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Abstract

Background: Next-generation sequencing (NGS) technology has transformed metagenomics because the high-
throughput data allow an in-depth exploration of a complex microbial community. However, accurate species
identification with NGS data is challenging because NGS sequences are relatively short. Assembling 16S rDNA
segments into longer sequences has been proposed for improving species identification. Current approaches,
however, either suffer from amplification bias due to one single primer or insufficient 16S rDNA reads in whole
genome sequencing data.

Results: Multiple primers were used to amplify different 16S rDNA segments for 454 sequencing, followed by 454
read classification and assembly. This permitted targeted sequencing while reducing primer bias. For test samples
containing four known bacteria, accurate and near full-length 16S rDNAs of three known bacteria were obtained.
For real soil and sediment samples containing dioxins in various concentrations, 16S rDNA sequences were
lengthened by 50% for about half of the non-rare microbes, and 16S rDNAs of several microbes reached more
than 1000 bp. In addition, reduced primer bias using multiple primers was illustrated.

Conclusions: A new experimental and computational pipeline for obtaining long 16S rDNA sequences was
proposed. The capability of the pipeline was validated on test samples and illustrated on real samples. For dioxin-
containing samples, the pipeline revealed several microbes suitable for future studies of dioxin chemistry.

Background
Metagenomics has revolutionized microbiology by
directly studying environmental microbes that are
mostly unculturable [1,2]. Next-generation sequencing
further advances this field because high-throughput data
allow an in-depth examination of a complex microbial
community [3,4]. Sequencing of phylogenetic marker
genes (e.g. 16S rDNA) is a popular approach for identi-
fying microbial species. However, it is challenging with

NGS data because NGS sequences, often called reads,
are relatively short [5]. For example, popular 454 and
Illumina reads are ~400 and 250 bp, respectively, which
are much shorter than the ~1500 bp 16S rDNA
sequences. For short NGS reads, taxonomy classification
is less confident [6]. Common classification tools (e.g.
RDP classifier [7], SINA [8], and MG-RAST [9]) often
determine taxonomy only to the genus or even higher
levels for NGS reads.
To tackle the challenges of studying metagenomics

using short NGS reads, it has been proposed that differ-
ent 16S rDNA segments can be assembled into full-
length 16S rDNA [10-12]. In two studies, 16S rDNA
segments were extracted from whole genome shotgun
sequencing data for assembly [10,11]. Although the
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approach is free of primer bias, only a tiny portion
(~0.1%) of the data contained 16S rDNA segments.
Another approach is to amplify whole 16S rDNA genes
using a single primer followed by shotgun sequencing
and assembly [12]. Like all targeted sequencing
approaches, most of the data obtained can be used.
However, primer bias can distort the microbial commu-
nity structure significantly [13,14].
In this work, a pipeline was proposed to overcome the

drawbacks of current approaches for obtaining long 16S
rDNA sequences using NGS data. In the pipeline (Figure 1),
multiple primers were used to amplify different 16S rDNA
segments for sequencing. The NGS reads were then classi-
fied into genera, and reads of each genus were assembled
into a long 16S rDNA sequence. This strategy maintained
the advantage of targeted sequencing and reduced primer
bias because it was less likely for a microbe to be missed by
all primers. Another advantage was the ability to compare
results using different primers for a more reliable conclu-
sion. However, there were many practical challenges in
implementation. For example, a 16S rDNA gene might not
be amplified by all primers; therefore, a full-length 16S
rDNA sequence might not be obtained. Moreover, short
NGS reads could be misclassified, leading to false assembled
sequences.
To assess the feasibility of the current pipeline, a proof-

of-concept experiment was conducted on test samples
containing some known bacteria. This permitted pipeline
adjustments for generating accurate and long 16S rDNA
sequences. After ensuring the capability of the pipeline, it
was applied to real samples that were polluted with diox-
ins. To our knowledge, this is the first metagenomic study
of dioxin-containing samples using NGS technology.

Methods
Sample preparation
Three test samples (S1-S3) and seven real samples (S4-S10)
were prepared in this study (Table 1). S1 was a solution
containing only four bacteria: Legionella pneumophila,

Chryseobacterium, Pseudomonas, and Bacillus. Legionella
pneumophila (BCRC 17854, from Food Industry Research
and Development Institute, Taiwan) was purchased. The
remaining bacteria in S1 were cultured from S2 and S3
using Tryptocase Soy Agar (TSA) plates. S2 was a regular
soil sample, and S3 was sediment from a dioxin-polluted
site in Taiwan [15]. Bacteria cultured from S2 were identi-
fied as Chryseobacterium and Pseudomonas, and from S3
as Bacillus using BioLog (BioLog GEN III microtest sys-
tem, BioLog Inc., U.S.A.). Cultured bacteria were added
back to the source samples, respectively, and all of them
were added to S1. Note that the purchased Legionella
pneumophila was also added to S2 and S3 as a control.
Samples S4-S9 were obtained from various locations in the
same dioxin-polluted site. S4 and S5 were from a penta-
chlorophenol (PCP) factory; S6 and S7 were sediments
from a seawater pool; S8 and S9 were from another factory.
These samples contained dioxins, heavy metals (mainly
mercury), and chemicals in various concentrations [15].
S10 was collected from the exterior of the dioxin-polluted
site. The order of dioxin concentrations in real samples
was S4>S5>S6>S7>S8>S9>S10.

Bacteria identification using BioLog
For S2 and S3, 10 g of samples were vigorously mixed
with 100 mL phosphate buffered saline. The homoge-
neous mixture was allowed to stand for one minute.
Supernatants (10 mL) were then taken for 10x serial
dilution. For each dilution, 200 μL diluted solution were
streaked onto a TSA plate and cultured for 48 hours at
30°C. Cultured bacteria were further grown on BioLog
BUG+B agar for identification following the manufac-
turer’s protocol. The BioLog system comprised 71
carbon sources and 23 chemical sensitivity tests for
identifying microorganisms.

DNA extraction and 16S rDNA amplification
From a minimum 1 g of soil, DNA was isolated using the
PowerSoil® DNA Isolation Kit (MO BIO Laboratories

Figure 1 Pipeline for obtaining long 16S rDNA for species identification.
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Inc., U.S.A.) according to manufacturer instructions.
Purity and DNA yield were assessed using spectrophoto-
metry (NanoDrop, Thermo Fisher Scientific, Canada)
(Additional file 1: Table S1). Full-length 16S rDNAs were
PCR-amplified using each of the six primer pairs
reported previously [6]. Each 25 μL PCR reaction mixture
consisted of genomic DNA (50 ng), 22 μL Super Therm
Gold Master Mix (BIONOVAS Biotechnology Co., USA),
1 μL forward primer (10 uM), and 1 μL reverse primer
(10 uM). PCR was performed in a G-Storm PCR machine
(G-Storm, United Kingdom) with the following cycling
conditions: an initial denaturation at 95°C for 6 min, 40
cycles of denaturation at 95°C for 30 s, annealing at 50°C
for 1 min, and extension at 72°C for 1 min. A final exten-
sion was performed at 72°C for 10 min. PCR products
were analyzed using 2% agarose gel electrophoresis. Sizes
of the amplified 16S rDNA segments using six primers
were estimated as 527 bp (8F-534R), 456 bp (343F-798R),
410 bp (517F-926R), 331 bp (784F-1114R), 491 bp (917F-
1407R), and 443 bp (1099F-1541R), respectively.

454 sequencing
The 16S rDNA libraries were amplified via emulsion-PCR
on a thermocycler (G-Storm, United Kingdom) according
to the Roche 454 em-PCR amplification manual - Lib L
(454 Life Sciences, U.S.A.). Products were sequenced in a
GS Junior system (Roche Diagnostic, U.S.A.) at the National
Cheng Kung University, Taiwan. Samples were barcoded
and pooled (S1-S3, S4-S7, and S8-S10 in the first, second,
and third runs, respectively) for sequencing. Because S4 and
S5 did not have enough reads in the second run, the
remaining S4 and S5 samples were added to the third run.

Read classification and assembly
To avoid sequencing bias at primer binding sites, primer
parts were removed from 454 raw reads by trimming the

first and last 25 bp of all reads. Only trimmed reads as long
as 200 bp were used for analysis. Reads were classified into
genera using RDP Classifier [7] (v2.5, default parameters).
A read with a ≥80 classification score was called a confident
read. A genus containing at least 10 confident reads was
called a confident genus. For each confident genus, all con-
fident reads were assembled using Newbler [16] (v2.7,
options: -ml 100 -mi 98). For a genus containing two or
more distinct 16S rDNA genes, assembly might discontinue
at the distinct regions, resulting in multiple contigs branch-
ing out from a base contig. In this case, the branching con-
tig with a read coverage <10 (adjustable) was discarded. For
each remaining branching contig, the base contig was cop-
ied and concatenated, leading to a longer contig. It was also
possible that two slightly different 16S rDNA sequences
were merged into one contig during assembly. When only
one contig was output, constituting reads were examined
for positions containing a minor nucleotide that appeared
≥10 times. A sequence pattern at recognized positions was
kept if it also appeared ≥10 times. If more than one
sequence pattern survived processing, the contig was dupli-
cated, and each sequence pattern was introduced to the
positions, resulting in multiple differing contigs.

Species identification
For each confident genus, the longest assembled contig
was aligned against microbial 16S rDNA sequences
from the RDP database [7] (release 11) using BLAST
(v2.2.27+, options: -evalue 0.01 -perc_identity 97). The
best alignment, i.e., one with the highest score, was cho-
sen and the corresponding species was considered a spe-
cies of the genus if the alignment identity was ≥97%.

Sanger sequencing
To validate identified bacteria, additional primers were
designed (Additional file 1: Table S2) to amplify full-length

Table 1. Statistics of reads, genera, and contig lengths of ten samples

Sample Raw reads Trimmed reads Confident reads Total genus Confident genus No. of contigs lcl/mrl.
≥1.5

lcl/mrl
≥2

lc identity
≥97%

S1 31,035 29,170 27,423 8 4 4 4 3 4

S2 38,100 35,007 30,242 144 28 23 15 6 11

S3 39,881 35,456 10,909 191 62 53 28 12 27

S4 91,44 4,590 478 65 9 9 4 3 3

S5 25,314 16,857 3,059 218 38 34 24 12 14

S6 14,709 8,347 854 117 18 13 5 2 2

S7 13,810 8,262 983 128 20 17 4 3 4

S8 11,379 9,214 2,145 230 47 37 18 5 18

S9 9,924 8,277 1,374 193 33 30 13 5 16

S10 12,084 8,216 1,685 124 23 20 11 4 7

A confident read is one with a ≥80 classification score. A genus is counted when there is a confident read. A confident genus is one with ≥10 confident reads.
Confident reads of each confident genus were assembled and the longest contig (lc) analyzed. The last column shows the number of longest contigs with a
≥97% alignment identity to the 16S rDNA references. Abbreviations: longest contig length (lcl), mean read length (mrl).
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16S rDNA of Legionella, Chryseobacterium, and Pseudo-
monas. PCR cycling conditions were as follows: (1) at 95°C
for 5 min; (2) 30 cycles at 95°C for 30 s, 50°C for 30 s, and
72°C for 30 s; and (3) 72°C for 10 min. Amplified products
were purified using the FAVORGEN cleanup kit (Biotech
Corp., Taiwan) and sequenced using the BigDye Termina-
tor Sequencing Kit (Applied Biosystems, U.S.A.). Sequen-
cing products underwent electrophoresis in an ABI
PRISM 3500 genetic analyzer (Applied Biosystems). For
each ambiguous base call, the flowgram was checked
manually, and the base with a higher peak was chosen.

Comparison of microbial communities
For each sample, reads were clustered into operational
taxonomic units (OTUs) using the mothur package [17]
(v1.32) as follows. First, reads were aligned (command:
align.seqs, options: align=needleman, flip=t) to microbial
16S rDNA sequences from the RDP database. Reference
sequences that contained more than 10 ambiguous
nucleotides (N’s) were filtered. Second, pairwise dis-
tances between reads were calculated (command: dist.
seqs, option: cutoff = 0.1). Based on pairwise distances,
reads were then clustered into OTUs (cluster option:
method=furthest, cutoff = 0.03). Finally, the representa-
tive sequence of each OTU was determined (command:
get.oturep).
Microbial communities were compared using Fast

UniFrac [18] (v1.5.3). First, OTU representatives of all
samples were collected and labeled. Second, representa-
tive sequences were aligned to 16S rDNA references,
and their pairwise distances were calculated as in the
OTU analysis. Third, a phylogenetic tree of these
sequences was constructed using mothur (command:
clearcut). Based on the tree, distances between commu-
nities were calculated using Fast UniFrac. Weighted
measurement of distances, i.e., considering numbers of
reads reflecting OTU representatives, was used. Dis-
tances between samples were visualized after principal
component analysis; results were plotted using R pack-
age [19] (v3.0.1).
Microbial communities were also compared according

to composition of microbes at six taxonomic levels:
kingdom, phylum, class, order, family, and genus. For
each level, percentages of confidently classified taxo-
nomies were calculated for all real samples. The top 15
taxonomies with the highest mean percentages across all
samples were shown in a stacked histogram. Note that
Fast UniFrac analysis was conducted for each primer,
whereas reads amplified using all primers were lumped
together for calculating microbial compositions.

In-silico evaluation
To evaluate in-silico sensitivity of six primers, known
bacterial 16S rDNA sequences from the RDP database

were used as amplification targets. For each primer,
whether a 16S rDNA sequence could be amplified was
determined using ePCR [20] (v2.3.9; fahash options: -w
3; re-PCR options: -n 2; insert size: 450-550 for primer
A and E, 350-500 for B and F, 350-450 for C, and
250-350 for D). Some 16S rDNA sequences, especially
the shorter ones, could not be amplified simply because
they did not extend to the primer binding sites. To con-
sider such limitation, the span of each 16S rDNA
sequence was determined via its multiple sequence
alignment. The sensitivity of each primer was then
defined as ratio of the amplifiable sequences to
sequences extending to the primer binding sites.
For each 16S rDNA sequence, the amplified segments

were further assembled if they overlap by at least 10 bp; the
number of assembled sequences as long as 1000 bp was
counted. In addition, the number of 16S rDNA sequences
that covered the binding sites of four consecutive primers
(e.g., A-D or B-E) was counted. For those 894701
sequences, assembly of the amplified segments might reach
1000 bp or longer. The fraction of long assembled
sequences was then calculated as ratio of the two numbers.
For comparing primer bias, full-length 16S rDNA

sequences were first selected. A 16S rDNA reference
was considered as full-length if it covered the position
of the primer (27F 5’-AGAGTTTGATCCTGGCTCAG-
3’; 1492R 5’-GGTTACCTTGTTACGACTT-3’) used in a
previous study [12]. The sensitivity of that primer on
the 156890 full-length 16S rDNA sequences was deter-
mined again using ePCR. In addition, the fraction of
full-length 16S rDNA sequences that could be amplified
by at least one of the six primers was calculated based
on the ePCR results.

Results
Capability of the pipeline on test samples
a. Bacteria broth (S1)
Among test samples, S1 was the least complex and con-
tained only four bacteria: Legionella pneumophila, Chry-
seobacterium, Pseudomonas, and Bacillus. Only Legionella
was known to the species level because it was purchased.
The remaining bacteria were cultured from S2 and S3,
and their identities were experimentally determined to the
genus level.
RDP classifier put the 29170 trimmed reads into 58

genera (data not shown), including the four known bac-
teria. Only eight genera remained when 1747 (6.0%)
non-confident reads (with a <80 classification score)
were excluded (Table 1). Among the eight genera,
known bacteria had a much higher number (>2000) of
confident reads than other false bacteria (≤6). Thus, a
confident genus was defined as one with at least 10
confident reads; only confident genera were further
analyzed.
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For each known bacterium, all six primers (A-F) suc-
cessfully amplified the 16S rDNA gene (Additional file
1: Table S3). However, amplifications were not uniform
across primers. For example, 38.3% of the confident
reads of Legionella were amplified using primer C,
whereas only 3.1% were amplified using primer B. For
each confident genus, confident reads were assembled
using Newbler. Except for Bacillus, Newbler generated a
contig at least twice as long as the mean read length
(Table 1). Contigs of Chryseobacterium and Pseudomo-
nas reached 1483 and 1468 bp (Table 2), respectively,
close to the full length of a common 16S rDNA gene.
To validate the assembly, 16S rDNA of the four bac-

teria, excluding Bacillus, were subjected to Sanger
sequencing. The 16S rDNA sequences obtained were
832, 1126, and 1529 bp for Legionella, Chryseobacter-
ium, and Pseudomonas (Table 2), respectively. Contigs
of Chryseobacterium and Pseudomonas were 100% iden-
tical to corresponding Sanger sequences (Table 2). The
Legionella contig differed from the Sanger sequence by
only one gap, which may be a homopolymer error of
454 sequencing.
To identify the species of the four bacteria, contigs

were aligned to 16S rDNA references from the RDP
database using BLAST. The species corresponding to
the best hit with a ≥97% alignment identity was assigned
to each bacterium. Of these hits, the Legionella contig
was best aligned to the 16S rDNA of Legionella pneu-
mophila, which was indeed the purchased species. The
other three bacteria were identified as Chryseobacterium
sp. WG4, Pseudomonas monteilii, and Bacillus
licheniformis.
b. Soil with spiked-in bacteria (S2)
Sample S2 was soil with three spiked-in bacteria: Legio-
nella pneumophila, Chryseobacterium, and Pseudomonas.
RDP classifier put the 30242 confident reads into 144
genera, of which 28 genera were confident (Table 1).
Among the 29976 confident reads in the 28 confident

genera, 28482 (95.0%) were classified to the genera of the
three spiked-in bacteria. For the three bacteria, Newbler
generated contigs longer than 1000 bp (Table 2). The
Chryseobacterium contig was 100% identical to the San-
ger sequence. For Pseudomonas, only one mismatch and
one gap occurred in the 1176 bases aligned to the Sanger
sequence. For Legionella, only two gaps were observed in
the 808 aligned bases. The three bacterial species identi-
fied using BLAST were the same as in S1.
Only 1492 confident reads were classified to the

remaining 25 genera, and Newbler generated contigs
twice as long as the mean read lengths for only three
genera (Table 1): Clostridium sensu stricto, Sporacetigen-
ium, and Bacillus. The three genera ranked 3rd, 4th, and
6th in number of confident reads (containing 198, 186,
and 88 reads), respectively. Although lengths of the 16S
rDNA sequences were not doubled in most cases, they
were increased by at least 50% for 12 of the 25 genera
(Table 1). Species identification was still possible for
some assembled contigs. Among the 25 genera, the spe-
cies of eight genera could be determined because their
contigs were aligned with a ≥97% identity.
c. Sediment with spiked-in bacteria (S3)
Sample S3 was sediment with two spiked-in bacteria:
Legionella pneumophila and Bacillus. Among the 35456
trimmed reads, only 10909 (30.8%) reads were classified
confidently (Table 1). Compared to S2, a lower fraction
(26.1% v.s. 95.0%) of confident reads in confident genera
were from spiked-in bacteria. Assembled contigs of
spiked-in Legionella and Bacillus were 1487 and 845 bp,
respectively (Table 2). The Legionella contig was fully
aligned to the Sanger sequence with only two gaps
(Table 2).
Among the remaining 60 genera, Newbler generated a

contig at least 1.5 and 2 times longer than the mean
read length for 28 and 12 genera (Table 1), respectively.
Sorted by number of confident reads, all top 15 genera
(with ≥143 reads) had a contig at least 50% longer than

Table 2. Statistics of contigs, Sanger sequences, and their alignments

(a) Contig lengths of four known bacteria in three test samples.

Sample Length of longest contig (bp)

Legionella Chryseobacterium Pseudomonas Bacillus

S1 780 1483 1468 479

S2 1143 1052 1193 N.A.

S3 1487 N.A. N.A. 845

(b) Results of BLAST alignments between each contig and the Sanger sequence.

Genus Sanger (bp) Identity (%); mismatch; gap

S1 S2 S3

Legionella 832 99.8; 0; 1 99.6; 0; 2 99.6; 0; 2

Chryseobacterium 1126 100; 0; 0 100; 0; 0 N.A.

Psuedomonas 1529 100; 0; 0 99.8; 1; 1 N.A.
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the mean read length. For some genera, fewer confident
reads still resulted in a long contig. For example, the 22
confident reads of Clostridium XI were assembled into a
795 bp contig, two times longer than the mean read
length (356 bp). Of the 60 microbes, the species of 26
could be determined using assembled 16S rDNA
sequences.

Performance of the pipeline on dioxin-containing samples
The seven real samples were sequenced in two runs.
Total numbers of raw reads, 57920 and 38700, were
lower than the 109232 raw reads of the first run on test
samples. Base qualities of the two runs were also lower
(Additional file 2: Figure S1). Compared to test samples,
percentages of confident reads (ranging from 10.2% to
23.3%, Table 1) were lower. For all seven real samples,
188 confident genera were found, and Newbler generated
contigs for 160 (85%) genera. Among the 160 contigs,
about half (79) were 50% longer and 34 were two times
longer than the mean read length (Table 1); eight were
longer than 1000 bp. RDP classifier assigned all contigs
to the same genera of the constituting reads. More
importantly, classification scores of the assembled contigs
were higher than mean confidence scores of reads for 145
(90.1%) of the 160 genera. Among the 160 genera, micro-
bial species could be determined for 64 genera (Table 1).

Primer bias
For a real sample, the bias of a primer was estimated as
the percentage of confident genera that would be missed
if only data of the primer were used. A genus was con-
sidered missed by a primer if no confident read of the
primer was from the genus. For real samples, primer C
was the least biased and missed only about 5% of the
genera on average (Table 3). In contrast, primers B and
E were the most biased and missed about 40-60% of the
genera.

Comparison of the microbial communities in real samples
To illustrate an additional benefit of using multiple
primers, microbial communities in all real samples
were compared using Fast UniFrac for each primer.

For five of the six primers, S6 and S7 (two sediment
samples) clustered together (Figure 2). Thus, it was
more reliable to conclude similarity between the two
sediment samples. Similarly, S8 and S9, which were
from the same factory, were grouped together for five
of the six primers. Interestingly, S4 and S5 were from
the same factory but did not cluster together for all six
primers (Figure 2). In fact, S4 was rather distinct from
all other samples. Coincidently, the dioxin concentra-
tion in S4 was the highest among real samples. This
motivated further examination of the microbial com-
munity in S4.

Microbial species in real samples
In terms of microbial compositions, S5 was the closest
to S4 at the order, family, and genus level (Additional
file 2: Figure S2). To compare communities at the spe-
cies level, the assembled contig of each confident genus
of S4 was aligned to the corresponding contig of other
real samples. Consistently, eight of the nine genera in
S4 were also present in S5 (Table 4), whereas at most
three were present in other samples. Between S4 and
S5, five species were likely the same because alignment
identities were ≥97.0%. Species of the remaining three
genera in S4 should have been different from those in
S5 as the alignment identities were <97%.

In-silico evaluation of the current pipeline using MiSeq
reads
Currently, Illumina MiSeq can provide nearly 600 bp
sequences (see Discussion), which are longer than
amplicons of the six primers. Therefore, most amplicons
can be sequenced entirely using MiSeq and the perfor-
mance of the current pipeline relies mainly on sensitivity
of the six primers. Using known bacterial 16S rDNA
sequences as amplification targets, in-silico sensitivities
of the six primers ranged from 77.3% (primer F) to
95.6% (primer C) (Table 5). Most (99.3%) of the 16S
rDNA sequences could be amplified by at least one of
the fix primers. Moreover, 633240 assembled sequences
were as long as 1000 bp, accounting for 70.8% of the
16S rDNA references.

Table 3. Primer bias, i.e., percentage of confident genera that would be missed by each of the six primers

Primer S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

A 0% 36% 42% 11% 45% 39% 50% 32% 33% 30%

B 0% 54% 47% 44% 58% 50% 80% 55% 58% 26%

C 0% 7% 15% 11% 5% 0% 10% 2% 9% 13%

D 0% 39% 29% 33% 18% 44% 30% 21% 21% 30%

E 0% 75% 35% 44% 42% 56% 40% 47% 36% 52%

F 0% 21% 35% 56% 21% 17% 15% 21% 12% 26%

No. of genus 4 28 62 9 38 18 20 47 33 23

For real samples, the two least biased primers are shown in bold.
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Discussion
Requirements for obtaining long 16S rDNA
Our results suggest several requirements for obtaining
long 16S rDNA sequences using the current pipeline. The

first essential condition is that 16S rDNA of a microbe can
be amplified by several “neighboring” primers. Two pri-
mers are neighbors when their amplicons overlap by at
least 40 bp, thus enabling assembly in the current pipeline.

Figure 2 Distances between real samples and their clustering. (a) Principal components of distances between seven microbial communities
in real samples by UniFrac. (b) Clustering of the seven communities using full distances.
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For the six primers A-F, only consecutive primer pairs, for
example, A and B or D and E, are neighbors [6]. Primer
design is clearly important in the pipeline. A good primer
set is expected to (1) capture 16S rDNA genes of most
microbes (i.e., be highly universal), (2) cover whole 16S
rDNA genes, and (3) give amplicons shorter than sequen-
cing reads. The primer set used in the current pipeline
meets the last two conditions, and the universality of some
primers has been confirmed in a previous study [6]. More-
over, all six primers successfully amplified 16S rDNA for
all samples in this study. Note that designing another pri-
mer set may be necessary for a different sample, especially
when some primers cannot amplify 16S rDNA, which has
been observed (data not shown). It is possible to use more
primers to increase the number of neighboring primers.
However, greater loading of experiments and comparative
analyses are required. Moreover, performance must be
further evaluated.
The second requirement is enough data for presenting

most amplified 16S rDNA segments. The sufficiency of
data is governed by three factors: uniformity of primer
amplification, species abundance, and sequencing depth.
Amplifications using multiple primers are usually not
uniform, which was indeed observed for the known bac-
teria in this study. On average, about 200 reads were
needed to double the length of 16S rDNA for a genus
in real samples of this study. In other words, our pipe-
line only doubled the lengths of 16S rDNA for 34 of the

188 confident genera in real samples because there were
not enough reads for the majority of genera. For these
genera, the scarcity of reads suggested rarity of the spe-
cies. It is clear that greater read depth is required for
revealing less abundant species. The current pipeline
applies 454 sequencing, the throughput of which is only
moderate among NGS platforms. Illumina MiSeq is a
promising alternative for the present pipeline because its
data throughput is greater than 454. Although MiSeq
reads are shorter than 454 reads (300 v.s. ~400 bp), it is
possible to merge the so-called paired-end reads that
overlap into longer single reads. Our in-silico evaluation
showed that using MiSeq reads, the current pipeline
could provide 16S rDNA sequences as long as 1000 bp
for 70.8% of the known reference sequences.
Third, 16S rDNA reads must be classified to the cor-

rect genera with confidence. This requirement is essential
for controlling false positives, which was illustrated by
the 54 false genera found in S1 if a classification score of
≥80 was not required. Setting a minimal number of confi-
dent reads further controlled false positives. For example,
requiring 10 confident reads eliminated all false genera in
S1. For a greater amount of data, it is more appropriate
to require a minimal fraction of reads. These require-
ments also imply that the current pipeline is more suita-
ble for known microbes than for novel microbes because
novel 16S rDNAs are often classified with a lower confi-
dence. This could partially explain lower percentages of

Table 4. Alignment identity of nine contigs in S4 to corresponding contigs in samples S5-S10

Genus in S4 S5 S6 S7 S8 S9 S10 Candidate species

Hydrogenophaga 99.8% - - 98.1% - - Uncultured Beta Proteobacteria

Gracilimonas 99.5% - - - - - Uncultured Bacteroidetes

Ignavibacterium 90.6% - - 92.1% 93.1% - N.A.*

Sulfuriculvum 100.0% - - - - - Sulfuriculvum kujiense DSM 16994

Hylemonella 96.2% - - - - - Uncultured bacterium

Acinetobacter 100.0% - - 100.0% - 99.9% Acinetobacter bereziniae

Gp21 93.3% - - - - - Uncultured Acidobacteria

Phycisphaera 98.89% 99.41% - - - - Uncultured bacterium

OD1_genera_incertae_sedis - - - - - - Uncultured bacterium

The last column shows candidate species of the seven genera in S4. *Alignment identity <97%.

Table 5. In-silico sensitivity of the six primers

Primer No. of 16S rDNA sequences covering the primer position No. of amplifiable sequences Percentage

A 468049 411649 87.9%

B 2140848 1873932 87.5%

C 1877993 1796209 95.6%

D 1787993 1424757 79.7%

E 1003626 915216 91.2%

F 61634 47650 77.3%

At least one 2472276 2455930 99.3%
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confident reads in real samples than those in test samples
as more novel microbes were expected to exist in real
samples.
Finally, the current pipeline can distinguish two or

more non-rare species in the same genus. When 16S
rDNA sequences of two species in the same genus are
distinct (e.g., with a <98% identity), assembly usually
stops at the boundary of the distinct regions, resulting
in several short contigs. Fortunately, Newbler keeps
track of connections between contigs (Additional file 2:
Figure S3a), and the information was used for recover-
ing two long 16S rDNA sequences in the current pipe-
line. When two 16S rDNA sequences from the same
genus differ by only few bases, Newbler merges the two
sequences into one contig. The current pipeline
searched the detailed assembly of each contig for posi-
tions showing more than one non-rare base (Additional
file 2: Figure S3b). Once found, the contig was dupli-
cated, and distinct sequence patterns were assigned to
those positions. With these processes, 16 of the 160
genera in real samples were found to contain two or
more different 16S rDNA sequences.

Comparison with other approaches
The approach that extracts 16S rDNA reads from whole
genome shotgun sequencing data [10,11] is less promis-
ing for real samples of this study using 454 sequencing.
If whole genome shotgun sequencing were to be con-
ducted perfectly on a real sample, the number of 16S
rDNA reads in the data would be about 100 (0.1%
*100,000). Consequently, the number of reads confi-
dently classified to a genus would be less than 10
because reads of most genera constituted less than 10%
of the total reads (Additional file 2: Figure S3). If sample
pooling and non-perfect sequencing were considered,
the read number would be even smaller or drop to zero
for most genera. It is noteworthy that the whole genome
approach is more promising if Illumina sequencing is
applied. However, the performance of our pipeline is
also expected to increase using Illumina data. Thus, a
comprehensive comparison is still needed.
For comparison with the targeted approach using one

single primer [12], primer bias was estimated as follows.
For each of the six primers and the primer used in the
previous targeted approach, the percentage of 16S rDNA
references that could be amplified was determined using
ePCR. Only 0.2% of the full-length 16S rDNA sequences
were missed by all six primers (data not shown). In con-
trast, 7.4% were missed by the primer in the previous tar-
geted approach. Despite greater primer bias, the previous
targeted approach is advantageous once a 16S rDNA
gene can be amplified. Because amplified genes are under
shotgun sequencing, there will be no concern for non-
uniform amplification across multiple primers. As a

result, fewer reads are needed for obtaining a long 16S
rDNA sequence.

Environmental impacts on the pipeline
On test samples, the current pipeline successfully gener-
ated accurate and near full-length 16S rDNAs for three
of four known bacteria. The assembled contigs of each
known bacteria (except Bacillus) in different test sam-
ples aligned with each other with 100% identity (data
not shown). This indicates consistency of the pipeline
across these environments. That is, the presence of
other bacteria or low-concentration chemicals did not
affect the assembly of major species.
In contrast, the environments of dioxin-containing

samples did impact the pipeline because the base quality
and number of reads were lower compared to the test
run. This could be another reason for the lower percen-
tage of confident reads in real samples. The lower base
quality for dioxin-containing samples was not accidental
as quality returned to the original level in the next run
of sequencing another bacterial broth (Additional file 2:
Figure S1). It is possible that contamination started to
interfere with the microbial community when the con-
centration was above a cutoff, which is supported by a
report of a dose-dependent effect of PCP on a microbial
community [21].
Lower sequencing quality could affect assembly. For

example, 28 of the 188 confident genera in real samples
did not have an assembled contig because the sequence
identity in overlapping regions fell below 98%. Despite
the lower sequencing quality, the current pipeline still
lengthened 16S rDNA by at least 50% for half of the
microbes, and some 16S rDNAs reached 1000 bp.

Putative microbes related to dioxin
At the kingdom level, the percentage of archaea in S4 was
the highest among all real samples (Additional file 2:
Figure S2). Because dioxin concentration was also highest
in S4, abundant archaea in S4 may be linked to dioxin or
related chemicals. A putative related chemical is PCP
because S4 was from a PCP factory and dioxins are by-
products of PCP manufacturing. It has been shown that
methanogenic archaea are selected during PCP degrada-
tion in reactors [22-24]. Although methanomicrobia were
not abundant in confident reads of S4, it became one of
the major archaea classes if non-confident reads were
included (data not shown). There are two possible expla-
nations for non-confident classifications: (1) methano-
genic archaea were novel, and (2) sequencing quality was
low. The second possibility was excluded because the
mean quality of S4 reads was not the lowest among real
samples (Additional file 2: Figure S4). Thus, novel metha-
nogenic archaea likely existed in S4. In fact, the fraction
of putative novel microbes was the highest in S4 at the
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kingdom, phylum, and class level (Additional file 2:
Figure S2).
Along this line, the minimal confidence requirement

for classification was dropped and all archaea reads
were re-classified via alignments to NCBI 16S rDNA
database [25] using BLAST. Alignments with an identity
(number of matched bases divided by read length) at
least 0.9 were selected and corresponding taxonomies
were assigned to the reads; other reads were considered
as unclassified. Two genera, Candidatus_Nitrosoarch-
aeum and Nitrosopumilus, were relatively more abun-
dant in S4 compared to other samples (Additional file 1:
Table S4). Interestingly, Nitrosopumilus maritimus has
been implicated in the dioxin degradation pathway in
KEGG [26]. The enzymes 4-oxalocrotonate tautomerase
and pyruvate carboxyltransferase produced by N. mariti-
mus facilitate dioxin degradation. These results suggest
that archaea species also play a role in dioxin degrada-
tion and deserve further exploration, which can be rela-
tively novel and complementary because most current
studies of biodegradation of dioxin focus on bacteria.
At the order level, Burkholderiales were most abun-

dant in the two samples from the PCP factory; its con-
centrations in other samples were relatively low. Some
Burkholderia species have been shown to be resistant to
PCP [21] and involved in dioxin degradation [27]. How-
ever, the corresponding family in S4 and S5 was Coma-
monadaceae instead of Burkholderiaceae, the family of
the Burkholderia species. This might be explained by
different primers used in our and the previous studies,
with the result that different Burkholderiales species
were captured. Interestingly, a Comamonadaceae genus,
Comamonas, has been reported to degrade PCP [28]
and dibenzofurans [29]. However, the reported genus
was different from our major genus Hydrogenophaga.
Nevertheless, a Hydrogenophaga species has been shown
to degrade polychlorinated biphenyls, which are dioxin-
like compounds [30].

Conclusions
The current pipeline could generate accurate and long
16S rDNA sequences when there were sufficient 454
reads from those genera. For dioxin-containing samples,
the pipeline lengthened 16S rDNA by at least 50% for
about half of the non-rare species and generated 16S
rDNAs longer than 1000 bp for some species. Our data
also revealed several microbes (e.g., Nitrosopumilus and
Hydrogenophaga) that may be involved in the chemistry
of dioxin or PCP.

Additional material

Additional file 1: Table S1. DNA concentrations and quality controls of
ten samples. Table S2. Additional primers for amplifying full-length 16S

rDNA of three known bacteria. Table S3. Percentages of confident reads
amplified by six primers (A-F) for four known bacteria in sample S1.
Table S4. Percentages of archaea genera (relative to all archaea reads) in
real samples.

Additional file 2: Figure S1. Mean quality at each base position of 454
reads obtained in four runs of sequencing. Only the first three runs are
for this study and the fourth run is for a bacterial broth without
contamination. Figure S2. Compositions of microbes in the seven real
samples. At each level, the 15 most abundant classifications (by mean
percentage across all samples) are shown from bottom to top and the
rest are denoted by “others”. The space between a stack top and 100%
represents non-confident reads. Figure S3. Post-processing of assembly
for identifying more than one non-rare species in a genus. (a) Distinct
segments of two different 16S rDNA sequences, corresponding to
contig2 and contig3, result in a bubble structure of contig connection.
Because both contigs are supported by ≥10 reads, the assembly is
rearranged into two 16S rDNAs: contig1-contig2-contig4 and contig1-
contig3-contig4. (b) Two different sequence patterns in an assembled
contig are observed. If both patterns appear more than 10 times, the
contig is duplicated and the two patterns are assigned to the positions.
Figure S4. Mean quality at each base position of 454 reads of seven real
samples.
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