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Background
Gene expression profiling is a powerful approach to iden-
tify markers for classification of samples; however, it has
major limitations that hinder performance. Typically, a
large number of variables are assessed compared to rela-
tively small sample sizes. In addition, it is difficult to iden-
tify biologically informative markers which have high
predictive power [1-3]. Thus, the goal of this study was to
develop a machine learning approach that is able to bridge
classification accuracy and biological function.

Materials and methods
We developed a Literature aided Sparse Bayesian Gener-
alized Linear model which utilizes Generalized Double
Pareto (LSBGG) prior to induce shrinkage in terms of
the number of covariates. Importantly, instead of using
uninformed hyper parameters for the prior distributions,
we adjusted the hyper parameters based on the ranking
of the genes by GeneIndexer (Quire Inc. Memphis, TN)
with respect to ‘cancer’ keyword query. This unique
approach controls shrinkage imposed on genes based on
biological function extracted from the literature. The
model was applied to a leukemia data set from Golub et
al. [4]. The dataset was split into training and test groups
and classification performance was evaluated on the test
group. The top 500 highly differentially expressed genes
were used for the modeling step.

Results
Using the top 10 genes obtained from LSBGG, we were
able to achieve 91% classification accuracy in the test
group. When the training and test datasets were switched,

we obtained 92% classification accuracy. In contrast, the
model without biological information achieved 91% and
86% classification accuracies in the two test scenarios
(Table 1). Consistent with these results, Receiver Operat-
ing Characteristic (ROC) analysis showed better perfor-
mance when shrinkage was imposed using the literature
(Figure 1). Notably, we found that the posterior mean of θ

* Correspondence: rhomayoun@memphis.edu
2Bioinformatics Program, University of Memphis, Memphis, TN 38152, USA
Full list of author information is available at the end of the article

Table 1 Classification accuracy, sensitivity and specificity
of the model including (LSBGG) or excluding literature.

Including Literature Excluding Literature

Test1 Test2 Test3 Test4

Measure

Accuracy 91 92 91 86

Sensitivity 100 89 100 91

Specificity 79 100 75 75

Figure 1 ROC curves for the models with or without literature
imposed shrinkage. The area under the curve (AUC) for the model
incorporating literature (Tests 1 &2) is higher than the model
without incorporating literature (Tests 3 &4).
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was higher for genes which were functionally related to
cancer in the biomedical literature (Figure 2).

Conclusions
This demonstrates that while LBSGG performs slightly
better in classification of samples, it uses more biologi-
cally informative genes, and hence may simultaneously
provide insights into the mechanisms underlying the
phenotype of interest.
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Figure 2 Relationship between the posterior mean of θs and biological relevance. The posterior mean of θ (Y-axis) is shown for the top 500
genes (X-axis) when using a model with (A) or without (B) incorporation of literature to control shrinkage. There is a clear association between
the estimated θ in the model and association with cancer in the literature.
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