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Abstract

Background: Cellular processes are known to be modular and are realized by groups of proteins implicated in
common biological functions. Such groups of proteins are called functional modules, and many community
detection methods have been devised for their discovery from protein interaction networks (PINs) data. In current
agglomerative clustering approaches, vertices with just a very few neighbors are often classified as separate
clusters, which does not make sense biologically. Also, a major limitation of agglomerative techniques is that their
computational efficiency do not scale well to large PINs. Finally, PIN data obtained from large scale experiments
generally contain many false positives, and this makes it hard for agglomerative clustering methods to find the
correct clusters, since they are known to be sensitive to noisy data.

Results: We propose a local similarity premetric, the relative vertex clustering value, as a new criterion allowing to
decide when a node can be added to a given node’s cluster and which addresses the above three issues. Based
on this criterion, we introduce a novel and very fast agglomerative clustering technique, FAC-PIN, for discovering
functional modules and protein complexes from a PIN data.

Conclusions: Our proposed FAC-PIN algorithm is applied to nine PIN data from eight different species including
the yeast PIN, and the identified functional modules are validated using Gene Ontology (GO) annotations from
DAVID Bioinformatics Resources. Identified protein complexes are also validated using experimentally verified
complexes. Computational results show that FAC-PIN can discover functional modules or protein complexes from
PINs more accurately and more efficiently than HC-PIN and CNM, the current state-of-the-art approaches for
clustering PINs in an agglomerative manner.

Background
Functional modules are groups of genes or proteins
involved in common elementary biological functions.
Proteins are also known to interact with each other by
forming complexes, and each such complex performs an
independent and discrete biological function through the
interactions of its member proteins [1]. Single proteins
may also participate in more than one complex or func-
tional module. Functional modules or protein complexes

correspond to modules, which are dense subgraphs
within protein interaction networks (PINs), and hence,
can be discovered by appropriate network clustering
approaches. Generally speaking, modules in PINs refer to
highly connected sub-graphs which have more internal
edges than external edges. Many definitions of modules
have been proposed in literature [2], and consequently
different community detection algorithms have been
proposed based on these different definitions.
Module detection in PINs is a computationally hard

task and conventional clustering algorithms are not well
suited for this task [3,4]. Efficient, accurate, robust, and
scalable methods are therefore required for mining large
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PINs [5-8]. There are generally three classes of modules
detection approaches: 1) those based on finding cliques,
which are fully connected sub-networks [9,10]; 2) those
based on detecting dense subnetworks [11,12], not
necessarily cliques; and 3) those based on uncovering
the hierarchical organization of modules within PINs
[13,14]. Clique techniques are not quite scalable to large
PINs and the identified modules are too strict in the
biological sense of modules since proteins participating
in a complex may not all interact with each other. Cur-
rent density-based algorithms commonly misclassify
proteins with low degree into small clusters which could
be merged to core protein clusters [15]. Moreover,
many biologically meaningful modules are ignored due
to their low topological connectivity [15].
Hierarchical clustering methods based on global metric

over nodes or edges, such as betweenness centralities, are
very time-consuming, and thus do not scale well to large
PINs. The few hierarchical approaches based on local
metric also have the common problem of classifying very
low-degree vertices into separate clusters, which does not
make sense biologically. Another major issue in current
hierarchical clustering approaches is their inability to per-
form well on noisy data. This is generally the case when
clustering PIN data generated from large scale high-
throughput experiments. As discussed in [16,17], such
PIN data usually contain many false positive interactions,
and hence, care must be taken to deal with the sensitivity
of hierarchical methods on such data.
The majority of the clustering methods proposed in the

literature has focused on identifying nonoverlapping com-
munities. However, it is well recognized that complex net-
works contain multi-class nodes corresponding to vertices
belonging to many communities at once. Overlapping clus-
tering algorithms have not been intensively studied nor suc-
cessful at finding good subnetworks, although they first
appeared three decades ago; see an extensive review of
over-lapping methods in [18]. Multi-functional proteins are
proteins which perform several functions and interact spe-
cifically with distinct sets of protein partners simultaneously
or not, depending on the function being performed. Thus,
such proteins are involved in many functional modules or
protein complexes, and hence, it is reasonable to assume
that PINs have overlapping communities, each containing
some multi-functional proteins. Few successful hierarchical
clustering approaches such as the Overlapping Cluster Gen-
erator (OCG) algorithm of [19] and the Link Communities
method of [20] (to cite just a few) have been recently pro-
posed with the aim of identifying overlapping protein com-
munities as well as multi-functional proteins from PINs.
In this paper, we propose a fast agglomerative cluster-

ing technique, FAC-PIN, which addresses the issues and
limitations discussed above for hierarchical algorithms.
FAC-PIN is based on a local similarity pre-metric of

relative vertex-to-vertex clustering value for clustering
PINs in an agglomerative hierarchical manner.

Related works
Many hierarchical clustering approaches (both agglomera-
tive and divisive techniques) have been introduced in lit-
erature, since the original publication of [21] for clustering
networks. See the excellent survey on graph clustering
algorithms in [22]. Thus, we will present only the few
methods that are directly related to our proposed agglom-
erative approach.
An effective agglomerative technique for clustering large

networks was first proposed by [21]. The Girvan-Newman
(GN) algorithm [21] first computes the edge-betweenness
centrality value of each edge; this is a global metric over
the edges and is defined as the number of shortest paths
containing a given edge. Then, GN subsequently sort and
then remove edges with large betweenness values in an
iterative manner and in order to detect the communities;
since such edges correspond to bridges connecting two
modules whereas low-betweenness edges are internal to
modules. To increase the computational speed of GN, [23]
made a simple but non-trivial modification in the compu-
tation of the value of the modularity function used in GN.
[15] defined the concept of the degree of a subnetwork S
as the number the of edges containing one endpoint inside
S and the other endpoint outside S. The degree of subnet-
works was used along with the edge-betweenness values to
devise an agglomerative method for module discovery.
[14] developed a fast agglomerative approach for commu-
nity detection based on a global centrality measure, the
vertex clustering coefficient ; which is defined as the ratio
of the number of edges between the neighbors of a given
vertex v and the total number of possible edges in that
neighborhood, it measures the degree of completeness
of the subnetwork defined by v and its neighbors [24].
[2] designed an agglomerative technique based on the
clustering coefficient of an edge; the edge clustering coeffi-
cient extends the vertex clustering coefficient and is a
global measure defined as the number of triangles to
which a given edge e = (u, v) belongs to, divided by the
number of triangles that might potentially include (u, v).
That is:

C(3)
u,v =

Z(3)
u,v

min{(ku − 1)(kv − 1)} , (1)

where, ka is the degree of a vertex a, Z(3)
u,v is the num-

ber of triangles containing edge (u, v), and min{(ku - 1),
(kv - 1)} is the maximal possible number of triangles
containing (u, v). This coefficient has been further gen-
eralized to higher-order cycles, C(k)

u,v, such as squares for

k = 4, C(4)
u,v. Edges contained in few or no triangles have

low clustering coefficients, and hence, correspond to

Ibrahim and Ngom BMC Bioinformatics 2015, 16(Suppl 4):S3
http://www.biomedcentral.com/1471-2105/16/S4/S3

Page 2 of 14



bridges connecting two clusters. The edge clustering
coefficient assumes the existence of cycles of length k in
a network; which is problematic since a network can
have many cycles of different lengths and the length dis-
tribution is unknown (e.g., there may be very few or
very many short-length cycles). For this reason, [25]
defined a local node similarity metric over the edges,
the edge clustering value, which is not based on cycles
but on the common neighbors of the two endpoints of
edge (u; v). The edge clustering value is defined as:

ECV(u, v) =
|Nu ∩ Nv|2
|Nu| · |Nv| ,

(2)

where, Na is the set of neighbors of a vertex a and its
cardinality is defined as |Na|. Here, endpoints vertices of
an edge (u, v) with a larger clustering value are more
likely to be in the same cluster. Using the edge cluster-
ing value, [25] devised an agglomerative technique, the
HC-PIN algorithm, for discovering modules of a PIN
and which is faster and more accurate than current hier-
archical algorithms for network clustering. The edge
clustering objectives in Equations (1) and (2) do not
take into account the reliability of interactions in the
presence of false positives in PIN data, and hence, will
yield incorrect clustering results. In this regards, [25]
modified the objective of Equation (2) to account for
noise in the PIN data, as

ECVw(u, v) =

∑
k∈Iu,v w(u, k) · ∑k∈Iu,v w(v, k)∑
s∈Nu

w(u, s) · ∑
t∈Nv

w(v, t)
, (3)

where Iu,v = Nu ∩ Nv , and 0 ≤ w(a, b) ≤ 1 is the weight
assigned to the edge (a, b) and which represents the relia-
bility of the interaction between vertices a and b or the
probability of their interaction being a true positive.
Clearly, Equation (2) is a special case of Equation (3) for
weighted undirected graph with w(a, b) = 1 for all edges
(a, b). In Equations (1)-(3), two vertices connected by an
edge with larger objective value are more likely to lie in
the same module.
Recently, while finalizing this manuscript, we have

been made aware of an hierarchical approach introduced
in [20] and which focuses on grouping links (i.e., edges)
rather than vertices, in contrast to the existing literature
which has almost entirely focused on grouping nodes. It
is well-know that communities in complex networks
often overlap such that nodes simultaneously belong to
several groups at once, which in turn, are known to be
involved into hierarchical structures. It has therefore
proved difficult for node-focused community detection
methods to accurately identify relevant functional mod-
ules because of the hierarchical structures of the over-
lapping groups. Let N+

a denotes the set of node a and its
neighbors and ea,b denote the edge (a, b), then by

defining network communities as groups of links rather
than groups of vertices, [20] proposed the following
similarity function for link pairs that share a node in an
undirected unweighted network

S(eu,k, ev,k) =
|N+

u ∩ N+
v |

|N+
u ∪ N+

v |
, (4)

and applied a simple single-linkage hierarchical clus-
tering algorithm to build an link dendrogram from
Equation (4) which yields link communities with the
best edge partition density. By identifying such non-
overlapping link communities, [20] has detected hier-
archically organized node community structures with
pervasive overlap.
In the next section, we will propose a new criterion for

weighted undirected graphs, which is a modification of the
relative vertex-to-vertex clustering value which we have
first introduced in [26] for un-weighted graph; in [26],
however, the unweighted criterion was applied only to the
problem of detecting protein complexes in PINs [27]
whereas here we apply our weighted criterion here for
identifying functional modules in PINs. It is a local simi-
larity premetric combining the ideas behind the vertex
clustering coefficient, the edge clustering coefficient, and
the edge clustering value, and which allows to decide
when a given vertex can be included into the cluster of
another vertex, and which helps address all of the issues
discussed above.

Methods
Network modularity structure
The concept of community is qualitative rather than
quantitative; that is, nodes must be more densely con-
nected within the community than with the rest of the
network. The quantitative definition of the modularity
of a network is still an open debate. Here, we use the
modularity quality function Q which was introduced by
the authors of [28], and which is a widely used quantita-
tive measure for evaluating the modular structure of a
network. Specifically, given an un-weighted undirected
graph G = (V, E) with |V| = n, its symmetric adjacency
matrix A = [Au,v]n × n where Au,v = 1 if nodes u and v
are connected and otherwise Au,v = 0. Then, the modu-
larity Q function is defined as

Q(Pk) =
k∑

i=1

(
eii − a2i

)
, (5)

where: P(k) = ({C1,...,Ck }) is a partition of V into k

groups; eii =
L(Ci,Ci)
L(V,V)

is the fraction of edges with both

end vertices in the same community i; ai =
L(Ci,V)
L(V,V)

is
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the fraction of edges with at least one end vertex in

community Ci; and, L(S1, S2) =
∑

u∈S1,v∈S2
Au,v. Larger

values of Q correspond to more distinct community
structures in PINs. Function Q have serious resolution
limits which have been discussed at length in [22], and
the size of a detected community depends on the size of
the whole network; thus, the choice of partition is highly
sensitive to the total number of edges in the network. A
second partition scoring function Ω which seeks to
improve Q has been introduced in [29] and is defined as

�(Pk) =
k∑

i=1

(
eii · log ai

)
. (6)

Function Ω allows for more diverse cluster sizes than
function Q and which are not too small and not too
large, and smaller values corresponds to better modular-
ity structures. A third scoring function, the modularity
density function D of [14], overcomes the resolution
limits of Q by directly including information on the
number of nodes in a community. It is defined as

D(Pk) =
k∑

i=1

L(Ci,Ci) − L(Ci, C̄i)
|Ci| , (7)

where, C̄i = V\Ci is the set of vertices not in Ci. Thus, the
aim of function D is to optimize both the modularity and
the density of a community. For weighted undirected graphs
G = (V, E) with weights assigned to edges in E, we propose
new modularity functions, Qw, Ωw and Dw. These three
functions are direct generalizations of Q, Ω and D above,
with L(S1, S2) redefined for weighted undirected graphs as

L(S1, S2) =
∑

u∈S1,v∈S2
w(u, v). (8)

The problem of community detection is hence equiva-
lent to searching for a k and a partition Pk to maximize
the value of a modularity function.

The relative vertex-to-vertex clustering value
Suppose an edge (u, v) in a scale-free network such that
u has lower degree than v. We can reasonably assume
that u has more likely joined the cluster containing v
than v has joined the cluster containing u. This assump-
tion stems from the principle of preferential attachment
in power-law networks, which states that a new node u
is likely to attach to a high-degree node v than to a low
degree node. The edge clustering coefficient C(k)

u,v of [2]
and the edge clustering value ECV (u, v) of [25] are
similarity metrics which treat both endpoints of edges
(u, v) equally, irrespective of their degrees. Also, another
issue is that both ECV (u, v) and C(3)

u,v require vertices u
and v to be connected by an edge. This requirement is

quite restrictive and we aim to extend (in the future) to
the case in which pair (u, v) is not an edge while still
being able to decide if both vertices are in the same
cluster. Finally, hierarchical approaches based on ECV
(u, v) and C(3)

u,v, or other objective functions, have the
common problem of classifying low-degree vertices (per-
ipheral to dense subnetwork modules) into separate
clusters rather than merging them with their neighbor-
ing modules. These criteria tell how likely that both u
and v lie in the same cluster, and not which of u or v
has likely joined the other’s cluster. Let Na be the set of
neighbors of a vertex a in an un-weighted undirected
graph G = (V, E). We define N+

a = Na ∪ {a} as the neigh-
bor set of a augmented with a itself. Given two vertices u
and v, we define the clustering value of u relative to v as:

R(u − − → v) =
|N+

u ∩ N+
v |

|N+
u |

(9)

To consider the reliability of edges in the presence of
false positive interactions in the the PIN data, we modify
the objective of Equation (9) to apply for weighted
graphs, as follows

Rw(u − − → v) =

∑
a∈I+u,v;(u,a)∈E;(a,v)∈E w(u, a) · w(a, v)

∑
b∈N+

u ;(u,b)∈E w(u, b)
,(10)

where, I+u,v = N+
u ∩ N+

v , and 0 ≤ w(x, y) ≤ 1 is the weight
assigned to the edge (x, y) and which represents the relia-
bility of the interaction between vertices a and b or the
probability of their interaction being a true positive.
Clearly, Equation (9) is a special case of Equation (10) for
weighted undirected graph with w(x, y) = 1 for all edges

(x, y). For a node a ∈ V, we let ka =
∑

b∈V Aa,b be its

degree. For a weighted graph, we define the weighted

degree of a vertex a as κa =
∑

b∈V w(a, b), similarly

to [25].
Rw(u − − → v), with 0 ≤ Rw(u − − → v) ≤ 1, is a

similarity premetric since it does not satisfy the axiom
of symmetry and the triangle inequality but satisfies the
axioms of self-similarity and maximality [30]; see http://
www.scholarpedia.org/article/Similarity_measures and
http://en.wikipedia.org/wiki/Metric_(mathematics)#Pre-
metrics. A vertex u with a larger clustering value given
another vertex v is more likely to lie in the cluster con-
taining v. In the following we let C(v) = (Cv ⊂ V, Ev ⊂
E) denotes the subnetwork cluster containing v and we
assume C(v) is a community. Below, we describe the
properties of Rw(u − − → v).

Analysis of Rw(u − − → v)
In the following, we limit our discussions to the case of
un-weighted networks, though they also apply to
weighted networks. To understand how the similarity
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premetric Rw(u − − → v) can be used to determine the
communities in a network, we now discuss the relation-
ships between values R(u − − → v) and R(v − − → u),
and all the four possible cases of connectivity of an edge
(u, v). The main question we address below is: when
should we merge the vertex u with the current cluster C
(v) of v?

1 Case ku = 1. R(u − − → v) = 1, thus it is maximal.
R(u − − → v) is also maximal when kv = 1, and
hence, the connected component C = ({u, v}, (u, v))
is a community. If on the other hand kv > 1, then
we have R(u − − → v) > R(v − − → u) and there-
fore u should be merged with the current cluster C
(v) of v (not the other way around, which corre-
sponds to merging v with C(u)).
2 Case 1 < ku < kv. R(u − − → v) > R(v − − → u)
and R(u − − → v)may or may not be maximal. Ver-
tex u should be merged with C(v) only when
R(u − − → v) > 0.5; that is, when more than 50% of
the neighbors of u, N+

u, are in the intersection,
N+

u ∩ N+
v . This is a reasonable decision since the

number of triangles involving the edge (u, v) is |Nu

∩ Nv|, and that the edge (u, v) is definitely not a
“bridge” connecting two clusters when most of u’s
neighbors form a triangle with v.
3 Case 1 < kv < ku. This is the reverse of case 2
above: thus, u should not merge with C(v) since
R(u − − → v) < R(v − − → u).
4 Case ku = kv. R(u − − → v) = R(u − − → v), and
we should consider two possible sub-cases.

(a) Sub-case N+
u = N+

v . We have R(u − − → v) =
R(u − − → v) = 1 since N+

u = N+
v = N+

u ∩ N+
v .

Hence, u should be merged with C(v) given that
the induced subnetwork of G for N+

u ∩ N+
v forms

a community.
(b) Sub-case N+

u �= N+
v . We have R(u − − → v) =

R(v − − → u) < 1. In this case, u should be
merged with C(v), only when R(u − − → v) > 0.5.

Given an edge (u, v), assume the degrees of vertices u and
v in G are such that ku = kv = d are (very) large and that u
and v do not have common neighbors. Then, we have
R(u − − → v) = R(v − − → u) = 1 · 2

1+d ≤ 0.5 assuming
d ≥ 3. In this case, the induced subnetwork of G for {u} ∪
Cv (or for N

+
v) is not a community, and likewise for {v} ∪ Cu

(or for N+
u). In general, consider the induced subgraph of G

on N+
u ∪ N+

v we define the local betweenness value of edge
(u, v) as the percentage of paths from vertices in Nu \ Nv to
vertices in Nv \ Nu going through edge (u, v). Given the
number of common neighbors between u and v, |Nu ∩ Nv|,
the local betweenness of edge (u, v) is thus

λ(u, v) = 100 · 1
|Nu ∩ Nv| + 1

. Given two connected high-

degree vertices u and v, the local edge betweenness value l
(u, v) increases as |Nu ∩ Nv| decreases, and hence, it corre-
sponds to when both R(u − − → v) and R(v − − → u)
values are both small (and both ≤ 0.5) at the same time.
Edges with high local betweenness values are edges which
are likely connecting two communities, and therefore, ver-
tices u and v should not lie in the same community. This is
not necessarily true since we are making an inference based
not on the global edge betweenness metric defined in [21].
However, starting with correct initializations and using an
appropriate node clustering mechanism, a greedy algorithm
can be devised based on the faster local evaluations instead
of the costly global evaluations.
R(u − − → v) is maximal when |N+

u | = |N+
u ∩ N+

v |; that
is either Case (1) or Case (4a) above. In either cases, u
contributes only new internal edges in the induced sub-
network of G for C+

v = {u} ∪ Cv (or for C+
v = N+

v) and
contributes no new external edges, and hence, the
induced subnetwork of G for C+

v remains a community if
Cv (or N+

v) is a community. Finally, u is more likely to
be in the community C(v) and v less likely to be in the
community C(u) when both R(u − − → v) > 0.5 and
R(u − − → v) ≥ R(v − − → u). Since R(u − − → v) >
0.5 then ku ≤ kv and |N+

u ∩ N+
v | = |N+

u |
2
; that is, more than

50% of the neighbors of u are in the intersection and
less than 50% of the neighbors of v are in the intersection.
Since ku ≤ kv then clearly the induced subnetwork of G for
C+
v = {u} ∪ Cv is a community when Nu ∩ Nv ⊆ C(v) with

its modularity increasing with |Nu ∩ Nv|.

Quantitative definition of module
Given the four cases above and a user-defined merging
parameter μ with 0 ≤ μ < 2, the decision to merge a
node u with the cluster C(v) of a node v can be sum-
marized into a single test containing all the four cases;
that is: include u to C(v) whenever

Rw(u − − → v) > 0.5μ andRw(u − − → v) ≥ Rw(v − − → u).

The communities (i.e. modules) C determined by algo-
rithms which use this merging test are such that the
merging condition is satisfied for every internal edge of
C and not satisfied for every external edge of C. Given a
weighted undirected graph G = (V, E) and the merging
parameter μ, a subgraph C ⊆ G is said to be a μ-module
if if the the condition for merging is true for every inter-
nal edge of c and false for every external edge of C. Dif-
ferent networks modularity structures are obtained by
varying the value the merging parameter μ.
The relative vertex clustering value, R(u − − → v)

implements the ideas behind the edge clustering coeffi-
cient, C(k)

u,v, of [2], since for a given vertex v and a neigh-
bor u the number of triangles given edge (u, v) is
exactly |Nu ∩ Nv|; and u will be included into C(v)
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whenever most of the neighbors of u (excluding v) are
in Nu ∩ Nv . This is also true even when (u, v) is not an
edge; in such case, |Nu ∩ Nv| relates to the number of
squares containing vertices u and v. On the other hand,
we break through the limitations of [2] as in the edge
clustering value, ECV (u, v) of [25], by not assuming the
existence of closed loops in a networks, such as triangles
or high-order loops. The relative vertex clustering values
R(u − − → v) and Rw(u − − → v) also improves ECV
(u, v) and ECV w (u, v) since neighbors u of v which
have most of their neighbors forming a triangle with v
are considered for possible inclusion in C(v). Searching
for vertices u which form a cluster with v is also more
efficient than searching for edges (u, v) that make a
cluster since the number of edges is larger than the
number of vertices in dense subgraphs.

The FAC-PIN algorithm
In a clustering task, we can use Rw(u − − → v) and
Rw(v − − → u) to decide whether u should be included
into C(v) = (Cv, Ev) ⊂ G = (V, E), the current cluster of
v. Based on the definitions of relative vertex-to-vertex
clustering value and quantitative network modularity,
we propose a fast agglomerative clustering node-focused
algorithm named FAC-PIN, shown in Algorithm 1. The
input to algorithm FAC-PIN is an undirected weighted
graph; when un-weighted graph is used, then all edges
(a, b) are treated equally with weight w(a, b) = 1. The
output of FAC-PIN is a collection of non-overlapping
subnetwork communities.
Given a weighted undirected PIN G = (V, E), we initi-

ally consider each vertex as a singleton cluster, and sort
the vertices v ∈ V into a queue QV in non-increasing
order of their weighted degrees �v. Then,
Algorithm 1 The FAC-PIN algorithm
Require: G = (V, E): undirected PIN graph;

A|V| × |V|: adjacency matrix;
W|V| × |V|: weight matrix;
μ: merging parameter;

Ensure: Pk = {C1 ,..., Ck}: non-overlapping subnetwork
communities
{Initialization Phase}
for all v ∈ V do

Cv ¬ {v}; {Cv = cluster containing node v}
Ev ¬ ∅;
κv ←

∑
b∈V w(v, b); {weighted degree of v}

C(v) ¬ (Cv, Ev); {Each vertex is a singleton cluster }
{C(v) = subnetwork containing node v}

end for
{Community Detection Phase}
Sort V to QV in non-increasing order of �v values;
repeat
v ¬ QV; {Select highest �v vertex in QV}

Nv ¬ {u ∈ V| (u, v) ∈ E}; {Neighbor set of v}
for all u ∈ Nv not yet assigned to a cluster do

if Rw(u − − → v) > 0.5μ and Rw(u − − → v) ≥
Rw(v − − → u)

then
Cz ¬ Cv ∪ {u}, ∀ ∈ Cv ∪ {u};

end if
end for
QV ¬ QV - v; {Remove v from QV}

until QV = ∅
{Compute the Partition Pk}
U ¬ V;
i ¬ 1;
while U ≠ ∅ do
v ¬ randomly select a vertex from U ;
Ci ¬ C(v) = the induced subgraph of G for Cv ;
U ¬ U\{u|Cu = Cv};
i ¬ i + 1;

end while
return Pk ¬ {C1,...,Ck}; Qw (Pk) and Ωw (Pk);
{Evaluate the Modularity of Partition Pk}
Modularity ¬ Dw(Pk), Qw(Pk) and Ωw(Pk);
in an iterative manner, we select the next highest �v

vertex v from QV and then we iteratively apply the mer-
ging condition

Rw(u − − → v) > 0.5μ andRw(u − − → v) ≥ Rw(v − − → u)

on each neighbor u ∈ Nv of v in order to decide for
its inclusion into the current cluster Cv of v.
A neighbor u ∈ Nv is added into the current cluster

Cv of v, when the majority of the neighbors of u are in
N+

u ∩ N+
v . That is when, R(u − − → v) > 0.5 and

Rw(u − − → v) ≥ Rw(v − − → u); in which case �u ≤ �v
and |N+

u ∩ N+
v | > 1

2 |N+
u | which for weighted graphs is

equivalent to
∑

a∈I+u,v
w(u, a) >

1
2

∑
b∈N+

u

w(u, b) where

I+u,v = N+
u ∩ N+

v . By gradually examining each high-degree
vertex v from the queue QV and then gradually adding
its un-assigned neighbors u to Cv, FAC-PIN agglomer-
ates all singleton clusters into |V| vertex sets Cv. The
final k communities Ci, for 1 ≤ i ≤ k, are the induced
subgraphs of G for all distinct Cv; in the algorithm, we
made a distinction between a cluster Cv = {v1,...,vn}, a
subnetwork C(v) = (Cv, Ev), and the i-th subnetwork Ci.
In FAC-PIN, the merging parameter μ with 0 ≤ μ < 2 is
user-defined. In particular for weighted PINs, different
modularity results can be obtained by changing the
values of μ
Most hierarchical methods, with the exception of the

HC-PIN algorithm of [25], are based on a costly global
metric for partitioning a PIN network. FAC-PIN is
based on the local similarity premetric Rw(u − − → v),
which encodes useful information about the local
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topology around vertices u and v, and which helps make
a local decision maximizing the modularity of the final
partitioning.
Computational complexity of FAC-PIN
Given weighted PIN G = (V, E), let n = |V|, m = |E|,
�max = maxv∈V �v be the maximum weighted degree in

G, and κave = 1
n

∑
v∈V κv be the average weighted degree

in G. The complexity of computing Rw(u − − → v) is O
(�max), and hence, the complexity of FAC-PIN is
O(nκ2

ave) � O(nκ2
max) ≪ O(n3). PINs are power-law

networks, thus the majority of proteins interact with few
proteins only, and thus �ave is generally small and can
be considered a constant [25]. The CNM [23] and the
HC-PIN [25] methods run in O(mh log n) and O(mκ2

ave)
steps, respectively; where, h is the depth of the dendro-
gram describing the network’s community structure.
These are the currently fastest agglomerative methods.
The space complexity of the three algorithms is O(m2).
The main achievement with respect to computational
complexity is that the cost of FAC-PIN is dependent on
the number of nodes, rather than the number of edges,
specially when �ave is regarded as a constant in scale-
free networks.

Results and discussion
We have carried out several computational experiments
on nine PIN data from eight different species using our
proposed FAC-PIN algorithm. In this section, the data
sets and the evaluation methods used in our experiments
are described first. Next, we discuss the effect of varying
the merging parameter μ on the FAC-PIN clustering
results. Then, we arbitrarily set the merging parameter to
μ = 0.5 and then proceed to compare and study the clus-
tering results of the FAC-PIN approach with those of the
HC-PIN and CNM methods on the same PIN data sets;
the three algorithms are compared on (i) the functional
enrichment of their predicted modules, (ii) their sensitiv-
ity, specificity, and F -score, (iii) the network modularity
structure of the partitioning results, and finally, (iv) their
execution times.
All computational experiments were performed on an

Intel machine (Core TM i5-1600, 2.400 GHz, CPU with
8 GB RAM). The program codes were all written in R.

PIN data sets
Original un-weighted PIN data of eight distinct species
was downloaded from the REACTOME database www.
reactome.org/download/all_interaction.html and one
species from the DIP database [31]. The eight PIN data
from REACTOME are listed here along with their num-
ber of proteins and interactions in parenthesis are: B.
taurus (5737, 113888), T. guttata (Finch bird, 3929,
74314), X. tropicalis (Frog, 5473, 122706), H. sapiens

(Human, 8997, 34935), O. sativa (Rice, 3778, 320570),
S. scrofa (Wild boar, 5303, 119920), D. rario (Zebra fish,
8188, 274358), and S. cerevisiae-1 (Baker’s yeast, 5697,
50675). The PIN data from DIP is S. cerevisiae-2
(Baker’s yeast, 4726, 15166). In all these PIN data, the
number of edges is much larger than the number of
vertices.
We also downloaded a list of protein complexes

obtained from the MIPS database, which we consider as a
gold standard data. We extracted the protein complexes
corresponding to the S. cerevisiae-2 PIN data from the
MIPS Comprehensive Yeast Genome Database-CYGD
ftp://ftpmips.gsf.de/fungi/yeast/catalogues/complexcat/
complexcat_data_18052006. We proceeded similarly to
[29] and considered only the known complexes (i.e., not
those obtained by computational means) containing at
least three proteins. Since FAC-PIN generates non-over-
lapping clusters, we considered only known complexes
which are at the bottom of the MIPS hierarchy of com-
plexes and subcomplexes. The unconfirmed complexes,
that is those in category 550, were excluded.

Evaluation methods
In order to study and compare the performance of FAC-
PIN, we downloaded the CNM code http://cs.unm.edu/
~aaron/research/fastmodularity.htm [23] and implemen-
ted the HC-PIN algorithm [25]. The two methods were
applied on the same PIN data as FAC-PIN. For HC-PIN,
we set the two parameters l and s as in [25]; CNM has
no parameters. Of the three algorithms, only FAC-PIN
and HC-PIN can cluster weighted PINs. There are other
network clustering approaches which we could compare
FAC-PIN with, however they are either not designed for
clustering weighted PINs or they are not hierarchical
agglomerative algorithms. It should be noted that [25]
compared his HC-PIN algorithms with six others PIN
clustering approaches on the same S. cerevisiae-2 PIN
data; none of them are hierarchical and only three of
them can cluster PIN data). Due to time and space lim-
itations, we are not able to perform computational
experiments comparing FAC-PIN approach with those
other six PIN clustering techniques; we leave this task as
a future work. In [25], HC-PIN consistently outperforms
those methods in terms of its (i) functional enrichment
of the identified modules (ii) ability to detect both small-
sized and large-sized modules, (iii) accuracies of the iden-
tified modules, (iv) ability to predict protein complexes,
and (v) clustering efficiency. Both HC-PIN and CNM are
currently the fastest agglomerative methods for clustering
PIN data.
Functional enrichment validations
For the functional enrichment validations, we used
DAVID’s functional annotation tools http://david.abcc.
ncifcrf.gov/ [32] to identify enriched biological themes,
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particularly GO terms, and to estimate whether the pre-
dicted modules are biologically significant. DAVID uses
a set of fuzzy classification algorithms to rank modules
based on co-occurrences of their constituent proteins in
annotation terms and computes a P-value indicating the
significance of the module with respect to GO terms.
The P-value is computed using an internal EASE score
[33]. We used a P-value cutoff of 0.05 to find biologi-
cally significant clusters. A smaller P-value indicates that
the predicted module is more biologically significant
than one with a larger P-value
To estimate the performance of a network clustering

algorithm in term of its ability to correctly identify the
functional modules within a PIN, we also compute its
Recall, Precision, and F-Measure as mapped to C as

Recall =
|C ∩ Fi|

|Fi| , (11)

Precision =
|C ∩ Fi|

|C| , (12)

F − Measure = 2 × Recall × Precision
Recall + Precision

(13)

where, C is a module predicted by the algorithm, and
Fi is a known GO functional category mapped to C and
considered as a true predictions. Thus, the proteins in C
∩ Fi are the true positive predictions. Recall measures
how effectively proteins with the same Fi in the PIN are
extracted, Precision measures how consistently proteins
in the same C are annotated, and F-Measure is their
harmonic mean [34]. The accuracy of the method is
taken as the average F-Measure of the significant pre-
dicted modules. As in [25], we also only consider pre-
dicted modules of size 3 or more.
Protein complex validations
Protein complex validations proceed by determining the
degree of overlap between the complexes identified by net-
work clustering algorithm and the known protein com-
plexes; that is, we want to determine how effectively an
identified module matches a known complex. We used
the overlapping score function given in [12,25,29,35]. The
overlapping score, O(C, K), between a discovered complex
C and a known complex K is defined as:

O(C,K) =
|C ∩ K|2
|C| × |K| , (14)

in which a cluster C is considered to match a known
complex K whenever O(C, K) ≥ τ ; where, 0 < τ ≤ 1 is
the matching threshold. We have a perfect match only
when O(C, K) = 1. Threshold value τ = 0.2 was used in
[12,25,35] whereas [29] used τ = 0.25. We used τ = 0.2

in our complex validation. After computing the overlap-
ping scores between all pairs (C, K) of discovered com-
plexes and known complexes for the PIN, we then
determined the ability of the method to correctly classify
the known complexes. The reason for doing this is that
a given complex K1 may match many clusters but with
different degrees of overlap, while another complex K2

may match with a single cluster only. Hence, we calcu-
lated the Specificity, the Sensitivity, and the F-Score, as
our measures of accuracy here; they are defined as
follows:

Sensitivity =
TP

TP + FN
, (15)

Specificity =
TP

TP + FP
, (16)

F − Score = 2 × specificity × sensitivity
specificity + sensitivity

, (17)

where, TP (true positive) is the number of the identi-
fied complexes C matched by the known complexes K,
FN (false negative) is the number of known complexes
that are not matched by the identified complexes, and
FP (false positive) is the total number of the identified
complexes C minus TP.
Modularity and efficiency analyses
All experiments in this paper were performed on an
Intel machine (Core TM i7-2600, 3.400 GHz, CPU with
8 GB RAM). We compared FAC-PIN against HC-PIN
and CNM in terms of the modularity of their clustering
results and in terms of their computational efficiencies.
For FAC-PIN, we ran it with its merging parameter set
to μ = 0.5, then evaluated and reported the modularity
of its resulting partition Pk . The execution times (in
seconds) are also recorded; the PINs are sorted in
increasing order of their number of proteins m.

Identification of functional modules in the S. cerevisiae-2
PINs
The computational results in this section are all gener-
ated with the merging parameter arbitrarily set to μ =
0.5 (except in Table 1) and with the modularity quality
function Qw.
Effect of the merging parameter μ
Table 1 shows the effect of parameter μ on FAC-PIN
clustering results. Recall that a neighbor u of v is
merged with the current cluster C(v) of v whenever the
test

Rw(u − − → v) > 0.5μ

and

Rw(u − − → v) ≥ Rw(v − − → u)
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is satisfied for u. Hence, the size of a cluster C(v)
increases as the merging parameter μ decreases since
more neighbors are being merged together with v; and
therefore, the number of clusters k also decreases as the
sizes of clusters increase.
Functional enrichment of FAC-PIN modules
In Table 2, the three methods are compared for their
functional enrichment of biological functions. The P-
value from DAVID’s internal EASE score is computed
for each predicted module C, and a P-value cutoff of
0.05 is used to find the biologically significant clusters; a
module whose P-value is above this cutoff is considered
insignificant. The table shows, in this order, the number
(percentage) and the average size of significant predicted
modules with P-values falling within intervals: <E-15,
[E-15, E-10], [E-10, E-5], and [E-5, 1]. Although CNM
and HC-PIN show more enriched modules in the inter-
val [<E-15], the modules with p-value falling in this
range are much larger in CNM and HC-PIN than in
FAC-PIN (specially CNM) with an average size of
439.83 for CNM and 103.1 for HC-PIN compared to
49.08 for FAC-PIN. Larger modules result in a high
number of false positives, reducing the specificity of the
highly-enriched modules. Figure 1 shows this trend. The
figure compares the sizes of the modules whose enrich-
ment P-values fall in the range [<E-15]. In the figure,
there is a clear shift to the right in the case of CNM,
indicating much larger modules. This trend is apparent
in all P-values ranges (from Table 2). This indicates that
CNM is the worst at predicting enrichment in small
modules. HC-PIN’s highly-enriched modules are also
large compared to those produced by FAC-PIN, but
their sizes are less than those of CNM. Also, FAC-PIN
has the lowest rate of modules not passing the enrich-
ment P-values cutoff of 0.05.

Predicting large-sized versus small-sized modules
The P-value of a predicted module depends on its size,
and hence, Table 3 and Table 4 show the accuracy of
the methods respectively for predicting large and small
modules.
In Table 3, we see that more than 96% of the modules

predicted by each method are validated to be significant,
though FAC-PIN yields a percentage slightly larger than
that of HC-PIN or CNM. Although CNM gives the
highest average -log P-value, it also yields the lowest
average F-measure; this is due to the fact that its signifi-
cant modules are much larger than those of HC-PIN
and FAC-PIN, and hence, less accurate. FAC-PIN, on
the other hand, predicted more accurate significant
modules than HC-PIN and CNM but with the lowest
average -log P-value; again, this is due to the smaller
sizes of its generated modules.
In Table 4 however, performed consistently better

than CNM and HC-PIN in all performance measures;
FAC-PIN seems to be better at producing small-sized
modules.
Accuracy of FAC-PIN
Table 5 lists the accuracy of each method with all the
validations of Biological Process (BP), Molecular Func-
tion (MF), and Cellular Component (CC). Table 5
further confirms our analysis of the results in Table 3
and Table 4; that FAC-PIN predicts smaller but more
accurate significant modules.

Identification of functional modules in the S. cerevisiae-1
PIN
Table 6 shows, in this order: the modularity value Qw

(Pk) of the generated partition Pk; the number of pre-
dicted modules k3 with ≥ 3 proteins (and in parenthesis,
the total k); and the average size s̄ of the modules. Next,
the validation results shows: the number ks of significant
modules obtained overall (percentage of such modules is
in parenthesis) and for each ontology class (Biological
Process, Cellular Component, Molecular Function); the
number of significant modules whose P-values fall
within P-value interval <E-15, [E-15, E-10], [E-10, E-5],
[E-5, 1] are listed next; the average p̄ of -log P-value;
and, the accuracy A of each algorithm as the average F-
Measure of the predicted significant modules. The data
set is the original unweighted PIN of S. cerevisiae-1

Table 1 The effect of variation of μ on clustering
S. cerevisiae-2 PINs

μ k Max |Ci| Ave |Ci|

0.25 203 265 21.498

0.5 232 374 18.810

1.0 413 155 10.567

1.5 489 120 8.924

1.75 491 111 8.888

Table 2 Functional enrichment of the predicted modules which comprises of three or more S. cerevisiae-2 proteins;
μ = 0.5

Algorithms <E-15 [E-15, E-10] [E-10, E-5] [E-5, 1]

N. Modules Avg Size N. Modules Avg Size N. Modules Avg Size N. Modules Avg Size

FAC-PIN 12 (8.1%) 49.08 18 (12.2%) 31.83 35 (23.6%) 25.57 73 (49.32%) 20.95

HC-PIN 16 (6.39%) 103.1 29 (23.77%) 63.23 38 (23.6%) 28.12 28 (22.95%) 25.11

CNM 6 (12.77%) 439.833 1 (2.1%) 71 5 (10.63%) 36.35 28 (59.58%) 28.89
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downloaded from the REACTOME database. In this
PIN data, the number of modules discovered by FAC-
PIN is comparable to (but still larger than) those
detected by HC-PIN and CNM. FAC-PIN still predicts
smaller and more accurate significant modules in this
S. cerevisiae-1 with higher average -log P-value; which is
consistent with our findings in the previous tables that
FAC-PIN perform better due to the smaller sizes of its
predicted modules.

Identification of protein complexes in the S. cerevisiae-2
PIN
Table 7 shows the Specificity, the Sensitivity, and the F-
Score of the complexes identified by each method. The
results are shown for the modularity scoring function
Qw. For HC-PIN, results are shown for two values of its
parameter l as in [25]. The first three columns show,
respectively, the number of proteins, the number of
known complexes, and the average size of the known
complexes in the data; columns 5, 6, and 7 are the num-
ber of discovered complexes, their average size, and the
number of perfectly matched discovered complexes. In
the table, we see that FAC-PIN discovers complexes
whose average sizes (column 6) are closer to the average
sizes of the known protein complexes (column 3),
whereas HC-PIN and CNM predict farther average
sizes. The consequence of this is that FAC-PIN com-
plexes have higher accuracy in (Specificity, Sensitivity or
F-Score). In particular, we obtain a larger number of
perfectly matched complexes to communities with FAC-
PIN than with HC-PIN or CNM.

Modularity and efficiency of FAC-PIN
Tables 8, 9, and 10 show the network modularity of the
partitions obtained by the algorithms on the eight un-
weighted PIN data downloaded from the REACTOME
database, respectively for the modularity functions Qw,
Ωw, and Dw. The aim of both objectives Qw and Ωw is
to optimize the modularity of the detected clusters
(though Ωw yields clusters that are not too small and
not too large, and therefore, it generates denser clusters
than those from Qw); the aim of Dw is to optimize both
the modularity and the density of the clusters.
CNM is a modularity optimization algorithm designed

to directly optimize the modularity quality function Qw,
and hence, it is no surprise that it performed best with
this function, as shown in Table 8. The modularity maxi-
mization process of CNM [23] yields a partitioning con-
taining one very large cluster and many much smaller
ones; this because, a node is selected to be included into
the currently largest cluster first and to maximize the
current Qw value. In the columns for Rice and Yeast in
Table 8, we see that FAC-PIN outperforms CNM on Qw;
Table 11 shows a possible reason for this, that the sizes
max |Ci| of their largest clusters are comparable.
Recall that given a currently high-degree vertex v with

its cluster Cv, FAC-PIN merges it with all its neighbors
u satisfying the merging condition

Rw(u − − → v) > 0.5μ

and

Rw(u − − → v) ≥ Rw(v − − → u).

The first term in the merging condition guarantees
that only edges (u, v) which have low local betweenness
value λ(u, v) = 100 · 1

|Nu∩Nv|+1 are considered for possible
inclusion in the induced subgraph C(v) of Cv. The sec-
ond term guarantees that only those neighbors u which
can contribute more edges to C(v), than v contributes to
C(u), are selected. Hence, FAC-PIN merges neighbors u
which contribute low local betweenness edges while
optimizing the density of C(v). Also as said before, the
relative vertex clustering value Rw(u − − → v) combines
the principles behind the vertex clustering coefficient of
[14], the edge clustering coefficient C(k)

u,v of [2], and the
edge clustering value ECV (u, v) of [25]. Since the objec-
tives of Ωw and Dw is to seek for modular partitioning
containing dense clusters, we can see that in both
Tables 9 and 10, FAC-PIN outperformed both HC-PIN

Figure 1 P-values versus Sizes of Modules. Comparing sizes of
enriched modules whose P-values fall in range [<E-15].

Table 3 Performance comparison of the algorithms for predicting modules of size ≥ 20 on S. cerevisiae-2 PIN; μ = 0.5

Algorithms Number of modules Percentage of significant modules Mean(-log P-value) Mean(F-Measure)

FAC-PIN 58 98.28% 8.21 0.42

HC-PIN (l = 1) 45 97.11% 12.25 0.31

CNM 17 96.43% 13.53 0.05
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Table 4 Performance comparison of the algorithms for predicting modules of size ≤ 6 on S. cerevisiae-2 PIN; μ = 0.5

Algorithms Number of modules Percentage of significant modules Mean(-log P-value) Mean(F-Measure)

FAC-PIN 44 86.4% 6.16 0.41

HC-PIN (l = 1) 33 59% 5.39 0.27

CNM 26 35.7% 1.81 0.08

Table 5 Performance Comparison of the accuracy of FAC-PIN, HC-PIN, and CNM on S. cerevisiae-2 PIN; μ = 0.5

Accuracy for Modules of Size ≥ 3

Algorithms Number of modules Average size Maximum size Accuracy

BP MF CC

FAC-PIN 148 28.24 374 0.42 0.30 0.65

HC-PIN (l = 1) 122 43.19 483 0.39 0.28 0.52

CNM 47 88.59 790 0.22 0.23 0.25

Accuracy for Modules of Size ≥ 2

FAC-PIN 232 18.8 374 0.39 0.32 0.57

HC-PIN (l = 1) 172 23.74 483 0.37 0.30 0.44

CNM 147 29.68 790 0.09 0.15 0.21

Table 6 Functional enrichment of the predicted modules of un-weighted S. cerevisiae-1 PIN; μ = 0.5

Algorithms Qw (Pk ) k3 s̄ Ontology ks <E-15 [E-15, E-10] [E-10, E-5] [E-5, 1] p̄ A

FAC-PIN 0.529 65 (90) 8.96 Overall 57 (63.33%) 2 7 23 25 4.21 0.137

BP 24 2 1 11 10 4.09 0.165

CC 18 0 4 6 8 4.21 0.123

MF 15 0 2 6 7 4.01 0.096

HC-PIN 0.139 64 (87) 9.17 Overall 36 (42%) 7 5 12 12 3.17 0.024

BP 10 2 3 3 2 3.02 0.028

CC 14 3 2 4 5 2.97 0.032

MF 12 2 0 5 5 3.15 0.029

CNM 0.248 61 (84) 9.62 Overall 19 (22%) 7 5 4 5 4.15 0.034

BP 5 0 3 2 0 3.29 0.031

CC 7 3 2 0 2 3.99 0.045

MF 9 4 0 2 3 4.68 0.033

Table 7 Comparison of the Sensitivity, Specificity and F-Score of FAC-PIN, HC-PIN and CNM

Performances

P K S̄ Algorithms k |k̄| km Sensitivity Specificity F-Score

1318 144 9.153 FAC-PIN 158 8.35 9 0.61 0.54 0.592

HC-PIN (l = 0.5) 129 11.23 5 0.38 0.41 0.391

HC-PIN (l = 1.0) 117 12.83 3 0.29 0.32 0.31

CNM 291 6.29 3 0.15 0.16 0.204

Table 8 Network modularity quality Qw results of FAC-PIN, HC-PIN, and CNM; μ = 0.5

Algorithms Yeast Finch Bird Cattle Wild Boar Frog Human Zebra Fish Rice

FAC-PIN 0.529 0.500 0.441 0.502 0.471 0.491 0.527 0.575

HC-PIN 0.139 0.498 0.418 0.419 0.319 0.218 0.198 0.529

CNM 0.248 0.766 0.693 0.626 0.754 0.719 0.736 0.348
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and CNM on both modularity function Ωw; in seven out
of eight PIN data for Ωw, and in all PIN data for Dw. In
particular for Dw, FAC-PIN yield much higher modular-
ity values.
Table 12 shows the execution times (in seconds) of

each algorithm and the same data sets as above, but for
modularity function Qw only. As one can see, FAC-PIN
ran faster than both HC-PIN and CNM on all data sets.

Conclusions
In this paper, we have proposed a new agglomerative
clustering approach, FAC-PIN algorithm, for detecting
the communities of a given PIN networks, and then
compared our method with two fast hierarchical techni-
ques discussed in literature. Our approach is based on
the use of a new measure, the relative vertex-to-vertex

clustering value which helps decide whether a given ver-
tex u should be included within the cluster of another
vertex v depending on how many of its neighbors form
a triangle with v. Our approach is very fast since we are
clustering vertices not edges, as in the compared meth-
ods. Thus our method is appropriate for PIN data,
which in general contain more interactions than pro-
teins. More study needs to be done, in particular the
validation based on random networks, in order to ana-
lyze the robustness of FAC-PIN. Comparisons with
other methods which are not necessarily hierarchical
will also be important. Non-agglomerative clustering
methods based on the relative vertex-to-vertex cluster-
ing value will be investigated. In this current version of
FAC-PIN, a neighbor u is merged with a cluster Cvi
whenever its Rw(u − − → vi) value satisfies the merging

Table 9 Network modularity quality Ωw results of FAC-PIN, HC-PIN, and CNM; μ = 0.5

Algorithm Yeast Finch Bird Cattle Wild Boar Frog Human Zebra Fish Rice

FAC-PIN -1.370 -1.867 -1.704 -1.846 -1.839 -1.469 -1.825 -1.283

HC-PIN -1.291 -0.131 -0.619 -0.948 -1.796 -0.823 -0.182 -1.279

CNM -0.983 -1.315 -1.618 -1.848 -1.721 -1.441 -1.422 -0.819

Table 10 Network modularity density Dw results of FAC-PIN, HC-PIN, and CNM; μ = 0.5

Algorithm Yeast Finch Bird Cattle Wild Boar Frog Human Zebra Fish Rice

FAC-PIN 77.534 164.501 149.350 164.501 149.003 152.540 136.916 101.841

HC-PIN 71.829 129.292 130.418 111.419 127.124 104.822 121.927 79.182

CNM 64.480 121.574 123.970 115.306 109.231 95.201 97.343 56.810

Table 11 Comparing cluster statistics of FAC-PIN and CNM on Qw; μ = 0.5

Statistics Algorithms Yeast Finch Bird Cattle Wild Boar Frog Human Zebra Fish Rice

k FAC-PIN 90 247 285 267 268 269 379 154

CNM 68 132 144 136 129 125 147 95

Ave |Ci| FAC-PIN 8.96 16.98 21.74 24.05 22.35 10.53 22.32 14.90

CNM 10.47 32.33 43.94 47.93 47.13 48.70 58.57 24.46

Max |Ci| FAC-PIN 167 285 774 730 1043 1373 1104 541

CNM 154 1199 1989 1471 2029 2029 2353 547

Table 12 Execution times of FAC-PIN, HC-PIN, and CNM; using Qw and μ = 0.5

PINs Number of Proteins Number of Interactions FAC-PIN HC-PIN CNM

Yeast 5697 40675 313.315 446.231 501.239

Finch Bird 3929 74314 235.804 610.238 441.365

Cattle 5737 113888 300.766 781.231 596.833

Wild Boar 5303 119920 649.483 691.472 972.213

Frog 5473 122706 429.873 1021.432 912.692

Human 12994 135935 533.000 702.325 822.511

Zebra Fish 8188 274358 874.303 1183.350 1238.281

Rice 3778 320570 349.712 539.329 1281.273

Ibrahim and Ngom BMC Bioinformatics 2015, 16(Suppl 4):S3
http://www.biomedcentral.com/1471-2105/16/S4/S3

Page 12 of 14



condition and irrespective of whether there is another
vertex vj such that Rw(u − − → vj) also satisfies the
condition; we, therefore, plan a new variant of FAC-PIN
in which each node u selects the best neighbor v to be
merged with. Finally, we plan to modify FAC-PIN for
directed (un-weighted and weighted) protein interaction
networks.
As a final note: we have not made experiments on

weighted PINs. In our initial submission, we have used
the following weighted criterium:

Rw(u − − → v) =

∑
a∈I+u,v;(u,a)∈E w(u, a)∑
b∈N+

u ;(u,b)∈E w(u, b)

One of the reviewer of the initial manuscript has
pointed out that this formula is incorrect since it
depends only on the weights of edges connected to
node u, not of the edges connected to v. An important
consequence of this error, is that our analysis of
Rw(u − − → v) (based on the formula above) will apply
to the unweighted case only but will not necessarily
apply to the weighted case. We have verified this, both
computationally and theoretically, before engaging to
experiment on weighted PINs. Due to time constraint, it
is now impossible to perform and complete the experi-
ments on weighted PINs using the correct formula in
Equation (10). Our plan for the immediate future is
therefore to perform these experiments.
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