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Abstract

Background: Epigenetic alterations are known to correlate with changes in gene expression among various
diseases including cancers. However, quantitative models that accurately predict the up or down regulation of
gene expression are currently lacking.

Methods: A new machine learning-based method of gene expression prediction is developed in the context of
lung cancer. This method uses the Illumina Infinium HumanMethylation450K Beadchip CpG methylation array data
from paired lung cancer and adjacent normal tissues in The Cancer Genome Atlas (TCGA) and histone modification
marker CHIP-Seq data from the ENCODE project, to predict the differential expression of RNA-Seq data in TCGA
lung cancers. It considers a comprehensive list of 1424 features spanning the four categories of CpG methylation,
histone H3 methylation modification, nucleotide composition, and conservation. Various feature selection and
classification methods are compared to select the best model over 10-fold cross-validation in the training data set.

Results: A best model comprising 67 features is chosen by ReliefF based feature selection and random forest
classification method, with AUC = 0.864 from the 10-fold cross-validation of the training set and AUC = 0.836 from the
testing set. The selected features cover all four data types, with histone H3 methylation modification (32 features) and
CpG methylation (15 features) being most abundant. Among the dropping-off tests of individual data-type based
features, removal of CpG methylation feature leads to the most reduction in model performance. In the best model,
19 selected features are from the promoter regions (TSS200 and TSS1500), highest among all locations relative to
transcripts. Sequential dropping-off of CpG methylation features relative to different regions on the protein coding
transcripts shows that promoter regions contribute most significantly to the accurate prediction of gene expression.

Conclusions: By considering a comprehensive list of epigenomic and genomic features, we have constructed an
accurate model to predict transcriptomic differential expression, exemplified in lung cancer.

Background
Epigenetics is a rapidly expanding biological field recently.
Aberrant epigenetic modifications are associated with
many different diseases including cancers and neurodeve-
lopmental disorders [1]. Much work has demonstrated that
epigenetic regulation plays an important role in gene
expression, among other mechanisms such as transcription
factor regulation. Advances in high throughput methods

such as methylation arrays, CHIP-Sequencing, gene expres-
sion microarray and RNA-Sequencing have enabled
researchers to better understand the relationship between
epigenetic modification and gene expression at the genome
scale. Coupling with the progress in experimental metho-
dology, we have witnessed a wealthy growth of bioinfor-
matics tools to analyze the epigenetics patterns [2-4].
DNA methylation and histone modification are two

major mechanisms of epigenetic regulation. The most
widely researched type of DNA methylation in human is
the cytosine methylation of CpG islands and their asso-
ciated regions, such as CpG shores [5]. CpG methylation
occurs genome-wide in regions related to protein coding
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genes (promoters, exons, UTRs, etc.) as well as in certain
intergenic regions. It has been shown that CpG methyla-
tion tends to occur in promoters located upstream of the
transcription starting site [6], and increased methylation
(hypermethylation) in the promoter is negatively asso-
ciated with the gene expression level[1]. On the other
hand, CpG methylation in gene bodies seems to be posi-
tively associated with gene expression [1]. In cancers cells,
massive global loss of DNA methylation (hypomethyla-
tion) has been observed, and such hypomethylation in pro-
moters can activate aberrant expression of oncogenes [7].
Much new information has been gained through the
recently developed methods, such as Illumina Infinium
HumanMethylation450 arrays that enable the detection of
CpG methylation throughout the different locations asso-
ciated with over 99% of protein coding genes.
Histone modification is another type of important epi-

genetic modification [1]. Histones are the core of
nucleosomes that DNA sequences wrap around. All his-
tones are subject to some level of methylation or acety-
lation, which would either open up or close the local
chromatin structures to enable or repress gene expres-
sion. Among them, Histones 3 (H3) has various kinds of
methylation and they serve as well-studied markers for
gene expression status. For example, Histone 3 Lysine 4
tri-methylation (H3K4Me3) in the promoter region is an
indicator of active gene transcription, and Histone 3
Lysine 36 tri-methylation (H3k36me3) is associated with
transcription elongation. Oppositely, Histone 3 Lysine
27 tri-methylation (H3k27me3) may repress gene
expression. Even more complicated, histone modifica-
tion markers interact with DNA methylation, and the
consequent patterns of gene expression are the com-
bined effects of their interactions. The genomic assays
such as CHIP-sequencing have enabled the generation
of large amount of histone modification data.
Although integrative analyses on gene expression and

epigenetics regulation abound throughout the literature
[8,9], it is our observation that quantitative models which
use epigenetic information to accurately predict the up or
down regulation of gene expression are currently lacking.
A frequent question that a biologist would ask, when
methylation data are available but the gene expression
data are missing, is how the epigenetic changes of a gene
may affect the expression of this gene to be either up or
down regulated. This report is aimed to fill in this gap,
and provide the users with a model that allows them to
estimate the consequence of epigenetic modification on
gene expression, when the data for the latter are not avail-
able. Towards this goal, we have built a classification pre-
dictor for gene expression using the machine learning
approach. This model examines a large set of CpG methy-
lation data, histone modification data and genome data,
and accurately predicts differential expression of RNA-Seq

transcriptome by taking advantage of the publicly available
data from the TCGA Project (lung cancer) and the
ENCODE project.

Methods
Data sets
Several types of high throughput data were used to extract
features or classification responses. These include the CpG
methylation array data from 50 paired cancer and adjacent
normal tissues, three types of histone marker CHIP-Seq
data from cancer and normal cell lines, genomic nucleo-
tide sequence and conservation data, and RNA-Seq
expression data from samples that have coupled methyla-
tion data.

Data processing
Methylation data
The Cancer Genome Atlas (TCGA) Methylation data from
Illumina’s Infinium HumanMethylation450 Beadchip (Illu-
mina 450k) were used to extract CpG methylation related
features, according to their annotation file. The genomic
coordinates of CpG, their exons and coding regions were
obtained from the Illumina annotation file. Since the anno-
tation file only provided information of transcripts, exons,
and coding DNA sequences (CDS), we re-annotated the
protein coding genes using the Illumina iGenomes hg19
Refseq annotation in order to extract more comprehensive
information from other regions of the transcripts: all
introns (with special categories for the first and last intron),
as well as first and last exons, untranslated regions in the 5’
and 3’ direction (5’ UTR and 3’ UTR, respectively), and a
“single exon” or “single intron” designation for transcripts
that only had a single exon or single intron.
Histone data
Three sets of histone marker CHIP-Seq data, H3k4me3,
H3k27me3, and H3k36me3, were considered from two
cell lines: A549 cell line (0.2% EtOH treatment) from
the lung carcinoma tissue, and SAEC normal lung
epithelial cell line (no treatment). Raw CHIP-Seq data
were downloaded from the Broad Institute/Bernstein
Lab at the Massachusetts General Hospital/Harvard
Medical School and the University of Washington in
collaboration with the ENCODE project via the UCSC
genome browser at http://genome.ucsc.edu. [10,11]. The
raw reads were processed in-house to ensure consis-
tency of all normalization procedures. Raw data were
first aligned to hg19 using bowtie2 [12], followed by
removal of duplicated reads using the Samtools toolkit
(specifically, the “rmdup” tool) [13]. The aligned reads
were intersected with the relevant segments of the tran-
script as annotated in the previous section, using the
Bedtools toolkit (specifically, the “multicov” tool) [14]. A
custom R script was used to normalize the data over
total number of reads after removing PCR duplicates.
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Human genome data
Nucleotide composition data were extracted from hg19
genome FASTA files downloaded from the UCSC gen-
ome browser. Conservation scores across three classes
of species: vertebrates, primates, and placental animals,
were also considered. PhastCons46Way scores were
downloaded from the UCSC genome browser [11,15].
Conservation scores were then intersected with the rele-
vant segments of the transcripts using a custom Perl
script, in order to extract conservation features.
RNA-seq data
RNA-Seq gene expression data from lung cancer samples
with coupled CpG methylation data were downloaded
from TCGA Research Network: http://cancergenome.nih.
gov. Lung adenocarcinoma and lung squamous cell carci-
noma data were combined for this project, as they are two
subtypes of non-small cell lung cancer. Differential expres-
sion analysis was done with the DESeq2 package in R [16].
In cases where multiple transcripts are mapped to the
same Refseq ID, the geometric mean of the differential
expression results was used to represent the gene level
expression. In the case that any of these read counts was
zero, the counts from all transcripts were artificially
increased by one in order to calculate the geometric mean,
followed by final subtraction of one. The expression of
a gene was then classified as binary outcomes: either up-re-
gulated or down-regulated, once it passed two thresholds:
1) having an adjusted p value < .05 after Holm’s multiple
hypothesis test [17] and 2) having an absolute value of log2
fold change greater than 1. As a result, 2874 genes were
selected as “differentially expressed” genes.

Feature extraction
The extracted features are categorized into four major
sub-groups. All features were considered on a segment-
wise basis (see Data Processing), unless noted otherwise.
CpG Methylation features
Differential expression of the methylated CpG sites was
processed using the limma library in R. Specifically, the
function toptable was used to determine the log fold
change (logFC) between the cancer and normal tissues as
well as the average methylation (avgMval) of each CpG
site across the two types of tissue [18]. A positive logFC
indicates hypermethylation whereas a negative logFC
indicates hypomethylation. Additional segment-based
features were also considered. These include the number
of hypermethylated (numHyper) and hypomethylated
probes (numHypo) on a segment of a given transcript.
For example, first_exon_numHyper refers to the number
of hypermethylated probes on the first exon. Two other
types of features are the average of logFC and avgMval of
all CpG probes on a segment of the transcript, e.g. the
average logFC of all probes on the first exon of a given
transcript (first_exon_avglogFC).

Special effort was paid to compute distances of CpG
probes to exon-exon junctions. Given that one or more
CpG sites may exist on the individual exon segments of a
transcript (including the first and last exons), transcript-
level maximum, minimum and average distances of any
hyper/hypo-methylated probe to the nearest 5’ or 3’
exon-exon junction were computed (maxHypoTo5, min-
HypoTo5, avgHypoTo5, maxHypoTo3, minHypoTo3,
avgHypoTo3, maxHyperTo5, minHyperTo5, avgHy-
perTo5, maxHyperTo3, minHyperTo3, and avgHyperTo3).
Histone marker modification features
After the alignment of raw histone marker data (see
Data Processing), the aligned histone marker reads were
intersected with the segments of each transcript using
the multicov function from the BEDTools package [19].
The histone reads were then normalized per 1000 bp
length of each segment per 1 million aligned read
library. Similar to the CpG methylation features, the his-
tone marker modification features were extracted on a
segment-by-segment basis. Initials are used to represent
the individual cell lines where the features come from:
A for the A549 cell line and S for the SAEC cell line.
Following the initial is a number representing the speci-
fic histone H3 methylation marker: 4 for H3k4me3, 27
for H3k27me3, and 36 for H3k36me3. As a result, fea-
tures are named as segment_cell type and histone modi-
fication type (e.g. first_exon_A4). In order to compare
histone modification between the cancer and non-cancer
cell types, the differences of the reads between them
were divided by the average of the two (e.g. a feature
named first_exon_A4_minus_S4_divavg).
Nucleotide features
In each segment of the transcript, four different types of
nucleotide features were extracted: single nucleotide
composition, dinucleotide composition, trinucleotide
composition, and the length of each segment. Nucleo-
tide sequences of Hg19 reference genome were pro-
cessed using the Biostrings library in R [20].
Conservation features
Conservation score per segment was calculated as the
arithmetic mean of the conservation score per nucleo-
tide in that segment. Three separate sets of conservation
scores with different comparative species were extracted
from UCSC genome browser - vertebrate, primate, or
placental. Thus, features such as first_exon_vertebrate
emerge from this set.

Feature selection
Three feature selection methods were considered: Cor-
relation Feature Selection (CFS) [21], Gain Ratio [22]
and ReliefF [23].
CFS is based on mutual information, a non-linear

measure of correlation. CFS selects an approximately
optimal set of features to maximize the relevance and
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minimize redundancy. Relevance is the correlation of a
feature to the class (up-regulated or down-regulated
gene expression) measured by mutual information,
whereas redundancy is the correlation between two fea-
tures. Redundancy between selected features is mini-
mized to keep the number of selected feature small.
The Gain Ratio is an improved method of Information

Gain (IG). Both feature selection methods employ a
decision tree in their respective algorithms. The Gain
Ratio, by name, is a ratio of IG, but it overcomes the
bias of IG which favors features with more data.
ReliefF is an improved feature selection method from

Relief. Relief uses the Manhattan distance of its nearest
hit and miss from a random instance to continuously
update a weight vector, which is then used to calculate a
relevance score. Features above a certain relevance
threshold are considered “selected” [24]. ReliefF improves
on Relief in several ways, including two improvements
particularly important for this report. First, ReliefF
extends Relief to be able to handle incomplete or partial
data. Second, ReliefF searches for k near-hits and near-
misses and takes their averages, as opposed to one near-
est hit or miss from Relief. k =10 was sufficient to obtain
satisfactory results [23].
CFS is the only method that has a built-in system for

selecting the number of features. Gain Ratio and ReliefF
both work as ranker systems, meaning every input has a
matching respective ranked output. In order to ensure
fairness between feature selection methods, we matched
the numbers of selected features from Gain Ratio and
ReliefF to be the same as determined by CFS.

Model evaluation
The data were split into training and testing sets. The
training set constituted 80% of the up-regulated and
down-regulated genes, and the testing set constituted the
remaining 20% genes. The training data set underwent
10-fold cross validation on various combinations of fea-
ture selection and classification methods, in order to
obtain the best model.
After determining the best model, two sets of drop-off

tests were conducted. The first set of tests considered the
effect of data types, including nucleotide composition,
histone markers and methylation data, on the perfor-
mances of sub-models. The second set of drop-off tests
considered the effects of different segments on tran-
scripts, including gene body, exons, introns, UTRs,
TSS1500 and TSS200, on the methylation CpG methyla-
tion data based sub-models. For each drop-off test, a set
of features was removed from the original input features
prior to the feature selection and classification. Subse-
quently the same ReliefF feature selection and RF classifi-
cation for the drop-off tests were performed as described
in the previous Feature Selection section.

Software
Weka 3 data mining software [25] was used for feature
selection, classifier training and evaluation. Various R
packages were used, including Corrplot for generation
of the correlation matrix [26], and ROCR for ROC
curves [27]. The classification model is available at:
https://github.com/lanagarmire/epiPredictor

Results
Summary of input data and features
Four types of input data were used to extract the fea-
tures including the Illumina 450K CpG methylation
array data from cancer and normal tissues, three types
of histone H3 marker CHIP-Seq data from cancer and
normal cell lines, genomic nucleotide sequence and con-
servation data, and RNA-Seq gene expression data from
samples with coupled CpG methylation data. In total,
we calculated 1424 features and summarized the fea-
tures by column. These features can be divided into two
categories (Table 1): (1) data type based features, includ-
ing average CpG methylation, average methylation log
fold change, number of hyper/hypo-methylated probes,
mono-nucleotide, di-nucleotide and tri-nucleotide com-
position, histone H3 methylation CHIP-Seq reads, and
Phastcon conservation scores; (2) segment based CpG
methylation features from Illumina 450K BeadChip
annotations: upstream of the transcription start site
(TSS) 1500, TSS200, 5’ and 3’ UTRs, exon/intron body,
first and last exon/intron, single exon/intron and full
transcript (Figure 1 and Table 1).

Model selection and evaluation
The model uses 2298 gene data points in the training set,
with an additional 576 genes kept in the testing set. Three
different feature selection methods were evaluated in com-
bination with five classification methods, using 10-fold
cross-validation on the training data set (Figure 2). The
three feature selection methods are: correlation-based fea-
ture selection (CFS), ReliefF, and Gain Ratio. In most
cases with combined classification methods, except for
Gaussian SVM, ReliefF gives the best AUCs among the
three feature selection methods. Among the five classifica-
tion methods that we considered, namely Gaussian SVM,
linear SVM, Logistic Regression, Naïve Bayes and Random
Forest, the two non-linear methods (Gaussian SVM and
Random Forest) show superior performances to the other
linear classifiers (Logistic Regression, linear SVM, and
Naïve Bayes). This indicates that interactions exist among
the selected features. However, the differences are not very
big, suggesting that the decision boundary is close to lin-
ear. Given that the model based on ReliefF feature selec-
tion and Random Forest classification gives the best AUC
of 0.864, it is selected as the best model for the rest of the
project. Similarly, a ReliefF and Random Forest based
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Table 1 The list of all features considered prior to feature selection
Average
M value
(Methylation)

Average Log
Fold Change
(Methylation)

Number of
hypermethylated
probes

Number of
hypomethylated
probes

Single
nucleotide
composition

Dinucleotide
composition

Trinucleotide
composition

Length
of
segment

Histone reads Histone read
comparisons
(difference of
reads/average
of reads)

Conservation
scores
(PHASTCONS)

TSS 1500 TSS1500_
avgMval

TSS1500_
avglogFC

TSS1500_numHyper TSS1500_numHypo TSS1500_A TSS1500_AA TSS1500_AAA – TSS1500_S27 TSS1500_A27_
minus_S27_divavg

TSS1500_vertebrate

TSS 200 TSS200_
avgMval

TSS200_
avglogFC

TSS200_numHyper TSS200_numHypo TSS200_A TSS200_AA TSS200_AAA – TSS200_S27 TSS200_A27_
minus_S27_divavg

TSS200_vertebrate

UTR5 UTR5_
avgMval

UTR5_
avglogFC

UTR5_numHyper UTR5_numHypo UTR5_A UTR5_AA UTR5_AAA UTR5_length UTR5_S27 UTR5_A27_
minus_S27_divavg

UTR5_vertebrate

First exon first_exon_
avgMval

first_exon_
avglogFC

first_exon_numHyper first_exon_numHypo first_exon_A first_exon_AA first_exon_
AAA

first_exon_length first_exon_S27 first_exon_A27_
minus_S27_divavg

first_exon_vertebrate

First Intron first_intron_
avgMval

first_intron_
avglogFC

first_intron_numHyper first_intron_numHypo first_intron_A first_intron_AA first_intron_AAA first_intron_length first_intron_S27 first_intron_A27_
minus_S27_divavg

first_intron_vertebrate

Exon Body exon_
avgMval

exon_
avglogFC

exon_numHyper exon_numHypo exon_A exon_AA exon_AAA exon_length exon_S27 exon_A27_
minus_S27_divavg

exon_vertebrate

Intron Body intron_
avgMval

intron_
avglogFC

intron_numHyper intron_numHypo intron_A intron_AA intron_AAA intron_length intron_S27 intron_A27_
minus_S27_divavg

intron_vertebrate

Coding Region (CDS) CDS_
avgMval

CDS_
avglogFC

CDS_numHyper CDS_numHypo CDS_A CDS_AA CDS_AAA CDS_length CDS_S27 CDS_A27_
minus_S27_divavg

CDS_vertebrate

Last Intron last_intron_
avgMval

last_intron_
avglogFC

last_intron_numHyper last_intron_numHypo last_intron_A last_intron_AA last_intron_AAA last_intron_
length

last_intron_S27 last_intron_A27_
minus_S27_divavg

last_intron_vertebrate

Last Exon last_exon_
avgMval

last_exon_
avglogFC

last_exon_numHyper last_exon_numHypo last_exon_A last_exon_AA last_exon_AAA last_exon_
length

last_exon_S27 last_exon_A27_
minus_S27_divavg

last_exon_vertebrate

UTR3 UTR3_
avgMval

UTR3_
avglogFC

UTR3_numHyper UTR3_numHypo UTR3_A UTR3_AA UTR3_AAA UTR3_length UTR3_S27 UTR3_A27_
minus_S27_divavg

UTR3_vertebrate

Full Transcript fullTranscript_
avgMval

fullTranscript_
avglogFC

fullTranscript_numHyper fullTranscript_numHypo fullTranscript_A fullTranscript_AA fullTranscript_
AAA

fullTranscript_
length

fullTranscript_S27 fullTranscript_A27_
minus_S27_divavg

fullTranscript_vertebrate

Single Exon single_exon_
avgMval

single_exon_
avglogFC

single_exon_numHyper single_exon_numHypo single_exon_A single_exon_AA single_exon_
AAA

single_exon_
length

single_exon_S27 single_exon_A27_
minus_S27_divavg

single_exon_vertebrate

Single Intron single_intron_
avgMval

single_intron_
avglogFC

single_intron_numHyper single_intron_numHypo single_intron_A single_intron_AA single_intron_
AAA

single_intron_
length

single_intron_S27 single_intron_A27_
minus_S27_divavg

single_intron_vertebrate

Total Features 14 14 14 14 56 224 896 12 84 42 42 1412

Exon-exon junction
distances:

Maximum
distance to
5’ end

Maximum
distance
to 3’ end

Minimum distance
to 5’ end

Minimum distance
to 3’ end

Average
distance
to 5’ end

Average Distance
to 3’ end

Hypermethylated maxHyperTo5 maxHyperTo3 minHyperTo5 minHyperTo3 avgHyperTo5 avgHyperTo3

Hypomethylated maxHypoTo5 maxHypoTo3 minHypoTo5 minHypoTo3 avgHypoTo5 avgHypoTo3

Total Features 2 2 2 2 2 2 12



model has the best predictive performance on the 20%
holdout data set, with an AUC of 0.836.

Analysis of selected features
A total of 67 features are selected by the best model,
spanning all four types of genomic and epigenomic data.

We first explored the relationship among the selected
features. Using hierarchical clustering on absolute corre-
lation values between features (Figure 3A), we found that
the selected features tend to cluster by the data type, as
expected. For example, the conservation features in the
coding regions (CDS) are grouped together, and so are

Figure 1 Segments associated with protein coding genes. Features considered to predict differential gene expression are depicted on a
segment-by-segment basis. Segments are determined based on the annotations of Illumina Infinium Human Methylation 450K Beadchip Array,
with augmentations on segments located in gene bodies. From 5’ to 3’ end of the protein coding genes, listed are transcription starting sites
(TSS) upstream up to 1500 bp (TSS 1500) and 200 bp (TSS 200), first exon which may include 5’ UTR, first intron, exon body, last intron, and last
exon which may include 3’ UTR. A full transcript region is determined as the UTRs and coding region together.

Figure 2 Performance comparison of models with various feature selection and classification methods. The Areas Under the Curve (AUC)
of ROC are used as the metric to compare the performance of models with different combinations of feature selection (CFS, Gain Ratios and
ReliefF) and classification (Gaussian SVM, Linear SVM, Logistic regression, Naïve Bayes and Random Forest), on the training data with 10 fold
cross-validation. The model with ReliefF based feature selection and Random Forest classification is selected as the best model.
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most methylation features. As expected, the CpG islands
within the promoter are very important for the prediction
of gene expression, as demonstrated by the three selected
and highly correlated features CG composition features,
TSS200_GC, TSS200_CG and TSS200_CGG.
The largest group of selected features is the histone

modification features (32 features), followed by the methy-
lation features (15 features) (Additional File 1). The
selected features underscore the importance of histone
epigenetic modification in the regulation of gene expres-
sion. Likewise, the importance of methylation features is
evident, especially for the featured arising from TSS, 5’
UTR and first exons. Interestingly, several methylation fea-
tures (TSS1500_avgMval, first_exon_avgMval and
UTR5_avgMval) are clustered with histone modification
features, suggesting collinearity between these two types of
features, as shown by others [28,29].
On the other hand, when features are categorized by

location relative to the transcripts (Additional File 1), the
TSS200 has the most number of features (13 features),
and TSS1500 has 6 features selected for this region.
Together, the promoter comprises 28% of all the selected
features. This confirms the previously well-known impor-
tance of the promoter region for the epigenetic regulation
of gene expression [30,31]. Additionally, CDS has the sec-
ond highest number of features being selected, highlight-
ing its significance in regulating gene expression [30].

We also calculated the correlation of each feature to
gene expression and plotted the top 15 features most
relevant to gene expression prediction (Figure 3B). None
of the features have correlations higher than 0.45, sug-
gesting that no single feature is a dominant predictor
for gene expression. These features are either histone
modification (11 features) or methylation features (4 fea-
tures), consistent with the previous observation on the
significance of these two types of features.

Evaluation of features by data type
To determine the contribution of different types of fea-
tures to gene expression, we tested the performance of
models when a subset of features from the same data
type were dropped. We present the results of four mea-
sures of model performance: AUC, accuracy, F-measure
and Matthew’s correlation coefficient (MCC) (Figure 4).
Dropping any individual feature set of nucleotide compo-
sition, histone modification or CpG methylation, did not
seem to have a large effect on the model performance,
indicating that there is redundancy between feature sets.
The sub-model performance for the dropping-off of a
single feature set from the full model is in the following
order: nucleotide composition removal > histone modifi-
cation removal > CpG methylation removal. Thus drop-
ping methylation features had the largest effect among
individual feature set, as the AUC decreases from 0.864

Figure 3 Top fifteen features from the best model. (a) The clustering results on the absolute values of Pearson’s correlation coefficients from
67 selected features by the best model. The names of different type of features are labeled by different colors. Note: the length of a segment is
listed out separately. (b) List of top fifteen features selected by ReliefF feature selection and sorted by their correlation to the classification of
differential gene expression.
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in the full model to 0.832 in the training set, as well as
from 0.836 to 0.810 in the testing set. Likewise, MCC,
upon single feature set drop-off, shows the largest pro-
portional change among the four performance measures,
and decreases from 0.56 to 0.49 on the training set and
0.51 to 0.45 on the testing set.
We also compared the effect of removing both nucleo-

tide and histone features on model performance, as com-
pared to removing either of them alone. As expected,
removing both nucleotide and histone features gives the
lowest AUCs, lowest accuracies and lowest F-measures in

both training and testing sets. However, it leads to higher
MCC than removing just histones does in the testing set.
This suggests that there might be some overfitting with
regards to the nucleotide feature set, which accounts for
the majority (83%) of features prior to feature selection.

Evaluation of CpG methylation features by locations
relative to transcripts
Given that removing methylation features causes the
most reduction of model performance among the single
feature set drop-off (Figure 5), we next asked the

Figure 4 Evaluation of features generated from various data types. (a-b) Effects of feature set drop-off on ROC curves from the 10-fold
cross-validation training set (a) and testing set (b). (c) Effects of feature set drop-off on other four metrics: AUC, Accuracy, F-measure and MCC,
in the training set and testing set.
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question of the relative importance of each methylation
feature categorized by genomic location. We performed
drop-off tests by sequentially removing features in each
genomic location category. We first removed the features
from the first exons and first introns (as they are close to

the TSS), then from gene bodies including exons, introns,
and UTRs, and lastly from TSS1500 region such that only
TSS200 features were kept. At each step, we re-performed
feature selection and model construction, using the
remaining methylation features.

Figure 5 Evaluation of methylation features by segment. (a-b) Effects of segment-based methylation feature set sequential drop-off on ROC
curves from the 10-fold cross-validation training set (a) and testing set (b). (c) Effects of segment-based methylation feature set sequential drop-
off on other four metrics: AUC, Accuracy, F-measure and MCC, in the training set and testing set.
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All categories of genomic locations provide relevant
useful information that contributes to better prediction
of gene expression, as each of the sequential feature set
drop-off decreased the performance of the model in both
training and testing sets. Compared to the removal of
first exon and intron regions, and removal of the UTRs
and the rest of the gene body, removal of TSS1500 leads
to the largest reduction in all four metrics, confirming
the importance of the promoter region in regulating gene
expression. Even when only TSS200 features are consid-
ered, an AUC of 0.638 and 0.636 are obtained in the test-
ing and training sets respectively, suggesting that CpG
methylation status in TSS200 is still somewhat predictive
of gene expression. However, a more accurate prediction
using methylation features should arise from all locations
associated with the transcripts.

Discussion
The need to build predictive models of gene expression
from epigenomics data
Although currently integrative analyses between gene
expression and epigenetic modification exist, we have
found that quantitative models using epigenetic informa-
tion to accurately predict the up or down regulation of
gene expression are currently lacking. There are often
cases where researchers can only obtain reliable epige-
netics data, but not gene expression data. For example, if
the samples are archived and processed by FFPE (Forma-
lin-fixed, paraffin-embedded), one can still perform epige-
nomics measurements, but not the gene expression
experiments due to the degradation of mRNA in the sam-
ples. More importantly, a predictive method such as ours
can efficiently facilitate the bench scientists to narrow
down the candidate lists and conduct gene expression vali-
dation, especially when the epigenetics information is the
only data handy.

Selected features and their relevance to gene expression
All four types of data (CpG methylation, histone H3
modification, nucleotide sequence and conservation)
exist in the 67 features that are selected by the best
model, indicating that all of them contribute to the accu-
rate prediction of gene expression. Moreover, selected
features of the same data type tend to cluster together on
the correlation matrix among the features, suggesting
that the relationship within the same data type is closer
than the relationship between different data types. As
expected, histone modification and CpG methylation fea-
tures are the largest two groups among the four types of
data, signifying their importance to predict gene expres-
sion. Since nonlinear classification methods perform
slightly better than linear classification methods, it sug-
gests that interactions do exist between different types of
data. This is supported by numerous literatures that

enzymes responsible for CpG methylation also interact
with histone modification events [32,33].
Besides the value of predicting gene expression, our

models also provide insights into the relative importance
of different epigenomics/genome data, as well as the
genomic locations. We found that CpG methylation fea-
tures have more predictive values for differential gene
expression, compared to the three types of histone H3
modification data. Although other kinds of histone mod-
ification data can also be obtained to increase the pre-
dictive values of histone modification data, it is much
more costly to obtain them relative to the CpG methyla-
tion data (the cost of CHIP-Seq on each of the histone
modification marker is similar to an entire CpG methy-
lation array). Therefore, practically speaking, when the
budget is a constraining factor, we suggest that assays
on CpG methylation should be considered with priority
in predicting differential gene expression. Moreover, the
results of our models demonstrate that all genomic loca-
tions relative to each transcript, including promoters,
exons and gene bodies, provide useful information to
predict gene expression alternation. Although the CpG
methylation signals from the promoters region are more
important, the methylation signals from other regions,
such as exons, introns and UTRs are indicative of
changes in the gene expression as well.
Worth noticing, a lot of features that are extracted on

methylation and histone modification are naturally
based on the annotations from Illumina 450K array plat-
form for DNA methylation. There may be bias on the
number of features that are hand coded in the model.
To address potential issue, we changed TSS200_GC to
TSS150_GC in our model and obtained an AUC = .861
(compared to 0.864) for cross fold validation on the
training set and an AUC = .834 (compared to 0.836) for
the testing set. Therefore, we think the bias due to rely-
ing on the nomenclatures from Illumina’s annotation is
small.

Limitations and future directions
We should point out that our current model does not
include all histone modification data, but only three
widely used methylation markers on histone H3
(H3K4Me3, H3K27Me3 and H3K36Me3). Moreover, the
histone H3 data are drawn from ENCODE cell lines,
since the TCGA samples do not have such data. The
heterogeneity of the sample resources could affect the
accuracy of the model. When more histone marker data
coupled with DNA methylation and RNA-Seq data
become publicly available for lung cancer, we can
include them to achieve a better model. In the ideal set-
ting, we would like to build a predictive model that has
multiple types of epigenomics data obtained from the
same samples. Another potential concern is overfitting
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in the classification model. However, we split the dataset
into training and independent testing subsets and show
the model performs comparably well on the holdout
testing subset. We believe that the model can be repli-
cated if we can identify paired RNA-Seq and methyla-
tion data. In fact, we had originally built this model on
a private data set, which also achieved an AUC of more
than 0.80. Additionally, Figure 4 and 5 both indicate
that our approach does not suffer a significant over-fit-
ting problem using the TCGA data, and show the domi-
nant efforts of histone modification and CpG
methylation, which yield an up/down gene expression
prediction with an AUC>0.80. Currently the model uses
lung cancer data, and it will be interesting find out
more general epigenetic predictors for differential gene
expression in other cancers as well. Lastly, we should
point out that regulation of gene expression is complex,
including other mechanisms mediated by transcription
factors, microRNA, non-coding RNAs etc. The fact that
AUCs hover between 0.80-0.90 ranges could be well due
to the fact that features from these other mechanisms
are not considered in the current epigenetics model. To
increase the accuracy, a more complex model that takes
into account of all these events should be constructed.

Conclusions
A new model based on epigenomics data is proposed to
predict transcriptome-level differential gene expression
in lung cancers. Dropping-off feature sets by data type
shows that CpG methylation features are most impor-
tant for the prediction. Furthermore, methylation fea-
tures on all genomic regions relative to protein coding
genes contribute to the differential gene expression,
within which promoter regions are most important.

Additional material

Additional file 1: Table S1. Selected 67 features in the best model
sorted by category and their frequency
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