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Abstract

Background: Protein-protein interactions (PPIs) are involved in various biological processes, and underlying
mechanism of the interactions plays a crucial role in therapeutics and protein engineering. Most machine learning
approaches have been developed for predicting the binding affinity of protein-protein complexes based on
structure and functional information. This work aims to predict the binding affinity of heterodimeric protein
complexes from sequences only.

Results: This work proposes a support vector machine (SVM) based binding affinity classifier, called SVM-BAC, to
classify heterodimeric protein complexes based on the prediction of their binding affinity. SVM-BAC identified 14 of
580 sequence descriptors (physicochemical, energetic and conformational properties of the 20 amino acids) to
classify 216 heterodimeric protein complexes into low and high binding affinity. SVM-BAC yielded the training
accuracy, sensitivity, specificity, AUC and test accuracy of 85.80%, 0.89, 0.83, 0.86 and 83.33%, respectively, better
than existing machine learning algorithms. The 14 features and support vector regression were further used to
estimate the binding affinities (Pkd) of 200 heterodimeric protein complexes. Prediction performance of a Jackknife
test was the correlation coefficient of 0.34 and mean absolute error of 1.4. We further analyze three informative
physicochemical properties according to their contribution to prediction performance. Results reveal that the
following properties are effective in predicting the binding affinity of heterodimeric protein complexes: apparent
partition energy based on buried molar fractions, relations between chemical structure and biological activity in
principal component analysis IV, and normalized frequency of beta turn.

Conclusions: The proposed sequence-based prediction method SVM-BAC uses an optimal feature selection
method to identify 14 informative features to classify and predict binding affinity of heterodimeric protein
complexes. The characterization analysis revealed that the average numbers of beta turns and hydrogen bonds at
protein-protein interfaces in high binding affinity complexes are more than those in low binding affinity
complexes.
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Background
Protein-protein interactions (PPIs) regulate a wide range
of biological processes, involved in almost every cellular
function. Majority of the proteins in living cells interact
with partner proteins and form a complex to regulate
proper functions. PPI employs transport mechanisms,
muscle contractions, regulations of gene expression and
signal transductions [1,2]. PPIs are classified into differ-
ent types based on their functional and structural char-
acteristics. According to their stability, interaction
surface and involvement, PPIs are classified into obligate
and non-obligate, homo and hetero, or permanent and
transient [3].
Binding affinity defines the strength of PPIs, and is

represented by a dissociation constant (Kd). Binding affi-
nity is crucial in drug developments and therapeutics,
and thus, many approaches have been developed to mea-
sure the binding affinity. Generally, these approaches are
categorized into two groups. The first group identifies
the binding affinity using scoring functions and two
hybrid systems, surface plasmon resonance and forster
resonance energy transfer [4]. These experimental meth-
ods for estimating the binding affinity are costly and time
consuming. The second group uses computational meth-
ods to predict protein binding affinity, such as binding
site prediction studies [5-7], empirical scoring function,
knowledge based and quantitative structural methods
[8-10]. Machine learning models have been developed
with structure- and sequence-based features to predict
and classify the binding affinities. Yugandhar et al. using
sequence descriptors to develop a prediction method
SMO using support vector machines (SVM) to discrimi-
nate high and low binding affinity of heterodimeric pro-
tein complexes [11]. Additionally, the works [12,13] used
support vector regression (SVR) models with structure-
based features to predict binding affinities for different
sets of protein complexes. Alternatively, the work [14]
used functional features with a SVR to represent the
strength of interactions and observed physicochemical
and conformational changes. For existing studies of pre-
dicting binding affinities, the prediction models work
using small datasets. Only few sequence based studies on
predicting the binding affinities. This work aims to pre-
dict the binding affinities of heterodimeric complexes
and characterize the used sequence-based features.
Nearly 4,000 PPIs exist and the growth of PPIs in size

increases speedily. It is a challenging task to accurately
predict the binding affinities of PPIs based on sequence
information only. This work proposes a SVM-based
binding affinity classifier, called SVM-BAC, to classify
heterodimeric protein complexes by predicting their
binding affinity. SVM-BAC using SVM with an optimal
feature selection method, an inheritable bi-objective
combinatorial genetic algorithm (IBCGA) [15], can

identify a small set of features to determine the binding
affinity of protein complexes from 580 sequence
descriptors including 531 physicochemical properties
from the AAindex database [16] and 49 selected physi-
cochemical, energetic and conformational properties of
the 20 amino acids from the literature [17]. A dataset
with 216 heterodimeric protein-protein complexes is
established from the work [11,18]. SVM-BAC identified
14 sequence descriptors to classify the high and low
binding affinity of protein complexes and obtained
10-fold cross validation and independent test accuracies
of 85.80% and 83.33%, respectively. Using these 14 fea-
tures selected by SVM-BAC with SVR, we estimated the
binding affinity in terms of dissociation constant (Pkd)
for 200 heterodimeric protein complexes and obtained
correlation coefficient of 0.34 and a mean absolute error
of 1.4. Contribution analysis of prediction has been used
to select top-ranked features. The top-two physicochem-
ical properties apparent partition energy [19] and princi-
pal component analysis IV [20], and an important
secondary structure based feature, i.e. normalized fre-
quency of beta turn [21] are effective in predicting the
binding affinity of heterodimeric protein complexes.

Results and Discussion
Prediction performance of SVM-BAC
We have classified heterodimeric protein complexes by
predicting their binding affinities. A dataset consisting
of 108 and 108 complexes with high and low binding
affinity was used, respectively. All the sequences were
encoded into 580 sequence descriptors. SVM-BAC
incorporating with the optimal feature selection algo-
rithm IBCGA selected a set of 14 informative sequence
descriptors to discriminate the high and low binding
affinity complexes.
SVM-BAC achieved the training (10-fold cross valida-

tion), test accuracies and Matthews correlation coeffi-
cient (MCC) of 85.80%, 83.33% and 0.71 respectively,
slightly better than the SMO method [11] with 76.1%,
83.3% and 0.66, shown in Table 1. SVM-BAC predicted
high and low binding affinity complexes with training
sensitivity and specificity of 0.89 and 0.83, and test sen-
sitivity and specificity of 0.89 and 0.78, respectively.
To avoid the biased results due to the fix partition of
training and test datasets, we also evaluated the perfor-
mance of SVM-BAC using the whole dataset of 216
complexes in terms of 10-fold and 5-fold cross valida-
tions (10-CV and 5-CV). The sensitivity, specificity, and
accuracy of 10-CV were 0.759, 0.842, and 80.09%,
respectively. The sensitivity, specificity, and accuracy of
5-CV were 0.777, 0.842, and 81.01%, respectively. The
accuracies of 10-CV and 5-CV using 216 complexes
were slightly smaller than the test accuracy (83.33%) on
54 complexes.
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Classifier performance of using the ROC curve is
shown in Figure 1. The areas under the ROC curve
(AUC) were 0.86 and 0.76 for SVM-BAC and the SMO
method, respectively. The SMO method is better than
several machine learning algorithms such as Bayesian
logistic regression, Naïve Bayes, Multilayer perception,
K-nearest neighbors, J48 decision tree, and random for-
est [11]. The 14 sequence descriptors identified by
SVM-BAC are given in Table 2. The results suggest that
the 14 features selected by the optimization method
IBCGA were effective in predicting the binding affinity
of complexes.
Furthermore, we evaluated individual effect of these

14 features on prediction accuracy using knock-out ana-
lysis. Removing of an informative feature makes a signif-
icant decrease between 8 and 18% in terms of
prediction accuracy, shown in Figure 2. These results
suggest that the 14 features selected by IBCGA have
substantial effects on discriminating high and low bind-
ing affinity of protein complexes.

Estimating binding affinities
Binding affinity of a heterodimeric protein-protein com-
plex is estimated in terms of dissociation constant (PKd).
The binding affinity dissociation constant depends on
many factors, such as structural features, interface prop-
erties and physiological factors, which are not easily

obtained from primary sequences only. We made an
attempt to estimate the binding affinities using the pro-
mising features of amino acids that were used to predict
high and low binding affinity complexes. There were 200
heterodimeric protein complexes used to estimate the
binding affinities, which covered various ranges of bind-
ing affinity values (Pkd) and functions. Support vector
regression (SVR) was used as a prediction model to esti-
mate binding affinities. Our model was trained using the
14 sequence descriptors and the PKd value. The pro-
posed sequence based model using SVR yielded the cor-
relation coefficient of 0.34 and mean absolute error of
1.4 (Table 3). The correlation result between estimated
binding affinities and actual binding ones is shown in
Figure 3. Mean absolute error for 200 heterodimeric
complexes is shown in Figure 4. The 200 protein-
protein complexes and their respective Pkd values were
reported in Additional file 1: Table S1.
Although we have used an effective set of sequence fea-

tures, the estimation result of binding affinity was not
good enough for the whole dataset, irrespective of their
function types. The result was consistent with the
recently published prediction method of binding affinity
using amino acid sequence feature [22] that they pre-
dicted the binding affinity using 642 sequence-based fea-
tures and obtained poor performance in terms of
correlation coefficient on 135 protein complexes. It is

Figure 1 ROC curve for the SVM-BAC performance evaluation. The area under the ROC curve (AUC) is 0.86 using the training dataset.

Table 1. Performance results of SVM-BAC using 162 training and 54 test complexes

Method Training
10-CV

SEN SPE AUC Test
(n complexes)

SEN SPE AUC

SVM-BAC 85.80% 0.888 0.827 0.86 83.33% (54) 0.888 0.777 0.82

SMO [11] 76.1% 0.756 0.767 0.76 83.3% (30) 0.813 0.857 0.84

SEN (Sensitivity), SPE (Specificity) and AUC (Area under the ROC curve)
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noted that protein-protein binding affinities also rely on
their function types.
Interestingly, when we observed the estimation error

of 200 complexes, we found nearly 150 out of 200 com-
plexes that the mean absolute error was 0.87. The result
revealed that amino acid properties are also influential
factors to estimate the binding affinities for heterodi-
meric complexes with specific functional types. How-
ever, considering all the 200 complexes with various
functional types, the estimation performance was not
satisfactory, consistent with the work [14] for the pre-
diction of binding affinity on diverse protein-protein
interactions.
Although the promising properties of amino acids can

predict high and low binding affinity complexes with

satisfactory results, yet they cannot be used to accurately
estimate the actual binding affinity dissociation constant.
To advance the estimation ability, structural features,
interface properties, physiological factors, and partner
residues information are useful which are not available
from the primary sequences themselves. Partner-aware
prediction of interacting residues in protein-protein
complexes from sequence information has significance
in characterizing the interaction [23].

Physicochemical property analysis
The top-two physicochemical properties according to the
main effect difference (MED) are apparent partition ener-
gies calculated from Chothia index (GUYH850105) [19]
and principal component IV (SNEP660104) [20]. Large

Table 2. The 14 physicochemical properties identified by SVM-BAC

Rank Aaindex_ID Description MED

1 GUYH850105 Apparent partition energies calculated from Chothia index [19] 35.18

2 SNEP660104 Principal component IV [20] 32.71

3 RACS820113 Value of theta (i) (Rackovsky-Scheraga, 1982) [40] 31.48

4 MITS020101 Amphiphilicity index (Mitaku et al., 2002) [41] 31.48

5 MAXF760103 Normalized frequency of zeta R (Maxfield-Scheraga, 1976) [42] 27.77

6 CIDH920104 Normalized hydrophobicity scales for alpha/beta-proteins (Cid et al., 1992) [43] 19.13

7 AURR980119 Normalized positional residue frequency at helix termini C"’ (Aurora-Rose, 1998) [44] 17.90

8 TANS770103 Normalized frequency of extended structure (Tanaka-Scheraga, 1977) [45] 16.66

9 CHOP780101 Normalized frequency of beta turn (Chou-Fasman,1978a) [21] 12.96

10 PALJ810107 Normalized frequency of alpha-helix in all-alpha class (Palau et al., 1981) [28] 12.96

11 QIAN880116 Weights for beta-sheet at the window position of -4 (Qian-Sejnowski, 1988) [46] 12.96

12 PALJ810110 Normalized frequency of beta-sheet in all-beta class (Palau et al., 1981) [28] 10.49

13 TAKK010101 Side-chain contribution to protein stability (kJ/mol) (Takano-Yutani, 2001) [47] 9.25

14 Nm-Protein Average medium-range contacts folding [17] 4.32

Figure 2 Difference accuracies of individual physicochemical properties using knock-out analysis.
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value of MED means the great contribution to prediction
performance. An influential secondary structure related
property, normalized frequency of beta turn (CHOP780101)
[21] was at rank 9. The three physicochemical properties
are further analyzed and discussed below. Table 4 presents
the values of 20 amino acids for the three physicochemical
properties, the amino acid compositions in high and low
binding affinity complexes, and amino acid compositional
difference between the two classes.
The property of apparent partition energies
The property of GUYH850105 is described as “Apparent
partition energies calculated from Chothia index [19]”.
Chothia index is based on calculating the ratio of buried
molar fractions for each amino acid in globular proteins.
Guy proposed Salvation energies calculated from vapour
pressure of side chain analogues R (ΔSE) which are
highly correlated (R = 0.86) with Chothia apparent
transfer energy scale [19]. This property describes the
buried hydrophobicity in proteins.
The buried hydrophobicity nature of protein-protein

interactions has been extensively studied. Protein-protein
binding directly correlates with total buried hydrophobic
surface area and the binding energy increases with the
increment of interfacial buried surface area [18]. Muta-
tional studies on free energy change on mutants Δ (ΔG0)
correlated with hydrophobic buried area. Upon adding
hydrophobic buried surface at their interface leads to
gaining of free energy Δ (ΔG0) = -15 ± 1.2 cal/molA2.
Statistical and experimental estimations state that the
increase of hydrophobic buried surface enhances the pro-
tein binding affinity [24,25]. We thus calculated apparent
partition energies for hydrophobic amino acids in our
dataset according to the property [19]. We found that the

average apparent partition energies for high binding affi-
nity complexes are slightly larger than those for low
binding affinity complexes that mean of apparent parti-
tion energies obtained for high and low binding affinities
were -55.10 and -60.87, respectively. This property analy-
sis declared the importance of hydrophobic amino acid
residues at buried region which is one of the major influ-
ential factors to increase the binding strength of an inter-
action. Hydrophobic core in high binding affinity
complex PDB_ID: 1MAH as an example is shown in
Figure 5. The analysis results are consistent with the pre-
vious studies of binding affinity.
The property of principal component analysis IV
The property of SNEP660104 was described as “Relations
between chemical structure and biological activity in
principal component analysis IV”. Sneath calculated the
correlations of amino acids for the use in principal com-
ponent analysis. Four vectors (Vectors I, II, III and IV)
were derived from the 20 amino acid correlations [20].
These four vectors were interpreted as different proper-
ties, in which Vector IV represents hydroxythiolation.
Hydroxythiolation property has an ability to form hydro-
gen bonds.
Hydrogen bonds and salt bridges are one of the major

contributors to protein-protein interactions. Polar and
non-polar side chains significantly contribute to stabiliza-
tion of the complexes. Polar side chains stabilize the pro-
tein complexes through hydrogen bonds. In general,
protein interfaces are more hydrophilic than interior resi-
dues and form more hydrogen bonds at interfaces [26].
In trypsin-pancreatic trypsin inhibitor, insulin dimer and
hemoglobin alpha beta dimer complexes, most of the
hydrogen bonds are charged; opposite charges are more
favorable to hydrogen bond formation, and 86% of buried
polar atoms are favorable to form hydrogen bonds.
Chothia et al. reported mean of hydrogen bonds per
100 A2 ΔASA, and maximum and minimum numbers of
hydrogen bonds in heterodimeric complexes were 1.89
and 0.29, respectively. Xu-et al analyzed hydrogen bond
and salt bridge specificity, and charge distribution at pro-
tein-protein interfaces [27].
We measured the numbers of hydrogen bonds at pro-

tein-protein interfaces in high and low binding affinity
complexes. The average numbers of hydrogen bonds in
high and low binding affinity complexes were 22.83 ±
19.70 and 19.42 ± 17.91, respectively. The hydrogen
bonds at their interfaces were more enriched in high
binding affinity complexes than in low binding affinity
complexes. Contribution of these hydrogen bonds in

Table 3. Estimation performance of SVR using Jackknife test on 200 heterodimeric complexes

Estimation method Features (sequence descriptors) Coefficient correlation (R) Mean absolute error (Pkd)

SVR 14 0.34 1.4

Figure 3 Estimation performance of jackknife test using the
SVR-based method for 200 heterodimeric complexes.
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overall protein-protein interactions is various and crucial
to pinpoint. The numbers of hydrogen bonds at inter-
faces in high and low binding affinity complexes are
shown in Figure 6.
The property of normalized frequencies of beta turns
The property of CHOP780101 is described as “Normal-
ized frequencies of beta turn”. Beta bends/ turn is formed

by the polypeptide chain folds back on itself by 180
degrees. Beta turns shows three conformations based on
their phi, psi values, and two major types exists i.e., types
1 and 2 [28]. Amino acid preferences are different in
each type. In type 2 beta turns Gly possess a major pre-
ferences at position i+2 and i+3. Usually, beta turns pro-
mote antiparallel beta sheets, which can stabilize the

Figure 4 Mean absolute error of Pkd (binding affinity dissociation constant) for 200 heterodimeric complexes.

Table 4. Amino acid composition (AAC) of high binding affinity (HBA) and low binding affinity (LBA) complexes and
three physicochemical properties

Amino acid HBA_AAC (%) LBA_AAC (%) Composition difference (%) aGUYH850105 bSNEP660104 cCHOP780101

Ala 7 6.8 0.2 -0.27 -0.062 0.66

Arg 4.2 4.8 -0.6 2 -0.167 0.95

Asn 4.8 4.5 0.3 0.61 0.166 1.56

Asp 5.2 5.9 -0.7 0.5 -0.079 1.46

Cys 2.6 1.7 0.9 -0.23 0.38 1.19

Glu 3.9 4.2 -0.3 1 -0.025 0.98

Gln 5.7 7 -1.3 0.33 -0.184 0.74

Gly 7.8 6.6 1.2 -0.22 -0.017 1.56

His 2.1 2.3 -0.2 0.37 0.056 0.95

Ile 4.7 5.3 -0.6 -0.8 -0.309 0.47

Leu 8.2 9 -0.8 -0.44 -0.264 0.59

Lys 5.7 6.4 -0.7 1.17 -0.371 1.01

Met 1.7 2.3 -0.6 -0.31 0.077 0.6

Phe 3.5 4 -0.5 -0.55 0.074 0.6

Pro 4.9 4.7 0.2 0.36 -0.036 1.52

Ser 8.6 6.7 1.9 0.17 0.47 1.43

Thr 6.7 6 0.7 0.18 0.348 0.96

Trp 1.7 1.4 0.3 0.05 0.05 0.96

Tyr 3.9 3.5 0.4 0.48 0.22 1.14

Val 7 6.9 0.1 -0.65 -0.212 0.5
aGUYH850105 = Apparent partition energies.
bSNEP660104 = Principal component analysis IV.
cCHOP780101 = Normalized frequencies of beta turn.
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secondary structure and these beta sheets are involved in
protein interactions. Beta sheet interactions are involved
in the binding of Ras oncoproteins to their receptors, sig-
nificant part occurred in cell signaling pathway [29,30],
immune system, and HIV-1 proteases and inhibitors [31].
Non-regular structures such as turns, helix and loops at
interfaces are large groups in heterodimeric complexes
and also have large percentages of interface residues at
protein-protein complexes belonging to non-regular
regions only [32].
To examine the beta turn participation in heterodi-

meric complexes, we calculated the number of beta turns
in the used dataset. Totally, 4,528 beta turns participate
in the 216 heterodimeric complexes. On average, every
high and low binding affinity complex possesses 23.78 ±
16.89 and 18.27 ± 12.42 beta turns, respectively. Notably,

the mean number of beta turns in high binding affinity
complexes is significantly larger than that in low binding
affinity complexes where the p-value of student’s t-test is
0.003. The difference accuracy of the beta turns property
CHOP780101 was 12.35% using the knock-out analysis
(Figure 2). Though, there are several factors influencing
the protein binding affinities, beta turn is one of the most
important factors in binding affinity prediction. A better
insight into beta turn would have the potential to
improve our current protein structure analysis and pre-
diction methods. Beta turn formation in the example
complex PROMMP-2/TIMP-2 is shown in Figure 7.
All 14 physicochemical properties and their amino

acid composition preferences were calculated for high
and low binding affinity complexes, reported in Addi-
tional file 2: Table S2.

Figure 5 Surface hydrophobicity of 1MAH. The color of the surfaces represents the level of hydrophobicity. The blue, white, and brown colors
represent low, mediate, and high hydrophobicity, respectively. (a) Secondary structures of 1MAH (b) Surface hydrophobicity of 1MAH. Protein
structures are drawn using Discovery studio 4.0.

Figure 6 The numbers of hydrogen bonds at interfaces in heterodimeric complexes. X-axis denotes the identification numbers of high
and low binding affinity complexes. Y-axis denotes the number of hydrogen bonds at interfaces in a protein complex.
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Significance of H-bonds and beta turn properties in
predicting high and low binding affinity complexes
We estimated the individual effects of H-bonds and beta
turn properties in the binding affinity classification by
knocking out one of the two corresponding properties,
SNEP660104 and CHOP780101. The difference accura-
cies for the H-bonds and beta turn properties are
12.96% and 12.35%, respectively (Figure 2). Elimination
of these two features decreases the overall prediction
accuracy of 14.81%. The result suggests that the H-bond
and beta turn properties equally contribute to predict
high and low binding affinity complexes.

Conclusions
Characterizing the physicochemical properties influen-
cing the protein binding affinity has a significant role in
protein-protein interaction studies. We developed amino
acid based predictor named as SVM-BAC to classify the
high and low binding affinity complexes by identifying
14 informative properties. Moreover, the SVR-based
prediction method using the 14 features was investigated
to examine the ability of predicting the binding affinities
for the whole set of complexes of various functional
types. Our model estimated the binding affinities (Pkd)
of 200 heterodimeric complexes with mean absolute
error of 1.4 and it can be further refined by considering
the categorization of functional types. Further physico-
chemical analysis revealed that buried hydrophobicity,
beta turns, and hydrogen bonds are influential factors in
protein binding affinity. The property analysis would be
helpful to understand the underlying mechanism in the
protein binding affinities. Though, protein binding affi-
nities depend on various factors, we attempted to find

out the contribution of sequence properties in binding
affinity prediction.

Methods
Datasets
We compiled a dataset of 262 high and low binding affi-
nity complexes from previous literature [11,18]. Protein
complexes possess diverse functions and molecular
weights. Protein complexes with Kd < 10-8 M are
regarded as high binding affinity class and those with
Kd ≥ 10-8 are considered as low binding affinity class.
We extracted the protein sequences from the PDB data-
base [33]. After removing uncertain entries and deleting
the sequences if sequence length is less than 50 amino
acids, a balanced dataset contains 216 heterodimeric
protein complexes including 108 positive (high binding
affinity) and 108 negative (low binding affinity) samples.
Since each amino acid is significant and possesses the
ability to change binding free energies [34], we did not
apply the redundancy criterion to decrease the sequence
identity and thus considered all the 216 complexes. We
randomly selected 162 samples (75%) as training and 54
samples (25%) as test sets. We utilized 531 amino acid
sequence based features from AAindex and 49 proper-
ties from literature [16,17].
For estimating the binding affinity value (Pkd), we used

the same 216 heterodimeric complexes which were used
to predict the high and low binding affinity complexes.
There were 16 complexes removed from the 216 com-
plexes because there is no absolute value of binding affi-
nity available. Finally, 200 protein complexes have been
considered for the estimation experiment. Binding affi-
nity values were collected from different sources [35,36].

Figure 7 Structure of PROMMP-2/TIMP-2 COMPLEX (PDB code 1GXD). Left: View of the enzyme-inhibitor complex complete structure. Right:
A close-up view of type-2 beta turn from the whole complex structure and arrangement of amino acids shown as balls-and-stick model.
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These binding affinity values are in a diverse range from
μM to nM, i.e. from 10-3 to 10-15 M. The 200 complexes
possess diverse functional groups such as antibody/anti-
gen, enzyme-inhibitor, enzyme-substrate, G-protein con-
taining, receptor-containing and other enzymes.

Physicochemical properties
Kawashima and Kanehisa developed the AAindex database
which collects numerical indices representing physico-
chemical and biochemical properties of amino acids [16].
In our work we used 531 physicochemical properties from
AAindex and 49 additional features from protein folding
related sequence descriptors [17] as candidate features to
construct a SVM-based classifier for the discrimination of
high and low affinity binding proteins. The original
sequences of the selected datasets were transformed into
the numerical indices according to the each feature’s cor-
responding values of amino acids. The numerical values of
the features were normalized to the scale [-1, 1] for using
SVM. When translating into machine learning lexicon for
predicting protein functions, variable-length sequences
may arise the problem of encoding the feature vector. It is
important for classification that the feature vector is for-
mulated into a feature vector with constant length by fea-
ture generation. In this work, we used 580 sequence
descriptors for encapsulating the global information about
proteins of variable length in a fixed length formation.
Each of the 580 features was derived from the averaged
value of a specific property of amino acids, which was
independent of the sequence order of two proteins. The
aims of this work are to identify the informative properties
of amino acids and then predict the binding affinity in het-
erodimeric complexes. So, order-dependent sequence fea-
tures were not used in the proposed method.
The procedure of feature representation for the 580

physicochemical properties is described as follows:
Step 1: Collect the high and low binding affinity

sequences from the training dataset.
Step 2: Calculate the composition w(ai) of a complex

for the ith amino acid ai of 20 amino acids to encode
the protein sequence of variable length into the feature
vector of length 580.
Step 3: Calculate the feature value of the pth physico-

chemical property, TPCP(p), of a protein complex,
where p = 1, 2, ..., 580.

TPCP(p) =
∑20

i=1 w (ai) .PCPp(ai) (1)

where PCPp(ai) is the value of the ai amino acid of the
pth physicochemical property.

Inheritable bi-objective combinatorial genetic algorithm
(IBCGA)
In this work, the inheritable bi-objective combinatorial
optimization genetic algorithm (IBCGA) [15] is used for

the feature selection. The feature selection is a combina-
torial optimization problem C(n, m). IBCGA selects a
small set of m features from a large number of n candi-
date features while optimizing the prediction perfor-
mance. IBCGA is an efficient global optimization
algorithm comprising an intelligent evolutionary algo-
rithm which uses orthogonal array crossover to effi-
ciently solve large parameter optimization problems.
The inheritable mechanism can conserve the features
that can improve the predication accuracy in the search-
ing procedure.
In using IBCGA, the parameter setting of SVM and fea-

ture selection were encoded into binary genes to be opti-
mized simultaneously. In this work, the commonly used
genetic algorithm (GA) terms are gene and chromosome,
represent as GA-gene and GA-chromosome for the dis-
crimination. The GA-chromosome consists of n = 580
binary genes bi for selecting informative features and two
4-bit GA-genes for tuning the parameters C and g of
SVM. The ith property is excluded from the SVM classi-
fier if bi= 0, otherwise it will be included. This method
can encode the 16 values of g and C ∈ {2-7, 2-6, ..., 28}. In
the SVM classifier, digitalized and normalized protein
sequences in the training data set were used as input.
In this work, the range of the size of candidate feature set
selected by IBCGA is from rstart = 10 and rend= 20. The
feature selection algorithm IBCGA is described as
follows.
(Initialization) randomly generate an initial population

of individuals.
Step 1: (Evaluation) Evaluate the fitness value of all

individuals using the fitness function that is the predic-
tion accuracy in terms of 10-fold cross validation.
Step 2: (Selection) Use a conventional method of tour-

nament selection that selects the winner from two ran-
domly selected individuals to generate a mating pool.
Step 3: (Crossover) Select two parents from the mating

pool to perform orthogonal array crossover operation.
Step 4: (Mutation) Apply a conventional mutation

operator to the randomly selected individuals in the new
population. Mutation is not applied to the best indivi-
duals to prevent the best fitness value from deterioration.
Step 5: (Termination test) If the stopping condition

(reaching a prespecified number of generations) for
obtaining the solution is satisfied, then output the best
individual as the solution. Otherwise, go to Step 2.
Step 5: (Inheritance) If r <rend,randomly change one

bit in the binary GA-genes for each individual from 0 to
1; increase the number r by one, and go to Step 2.
Otherwise, stop the algorithm.

Binding affinity prediction method SVM-BAC
After the feature selection (m features) and parameter
settings (g and C) of SVM are done by using IBCGA,
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the binding affinity prediction method SVM-BAC can be
implemented. SVM is an effective method used in the
two-class classification and regression problems [37].
SVM works implicitly in the feature space by only com-
puting the corresponding kernel K(xi, xj) between any
two objects xi and xj:

K
(
xi, xj

)
= �(xi)T�

(
xj

)
(2)

where �(x) is used as a mapping function. Support
vector regression (SVR) has an ability to interpret the
property values from a number of samples in high
dimensional space. Due to its effective regression abil-
ities, SVR has been used for many biological prediction
problems. This work used the following equations to
measure the performance evaluation.

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Sensitivity =
TP

TP + FN
(4)

Specificity =
TN

TN + FP
(5)

MCC =
TP × TN − FP × FN√

(TP + FP) (TP + FN) (TN + FP) (TN + FN)
(6)

Where TP is true positive; TN is true negative; FP is
false positive; FN is false negative; MCC is Matthews
Correlation Coefficient.

Calculation of H-bonds and beta turns
Hydrogen bonds and beta turns were calculated using
the PDB sum database [38] and DSSP webserver [39].
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