learning and natural language

processing, topic models are a type of statistical models
for discovering the hidden “topics” in a collection of
data. Topic models were originally proposed for text
processing, later were extended and applied to image
and audio as well as music processing. Recently, some
researchers applied topic models for biological data pro-
cessing, such as mining protein-protein relations from
MEDLINE abstracts of biomedical literature [17,18],
constructing mRNA module collections [19] and study-
ing the functional groups of metagenomics samples [20].
However, there is no work that applies topic modeling
to metagenomic reads binning.

Methods
The proposed method TM-MCluster consists of three
major steps: 1) representing each read as a vector of
k-mers with occurring frequencies; 2) transforming each
read vector to a topic distribution vector based on the
Latent Dirichlet Allocation (LDA) model [15]; 3) cluster-
ing the vectorized reads by the SKWIC algorithm [16],
as in the MCluster method [14]. Figure 1 shows the
pipeline of TM-MCluster. In what follows, we give the
detail of each step.

Representing reads by k-mers
Generally, the term k-mer refers to a sub-sequence of k
consecutive characters in a sequence. Metagenomic data
consists of many reads from different species, we use
k-mers as the features of reads. There are at most 4k

k-mers in a DNA sequence as there are 4 different DNA
nucleotides (A,G,T,C). So a read corresponds to a vector
of k-mers with their frequencies occurring in the read as
the vector component values.
To reduce computation cost, the value of k should not

be too large. Actually, different k-mers have different
significance in describing DNA sequences. As shown in
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[21,22], k = 4 is the best among k = 2 to 7 to represent
DNA sequences. So we use 4-mers to represent metage-
nomic reads for binning. Concretely, we slide a window
of length 4 to count the frequency of each k-mer in a
read. Here, for each 4-mer, its complementary sequence
on the other chain of the DNA sequence is also consid-
ered. So the dimensionality is 256 for each read.

Transforming reads from k-mer space to topic space
Topic models were originally proposed to discover latent
topics from a set of documents that are represented by
the bag-of-word model. Latent topics indicate implicit
semantic topics in documents, which have been shown to
be more effective in describing the semantic relationships
among documents than traditional keyword based mod-
els. In metagenomics, reads can be seen as documents
and k-mers as keywords in documents. Reads from the
same species should share more similar latent “topics”
than reads from different species. So “topics” may be
more effective than k-mers in describing metagenomic
reads as far as the binning problem is considered. Here,
we use the Latent Dirichlet Allocation (LDA) – a popular
topic model from machine learning area [15]. In what fol-
lows, we first introduce the LDA model, and then
describe how to employ the LDA to extract latent topics
from metagenomic reads. Figure 2 illustrates the LDA
model. The outer plate represents documents, while the
inner plate represents the repeated choice of topics and
words within a document.

Some notations are as follows: D denotes the number of
documents; Nd denotes the number of words in the d-th
document; W denotes the number of words in the vocabu-
lary; T denotes the number of topics; a (a T-dimensional
vector) is the parameter of the Dirichlet prior on per-
document topic distribution; b (a W - dimensional vector)
is the parameter of the Dirichlet prior on per-topic word
distribution; θd (a T-dimensional vector) is the topic distri-
bution for document d ; jj (a W-dimensional vector) is the
word distribution for topic j;
LDA tries to generate the documents by the following

process [15]:
1 For the d-th document, initialize a with random

value, then choose θd ~ Dirichlet(a), where d ∈ 1, 2,...,D;
2 For the t-th topic, initialize b with random value,

then choose jt ~ Dirichlet(b);
3 For each word wi of the d-th document, choose zi ~

Multinomial(θd), and sample wi|zi ~ Multinomial (φzi) .
We apply the LDA model to metagenomic sequences,

where reads are treated as documents and k-mers are trea-
ted as words. Given a set of metagenomic reads, the esti-
mation of LDA model can be estimated via the Gibbs
Sampling Monte Carlo process [23]. The estimation pro-
cess requires a separately sampling of latent topics for each
k-mer in each read according to the posterior probability:

P(zwi = j|wi,w−i, z−wi) ∝
β + nwi

−i,j

Wβ + n∗
−i,j

·
α + nd−i,j

Tα + nd−i,∗
(1)

where w−i is the current assignment k-mers except for
wi, z−wi is the current assignment topics of all k-mers

except for wi, n
wi
−i,j is the total number of k-mers assigned

to latent topic j except for the current k-mer wi, nd−i,j is

the total number of k-mers except for wi in read d that
have been assigned to topic j, n∗

−i,j is the total number of

k-mers except for wi assigned to latent topic j, and nd−i,∗ is

the total number of k-mers except for wi in read d. In our
model, we assume symmetric priors and set a = 0.1, b =
0.01. Such a parameter setting is to make topic modeling
results more diverse.
After training a LDA model, we can get the topic distri-

bution of each read. Figure 3 illustrates the application of

Figure 1 The pipeline of the TM-MCluster method.

Figure 2 The LDA model.
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LDA to metagenomic reads. The left layer represents the
DNA reads, the middle layer represents topics, and the
right layer represents k-mers. We use the topic distribu-
tion of each read to represent the read. As the number of
topics is usually smaller than the number of k-mers, this
process is equivalent to dimension reduction. Here, the
number of topics is a tunable parameter. In our experi-
mental study, we set it to be 20 and 100 for simulated
data and real data, respectively.

Clustering the vectorized reads by the SKWIC algorithm
As in MCluster [14], we use the SKWIC algorithm to
cluster the vectorized metagenomic reads. SKWIC is a
variant of the classical K-means method with automatic
feature weighting mechanism [16]. It tries to minimize
the following objective function:

J(K,V;χ) =
K∑

i=1

∑

xj∈χi

n∑

k=1

vikDk
wcij +

K∑

i=1

δi

n∑

k=1

v2ik (2)

subject to

vik ∈ [0, 1] ∀i, k and
n∑

k=1

vik = 1, ∀i (3)

where K is the number of clusters, n is the number of
dimensions, which denotes the number of topics used to

represent each read here. Xi is the set of reads in cluster

i, vik is the weight of cluster i in dimension k, Dk
wcij is

the distance between read j and the center of cluster i
along dimension k.
In this objective function, we should choose a distance

metric to compute the distance between reads. Accord-
ing to [14], Manhattan distance achieves the best perfor-
mance in clustering biological sequences, compared to
Euclidean and cosine distances, so here we also use
Manhattan distance.
Different from the objective function of the traditional

K-means algorithm, the objective function (2) incorpo-
rates the weight of each dimension to each cluster by vik .
δi is used to weight the relative importance of vik . In
order to solve this optimization problem, Lagrange multi-
plier is adopted, and we can obtain

vik =
1
n
+

1
2δi

∑

xj∈χi

[

∑n
l=1 D

l
wcij

n
− Dk

wcij]. (4)

δi is updated iteratively as below:

δ
(t)
i = Kδ

∑
xj∈χ

(t−1)
i

∑n
k=1 v

(t−1)
ik (Dk

wcij)
(t−1)

∑n
k=1 (v

(t−1)
ik )

2 . (5)

The clustering process of SKWIC is to repeat the fol-
lowing steps until all cluster centroids do not change or
the amount of changes is under a specified threshold:
1 Specify the number K of clusters (species to which

the reads belong);
2 Randomly select the initial centroids of K clusters,

and assign the weight of each dimension to each cluster

equally by setting vik =
1
n
;

3 Iteratively update vik by Eq. (4);
4 Assign reads to the nearest cluster;
5 Update the centroid of each cluster;
6 Update δi by Eq. (5).

Performance evaluation
In this section, we evaluate the performance of our
method on both simulated and real datasets. We compare
our method with four existing methods: MetaCluster
3.0/5.0, AbundanceBin and MCluster. MCluster is the lat-
est unsupervised method for metagenomic data binning.

Datasets
Simulated datasets
The datasets were simulated by MetaSim [24] – a
sequencing simulator for genomics and metagenomics.
We generate the synthetic metagenomic datasets with
sequences sampled from species of various abundance
ratios.

Figure 3 Applying the LDA model to metagenomic reads.
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As MetaCluster 3.0 works well only on long reads, we
simulated long reads with different abundance ratios
and species numbers (from 2 to 10): 16 datasets denoted
by from D1 to D16; relatively-high abundance reads
(50 k and 500 k reads) were also generated as Abundan-
ceBin was designed for high abundance reads binning:
10 datasets denoted by from S1 to S10. Details of the
datasets are listed in Table 1 and Table 2.
Nowadays, real metagenomic datasets containing mil-

lions of short reads (< 500 bp) are very common, so we
simulated two datesets containing one million reads of
75 bp, belonging to 20 and 50 species respectively,
which are denoted as Dataset-A and Dataset-B. Among
the 20 species in Dataset-A, five species have a relative
sequencing depth 1×, another five species have a relative
sequencing depth 3×, the third five species have a rela-
tive sequencing depth 5×, and the remaining five species
have a relative sequencing depth 10×. Among the 50
species in Dataset-B, six species have a relative sequen-
cing depth 6×, five species have a relative sequencing
depth 8×, another five species have a relative sequencing
depth 10×, the remaining species have a relative sequen-
cing depth 1×. Details of Dataset-A and Dataset-B are
listed in Table 3.
Considering that MetaCluster 5.0 works well only with

extremely high abundance short reads, we also gener-
ated five datasets with 3000 k reads of 128 bp on aver-
age for comparing our method and MetaCluster 5.0.
These datasets are denoted by C, D, E, F and G, and are
presented in Table 4.

Real dataset
We downloaded an Acid Mine Drainage metagenomics
dataset from (NCBI) [25] to evaluate the performance of
our method as this dataset has been well studied. The
real dataset consists of 2534 contigs with an average
length of 5000 bp, which were assembled by 103,462
high quality trimmed reads [26]. The dataset includes
annotated sequences from 5 known species: Leptospiril-
lum sp.Group II, Leptospirillum sp.Group III, Ferro-
plasma acidarmanus Type I, Ferro-plasma sp.Type II
and Thermoplasmatales archaeon Gpl, as well as some
sequences from unknown species. The five species
belong to two superkingdoms and three genera, and
they form the taxonomy showed in Figure 4. Since the
original reads do not have species annotations, we use
the 2534 annotated contigs to test the binning perfor-
mance of our method. As is known, it is difficult to
evaluate the performance of a binning method on
sequences from unknown species, so we removed these
sequences that do not belong to any known species, and
eventually got 2424 contigs, which constitutes the data-
set R1.

Evaluation metrics
To evaluate the binning results, we consider three mea-
sures: Precision (Pr), Sensitivity (Se) and F1-measure
(F1). Assume that a metagenomic dataset comes from N
species, and finally is grouped into M clusters, Rij repre-
sents the number of reads in the i-th cluster that are
from species j.

Table 1 Simulated datasets of low abundance (read
length is 1 kbp on average)

Dataset Reads number Species number Abundance ratio

D1 5k 2 1:1

D2 5k 2 1:2

D3 5k 2 1:4

D4 5k 2 1:6

D5 5k 2 1:8

D6 5k 2 1:10

D7 5k 2 1:12

D8 5k 3 1:1:1

D9 5k 3 1:3:9

D10 5k 4 1:3:3:9

D11 5k 5 1:1:1:1:1

D12 5k 5 1:1:3:3:9

D13 5k 10 1:1:1:1:1:1:1:1:1:1

D14 50k 3 1:3:9

D15 50k 4 1:3:3:9

D16 50k 5 1:1:3:3:9

Table 2 Simulated datasets of relatively-high abundance
(read length is 1 kbp on average)

Dataset Reads number Species number Abundance ratio

S1 50k 2 1:1

S2 50k 3 1:1:1

S3 50k 3 1:3:9

S4 50k 5 1:1:3:3:9

S5 50k 10 1:1:1:1:1:1:1:1:1:1

S6 500k 2 1:1

S7 500k 3 1:1:1

S8 500k 3 1:3:9

S9 500k 5 1:1:3:3:9

S10 500k 10 1:1:1:1:1:1:1:1:1:1

Table 3 Simulated datasets of very high abundance (read
length is 75 bp on average)

Dataset Reads number Species number Abundance ratio

A 1 million 20 1 × 5:3 × 5:5 × 5:10 × 5

B 1 million 50 1 × 34:6 × 6:8 × 5:10 × 5

Zhang et al. BMC Bioinformatics 2015, 16(Suppl 5):S2
http://www.biomedcentral.com/1471-2105/16/S5/S2

Page 5 of 10



Precision and Sensitivity [12] are defined as follows:

Pr =

∑M
i=1 maxj(Rij)

∑M
i=1

∑N
j=1 Rij

, (6)

Se =

∑N
j=1 maxi(Rij)

∑M
i=1

∑N
j=1 Rij + number of unclassified reads

.(7)

Above, “unclassified reads” denotes the outliers
excluded from the final result by the clustering algo-
rithm. F1-measure [27] is defined as below:

F1 =
2 ∗ Pr ∗ Se
Pr + Se

. (8)

Experimental results
The effect of topic number
Probabilistic topic model is an unsupervised technique.
Topics in the model are latent, which means that we
have to set the number of topics for a dataset as an
input. Here, we check how the number of topics used in
the LDA model impacts the binning performance of
TM-MCluster. We use dataset D12 where the reads are
from five species, and vary the topic number from 2 to
100. The results are illustrated in Figure 5. We can see
that our method achieves the best overall performance
when the topic number is 20. When the topic number
is set to 2, the performance is the worst. It is reasonable
that a too small number of topics may cause the loss of
information, which thus degrades the performance. On
the contrary, a too large number of topics may intro-
duce noise, which may negatively impact the perfor-
mance. From the experiments over a number of
different synthetic datasets, we found that when the
number of topics is set to values between 20 and 100,
we can achieve satisfactory performance.
Results on simulated datasets
First, we compare our method with MetaCluster 3.0 and
MCluster on four evenly distributed datasets D1, D8,
D11 and D13 with 2, 3, 5 and 10 species, respectively.

Table 4 Simulated datasets of extremely high abundance
(read length is 128 bp on average)

Dataset Reads number Species number Abundance ratio

C 3000k 2 1:1

D 3000k 3 1:1:1

E 3000k 3 1:3:9

F 3000k 5 1:1:3:3:9

G 3000k 10 1:1:1:1:1:1:1:1:1:1

Figure 4 The taxonomy of species in R1.
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Results are shown in Table 5. As we can see in Table 5
on three of the four tested datasets, our method
achieves the best F1; and on two of the four tested data-
sets, our method obtains the best precision or sensitivity.
We then check the performance of our method on the

12 unevenly-distributed datasets, the results are shown
in Table 6. Out of the 12 tested datasets, our method
achieves the best F1, precision and sensitivity on 10, 6
and 5 datasets, respectively; and MCluster ranks first in
F1 and sensitivity on 3 datasets, while MetaCluster 3.0
outperforms the others in precision and sensitivity on 7

and 5 datasets respectively, but it does not perform best
in F1 on any dataset. It is worth mentioning that the
advantage of our method seems more outstanding on
datasets with unevenly-distributed reads.
We go further to examine the performance of our

method on datasets of relatively-high abundance. As
AbundanceBin works only for high abundance datasets,
here we compare our method with AbundanceBin and
MCluster. The results are shown in Table 7. Out of the
10 tested datasets, our method achieves best F1, sensitiv-
ity and precision on 9, 6 and 8 datasets, respectively;

Figure 5 The effect of topic number on binning performance of TM-MCluster.

Table 5 Results on simulated datasets (D1, D8, D11 and D13) with identical abundance ratio

Dataset MetaCluster 3.0 MCluster TM-MCluster

Pr Se F1 Pr Se F1 Pr Se F1

D1 .9989 .9628 .9805 .9877 .9877 .9877 .9882 .9882 .9882

D8 .7432 .9218 .8229 .9158 .9158 .9158 .9586 .9586 .9586

D11 .8215 .8766 0.8481 .9002 .9002 .9002 .8394 .8394 .8394

D13 .4335 .8732 .5794 .706 .6894 .6976 .7574 .7732 .7652

Each bold value indicates the best result on a certain dataset.
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MCluster obtains only 1 best F1 and 2 best precision;
and AbundanceBin gets only 4 best sensitivity. This
result shows that our method performs better than the
other methods on high-abundance datasets.
In reality, more and more metagenomic datasets are

short reads (about 100 bp), so we also evaluate the ability
of our method to deal with short metagenomic reads. As
MetaCluster 3.0 does not work well on short reads, we
present the results of AbundanceBin, MCluster and our
method on Dataset-A and Dataset-B in Table 8. Compar-
ing with AbundanceBin and MCluster, we can see that
TM-MCluster achieves the highest F1-score and the best
precision, which is roughly consistent with the results of
our method on datasets of long reads.
As binning large metagenomic datasets usually con-

sumes a lot memory and time, here we present the mem-
ory and time costs of AbundanceBin, MCluster and our
method on Dataset-A and Dataset-B in Table 9. We can
see that AbundanceBin consumes the least memory,

while MCluster runs fastest. As training LDA is time-
consuming, TM-MCluster uses the most time and
memory.
Finally, we compare our method TM-MCluster with

MetaCluster 5.0 on datasets D, D, E, F and G in Table 4.
The results are shown in Table 10 from which we can
see that TM-MCluster achieves much higher sensitivity
than MetaCluster 5.0 on four datasets. This is mainly
because that MetaCluster 5.0 treats the reads grouped
into small clusters as low abundance reads and discards
them during the clustering process. But, MetaCluster 5.0
has higher precision than TM-MCluster on all the five
datasets. Due to the tradeoff between precision and sensi-
tivity, our method still obtains larger F-measure on four
of the five datasets. Furthermore, MetaCluster 5.0 per-
forms badly on the dataset D that has the largest number
of species with diverse abundance ratios. In summary,
our method achieves better overall performance in bin-
ning short reads than MetaCluster 5.0. d

Table 6 Results on 12 unevenly-distributed datasets

Dataset MetaCluster 3.0 MCluster TM-MCluster

Pr Se F1 Pr Se F1 Pr Se F1

D2 .9997 .9648 .9820 .9888 .9888 .9888 .9860 .9860 .9860

D3 .9998 .9596 .9793 .9950 .9950 .9950 .9948 .9948 .9948

D4 1.0000 .9612 .9802 .9942 .9942 .9942 .9946 .9946 .9946

D5 1.0000 .9608 .9800 .9950 .9950 .9950 .9954 .9954 .9954

D6 1.0000 .9610 .9801 .9966 .9966 .9966 .9966 .9966 .9966

D7 1.0000 .9618 .9805 .9980 .9980 .9980 .9988 .9988 .9988

D9 .7277 .9628 .8289 .8974 .8974 .8974 .9320 .9320 .9320

D10 .7345 .9096 .8127 .8852 .8852 .8852 .9156 .9156 .9156

D12 .7489 .9066 .8202 .8524 .8524 .8524 .8930 .8930 .8930

D14 .7275 .9539 .8255 .8863 .8860 .8863 .9420 .9420 .9420

D15 .7472 .9202 .8247 .8764 .8764 .8765 .9070 .9070 .9070

D16 .6792 .9106 .778 .8546 .8546 .8546 .8875 .8875 .8875

Each bold value indicates the best result on a certain dataset.

Table 7 Results of on high-abundance datasets

Dataset AbundanceBin MCluster TM-MCluster

Pr Se F1 Pr Se F1 Pr Se F1

S1 .7258 .9740 .8317 .9875 .9875 .9875 .9882 .9882 .9882

S2 .4047 .9405 .5600 .9154 .9154 .9154 .9519 .9519 .9519

S3 .5866 .7528 .6594 .8873 .8873 .8873 .9361 .9361 .9361

S4 .4106 .9441 .5723 .8554 .8554 .8554 .8921 .8921 .8921

S5 .1748 .9871 .2970 .7361 .7241 .7301 .7578 .7546 .7562

S6 .7266 .9999 .8416 .9873 .9873 .9873 .9869 .9869 .9869

S7 .3991 .9999 .5705 .9173 .9173 .9173 .9545 .9545 .9545

S8 .8591 .8591 .8591 .8868 .8868 .8868 .9393 .9393 .9393

S9 .6457 .6476 .6466 .8581 .8581 .8581 .8880 .8880 .8880

S10 .1888 .7223 .2993 .7253 .7161 .7207 .7196 .7317 .7256

Each bold value indicates the best result on a certain dataset.

Zhang et al. BMC Bioinformatics 2015, 16(Suppl 5):S2
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Results on the real dataset
Here we test our method on the real dataset R1. Referring
to Figure 4, we know that reads/sequences in R1 belong to
two superkingdoms, three genera and five species. So we
predefine the number of clusters for AbundanceBin,
MCluster and our method to 2, 3 and 5, respectively. As
for MetaCluster 3.0, it can automatically decide the num-
ber of final clusters, we do not predefine the cluster num-
ber. For our method, the number of latent topics is set to
100. Finally, MetaCluster 3.0 outputs two clusters. All
results are presented in Table 11. Though MetaCluster 3.0

can automatically output the number of clusters, its result
is not accurate, because there are five (instead of two) spe-
cies in R1. For the other three methods, AbundanceBin
achieves the best sensitivity, but its precision is the lowest.
Our method has the best F1. For each input number of
clusters, our method achieves the highest F1-score. Espe-
cially, when the number of clusters is set to 5, exactly the
number of species contained in the dataset, among the
four methods, our method achieves the best precision and
F1, and the second highest sensitivity (only smaller than
that of AbundanceBin).
For AbundanceBin,MCluster and ourmethod, as the input

number of clusters increases from 2 to 5, the binning perfor-
mance generally shows a degrading trend. The reason is like
this: when the number of clusters is set to 2, 3 and 5, it is
assumed to cluster the reads at superkingdom level, genus
level and species level, respectively. At a higher level (e.g.
superkingdom), the distance between the centers of any two
clusters is generally larger than that at a lower level (e.g. spe-
cies), so it is easier to group reads at a higher level than at a
lower level.

Conclusion
In this paper, we propose a new approach for binning
metagenomic reads. The new approach TM-MCluster
combines k-mer representation, topic modeling and

Table 8 Binning performance of AbundanceBin, MCluster and TM-MCluster on short reads (75 bp average) datasets:
Dataset-A and Dataset-B

Dataset AbundanceBin MCluster TM-MCluster

Pr Se F1 Pr Se F1 Pr Se F1

A .2270 .9878 .3692 .2250 1.0000 .3674 .3165 .6471 .4251

B .0757 .9878 .1407 .0744 1.0000 .1384 .1338 .5836 .2177

The bold values are the best precision, sensitivity and F1-score.

Table 9 Memory and time costs of AbundanceBin, MCluster and TM-MCluster on short reads (75 bp average) datasets:
Dataset-A and Dataset-B

Dataset AbundanceBin MCluster TM-MCluster

Memory Time Memory Time Memory Time

A 3.07 GB 2.15 h 3.20 GB 1.36 h 4.12 GB 3.11 h

B 3.20 GB 3.20 h 3.46 GB 2.38 h 4.10 GB 3.31 h

Table 10 Performance comparison: TM-MCluster vs. MetaCluster 5.0

Dataset MetaCluster 5.0 TM-MCluster

Pr Se F1 Pr Se F1

C .9944 .3862 .5563 .9793 .9793 .9793

D .9904 .4290 .5986 .7198 .7198 .7198

E .9770 .4806 .6437 .6923 .4645 .5574

F .9770 .3178 .4796 .5801 .4645 .5159

D .8662 .0066 .0131 .2141 .7988 .3377

Table 11 Results on the real dataset R1

Methods # Cluster Pr Se F1

MetaCluster 3.0 2 .7328 .8441 .7845

AbundanceBin 2 .3952 .9934 .5655

3 .3952 .9934 .5655

5 .3952 .9893 .5648

MCluster 2 .7050 .9422 .8066

3 .7054 .9179 .7978

5 .6972 .6444 .6698

TM-MCluster 2 .7186 .9682 .8250

3 .7211 .9645 .8252

5 .7182 .9130 .8040

Zhang et al. BMC Bioinformatics 2015, 16(Suppl 5):S2
http://www.biomedcentral.com/1471-2105/16/S5/S2

Page 9 of 10



automatic feature weighting together to boost the per-
formance of metagenomic data binning. Experiments
over both synthetic and real datasets have been con-
ducted. The experimental results show that the new
method achieves better overall performance than four
existing methods, including AbundanceBin, Metacluster
3.0/5.0 and the latest MCluster method. This work indi-
cates that the exploitation of topic modeling can effec-
tively improve the performance of binning metagenomic
sequences.
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