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Abstract

bioinformatician.

Background: Though cluster analysis has become a routine analytic task for bioinformatics research, it is still
arduous for researchers to assess the quality of a clustering result. To select the best clustering method and its
parameters for a dataset, researchers have to run multiple clustering algorithms and compare them. However, such
a comparison task with multiple clustering results is cognitively demanding and laborious.

Results: In this paper, we present XCluSim, a visual analytics tool that enables users to interactively compare
multiple clustering results based on the Visual Information Seeking Mantra. We build a taxonomy for categorizing
existing techniques of clustering results visualization in terms of the Gestalt principles of grouping. Using the
taxonomy, we choose the most appropriate interactive visualizations for presenting individual clustering results
from different types of clustering algorithms. The efficacy of XCluSim is shown through case studies with a

Conclusions: Compared to other relevant tools, XCluSim enables users to compare multiple clustering results in a
more scalable manner. Moreover, XCluSim supports diverse clustering algorithms and dedicated visualizations and
interactions for different types of clustering results, allowing more effective exploration of details on demand.
Through case studies with a bioinformatics researcher, we received positive feedback on the functionalities of
XCluSim, including its ability to help identify stably clustered items across multiple clustering results.

Background

Since Eisen lab’s Cluster and TreeView [1] popularized
cluster analyses and visualizations of microarray data,
cluster analysis has been widely used in the bioinfor-
matics community. As genetic probing technologies
rapidly improve in capacity and accuracy (e.g. Next
Generation Sequencing), cluster analysis is playing an
even more important role in the descriptive modeling
(segmentation or partitioning) of the large data pro-
duced by high-throughput probing technologies. Though
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cluster analysis has become a routine analytic task for
bioinformatics research, it is still arduous for a researcher
to quantify the quality of a clustering method’s clustering
results.

There have been a few attempts to develop objective
measures for clustering quality assessment; however, in
most practical research projects, determining the quality
of a clustering result is subjective and application specific
[2]. To make things even more challenging, there are a
large number of clustering methods, which could gener-
ate diverse clustering results. Moreover, even an indivi-
dual clustering algorithm could end up with different
results depending on the clustering parameters.

Since there is no generally accepted objective metric for
selecting the best clustering method and its parameters
for a given dataset, researchers often have to run multiple
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clustering algorithms and compare different results while
examining the concordance/discordance among them.
Such a comparison task with multiple clustering results
for a large dataset is cognitively demanding and
laborious.

In this paper, we present XCluSim, a visual analytics
tool that enables users to interactively compare multiple
clustering results and explore individual clustering
results using dedicated visualizations.

This paper is structured as follows. In the next section
we discuss some of the most relevant visualization tools
and techniques, focusing on a comparative analysis of
multiple clustering results. Each visualization component
and its interactions in XCluSim are described in the
Methods section. The Results and discussion section
contains case studies and discussions followed by a
conclusion.

Related work

Visual comparison using visualizations for multi-
dimensional categorical data

Since multiple clustering results can be treated as multi-
dimensional categorical datasets, they can be visualized
using various visualization techniques corresponding to
the specific data types. These techniques include Parallel
Sets [3] and Parallel Coordinate Plot [4]. Lots of prior
work on the visual comparison of multiple clustering
results employed these techniques [2,5-11], but we focus
our discussion on the ones that are most relevant to us in
terms of utilizing ribbon-like bands to represent concor-
dance/discordance among multiple clustering results.

In iGPSe [5], to visually compare clustering results of
two different expression data types (i.e. gene expression
and micro-RNAs expression), two dimensional axes were
juxtaposed, allowing for the use of parallel sets. By obser-
ving the flow of ribbon-like bands, users were easily able
to see which items were shared between a pair of clusters
from two different clustering results. HCE [2] also juxta-
posed a pair of hierarchical clustering results in parallel
to enable comparison tasks with the two results. In con-
trast to iGPSe, HCE used a partitioned heatmap instead
of a simple node to show the details of each data item.
To reveal the relations between items in a pair of heat-
maps, matching items were connected with straight lines.
However, these two visual analytics tools only supported
the comparison of a pair of clustering results. Moreover,
because they used connectivity between related items, it
was often the case that there were too many crossing
lines with a large dataset.

CComViz [6] alleviated the line crossing problem
while focusing on the comparison tasks of more than
two clustering results. In their work, multiple clustering
results were visualized with a parallel coordinate plot:
clustering results as dimensions, clusters as vertical
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positions in each dimension, and items as lines. Users
could grasp the overall distribution of items across mul-
tiple clustering results by tracking the flow of lines
crossing multiple dimensions. Similar representations
were used in [7], but CComViz devised an algorithm for
rearranging clusters and their members to minimize
visual clutter between each dimension. Matchmaker [8]
also utilized the parallel coordinate plot, but to show
raw data simultaneously, partitioned heatmaps were
shown in dimensional axes. The items in each dimen-
sion were rearranged by their average values so that
heatmaps clearly showed the patterns of their raw data.
Unlike the case of CComViz, in this case, partitioned
heatmaps used a bundling strategy to maintain the posi-
tion of each item in a dimension. This reduced line
crossings between adjacent dimensions. Although this
method generated a clearer overview of the distributions
of items, it had some drawbacks. First of all, the flows
of inner lines were invisible unless users explicitly high-
lighted the lines. Secondly, since the lines were bundled,
the width of a band may not have accurately conveyed
the number of the items belonging to the band.

CComViz and Matchmaker were probably most rele-
vant to XCluSim. They depended on a linear ordering of
dimensions (or clustering results), which made it difficult
to do all-pairs comparison with a large number of clus-
tering results at once. For example, as the authors said,
Matchmaker only enabled users to compare, at most, six
clustering results simultaneously, even with the limited
linear ordering of dimensions. Since the same dataset can
yield a large number of different clustering results, it is
necessary to provide a more scalable way of comparing
them. In XCluSim, we present diverse overviews to help
in comparison tasks with many clustering results.
Visualization using similarity measures
There are a few approaches to visualize measured simi-
larity values between clusters (or items) in different
clustering results instead of explicitly visualizing shared
items among multiple clustering results. Sharko et al.
[12] utilized a color-coded similarity matrix view to
show the stability between items or clusters across dif-
ferent clustering results. Similarities were measured by
counting how many times each pair of items was clus-
tered together or how many items each pair of clusters
shared. Kothur et al. [13] used bar charts arranged in a
matrix layout to show similarity values between a pair
of clusters. However, these two works were restricted to
comparing a pair of clustering results since they both
used a matrix layout.

iGPSe [5] used Silhouette Plot [14] to help compare a
pair of clustering results. Each item got a standardized
dissimilarity value ranging from -1 to 1. This value repre-
sented dissimilarity in such a way that, when a value was
close to 1, its average dissimilarity from all other items in
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the same cluster was much smaller than the maximum
average dissimilarity from all items in another cluster.
When the value was close to -1, the meaning of the value
was reversed. By representing these similarity values
between clustering results using a bar chart, users were
able to assess the relative quality of clustering results.

These previous works using similarity measures
allowed for comparisons of only a small number of clus-
tering results. However, it is clear that, by abstracting
detailed differences to simpler similarity measures, the
visual comparison could be rendered more scalable. In
our work, we used a graph layout and a dendrogram to
show similarity overviews in a more scalable way.

Color encoding for clusters

Color is a powerful visual cue for representing a cluster
membership. It is used in many visualization techniques,
including parallel coordinate plot [6,12] and scatterplot
[15-17], to discriminate clusters while revealing trends
in raw data. Similar efforts exist in the visualizations of
multiple clustering results. For example, when using the
parallel sets view, a few distinct colors are used to
encode each cluster to discriminate it from others [5,6].

However, if there are clusters from different clustering
results that share the same members, it is not desirable
to encode them in distinct colors since it may mislead a
user into thinking that those clusters are different.
Moreover, when the number of clusters increases, it is
hard to color-code clusters differently, because it is hard
to discriminate between more than 10 colors.

A useful color encoding strategy is Tree Colors [18],
which was devised for tree-structured data to represent
similarities between nodes. A part of the parent’s hue
range is recursively assigned to its child nodes. As a
result, nodes with the same parent have similar colors,
while those that are less similar have different colors.
Moreover, this color scheme reflects the level of a node
by using differentially encoded chroma and luminance in
each level. If the similarities between clusters from multi-
ple clustering results can be represented as a tree struc-
ture, Tree Colors may be well-suited to represent
similarity among them. In XCluSim, we used this color
scheme to color-code clusters after building a hierarchi-
cal structure by running a hierarchical agglomerative
clustering (HAC) [1] with all clusters.

Methods

Task analysis and design goals

When performing a cluster analysis with a gene expres-
sion dataset, bioinformaticians typically follow an itera-
tive analytics process: 1) they filter out unnecessary
genes from the dataset for more focused analysis; 2)
they run a clustering algorithm with the selected genes;
and 3) they validate clusters in the clustering result to
determine whether genes are clustered properly in the
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biological context. When the quality of the clustering
result is not satisfactory at the validation stage, they
often have to return to previous steps and run the same
clustering algorithm with different parameters or run a
different clustering algorithm.

Years of close collaboration with bioinfomaticians
have revealed to us that they often faced challenges in
this iterative analytics process. First of all, there is no
flexible analytics environment that supports them
through the iterative process while providing diverse
clustering algorithms and keeping track of their explora-
tion history (i.e., the sequence of the clustering algo-
rithms and parameter settings). Moreover, it is
challenging for them to effectively compare different
clustering results generated during multiple iterations
while investigating the quality of the results at diverse
levels (i.e. clustering results level, cluster level, and gene
level).

To address these challenges in the iterative process of
cluster analysis, we set the following design goals for
our visual analytics tool:

+ To facilitate scalable visual comparison of many
clustering results at diverse levels;

+ To support generation of diverse clustering results;
+ To promote understanding of the characteristics of
each clustering algorithm and its parameters in
results;

+ To provide dedicated visualizations effective for
different types of individual clustering results.

We designed XCluSim based on the visual information
seeking mantra (i.e. overview first, zoom and filter, and
details-on-demand) [19] to better support scalable visual
comparison. Since each combination of different cluster-
ing algorithms and their parameters may yield different
clustering results, it is inevitable from those many clus-
tering results to 1) see their overall similarity first, 2)
choose a subset of them, and then 3) perform detail com-
parisons and explore individual clustering results.

XCluSim provides as many clustering options as possi-
ble by implementing famous clustering algorithms and
linking the clustering algorithms available in Weka [20].
It also keeps track of clustering options that users try
during the analysis process.

In the following subsections, we introduce visualization
techniques and user interactions for comparison tasks.
They include overview, filtering/selection, and detail view.
Then we present visualization techniques that help users
to explore individual clustering results. For better compre-
hension of the visualization components in XCluSim, we
first describe a color encoding strategy for clusters, which
we consistently apply to every visualization component of
XCluSim prior to explaining each visualization.
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Color encoding of clusters using Tree Colors

To help users identify similarities among multiple clus-
tering results, we color-code each cluster based on Tree
Colors [18], which provides a color-coding scheme for
tree-structured data. We first hierarchically cluster all
clusters from every clustering result using HAC. The
correlation coefficient is used as the similarity measure
between a pair of clusters as in [6]. This maintains con-
sistency in the use of the cluster similarity measure in
XCluSim, which is also used for rearranging bands (i.e.
clusters) in the enhanced parallel sets view (see the
Enhanced parallel sets view section). In the resulting
tree-structured cluster hierarchy, we assign an appropri-
ate color to each cluster based on the Tree Colors color-
coding scheme so that similar clusters have similar
colors.

This color encoding helps users intuitively assess the
similarity of clusters. For example, in Figure 1D (the
enhanced parallel sets view), @ and @ have very similar
colors while @ and ® do not, which means that @ and
® share most items while @ and ® barely share any
items. This color-coding scheme is consistently applied
to overviews, detail views, and every visualization for
individual clustering results.
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Overview of all clustering results

Parameter information view

XCluSim provides an overview of parameters for all
clustering results in the parameter information view
(Figure 1A, 2A). This view is vertically divided into sub-
sections, each of which corresponds to an individual
clustering algorithm (e.g. “K-means clustering”). Inside
each subsection, there are multiple bar charts arranged
in a matrix layout. Each bar chart shows the number of
clustering results generated by the corresponding algo-
rithm with the corresponding parameter setting. For
example, in Figure 1, the parameter information view is
divided into more than four subsections (some subsec-
tions are hidden under the scroll view) since a user
made clustering results using algorithms such as HAC,
self-organizing map (SOM) clustering, K-means cluster-
ing, and expectation-maximization (EM) clustering. As
shown in Figure 1, the bar in the left bottom cell of
K-means clustering is taller than any bars shown in any
clustering algorithms, indicating that the K-means clus-
tering algorithm with a distance measure of Euclidean
distance and with 9 as the number of clusters is the one
mostly used (Figure 1). We note here that bioinformati-
cians often run a clustering algorithm multiple times
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even with the same parameter setting when the algo-
rithm (e.g. K-means) works non-deterministically. For
more details on clustering parameters, the user can also
look into the visualization of individual clustering
results.

To help users determine which results to select for
detailed analysis, XCluSim provides scalable similarity
overviews both at the cluster level and at the clustering
result level using a force-directed layout (FDL) and a
dendrogram view. In the next two sections, we present
details of these two overviews.

Force-directed layout (FDL) overview

In the FDL overview, overall similarity relations among
multiple clustering results are visualized in a force-direc-
ted layout, where more similar results are placed closer
together and connected with thicker edges (Figure 1B.
2B). The similarity metric for calculating distances
between nodes is F-measure [21], which is the harmonic
mean of the precision and recall measure. Each of the
precision and recall measures for the two clustering
results is calculated by dividing the number of agreed
pairs of items by the number of all pairs of items
belonging to a clustering result. An agreed pair refers to
two items that “agree” to be clustered together in both
clustering results.

Since the FDL overview uses physical distance to
visually encode similarity between clusters, it has a per-
ceptual advantage in revealing similarity relations among
them. In addition, a pie chart is embedded in each node
to enable users to visually estimate the number of clus-
ters and their sizes. Since the global color encoding
scheme also helps users to grasp similarities among
clusters, users can estimate which clusters remain stable
across different clustering results. For the scalability of
the FDL overview, nodes become smaller as more results
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are added to the view. Moreover, an edge between two
clusters is displayed only when similarity between the
clusters exceeds a predetermined similarity threshold.
Dendrogram overview

The overall similarity relations are also visualized in the
dendrogram overview (Figure 1C, 2C) after running an
HAC with all clustering results (i.e. each row or node
represents a result). As in the FDL overview, we use the
F-measure as the distance measure between a pair of
results. However, the visual representation and its pur-
pose are different from the FDL overview. While the
FDL overview intuitively shows similarities using physi-
cal distance, the dendrogram overview uses a more
familiar clustering visualization component (i.e. a den-
drogram) to represent similarities between clustering
results. Moreover, the dendrogram overview is more
space efficient so that users can see clustering results
and cluster distributions more clearly without occlusion.

Visualization for comparing select clustering results
When users identify clustering results of their interests in
the overview of all results, they want to select them and
perform more in-depth comparison with them. In the
next two subsections, we introduce visualizations for com-
paring the selected clustering results: the enhanced paral-
lel sets view and the tabular list view. When a user selects
a result either in the FDL or dendrogram overviews, the
selected result is added to the enhanced parallel sets view
for more in-depth comparison. The tabular list view,
located on the rightmost side of XCluSim, enables users to
access detailed information of the selected clustering
results with each result in a separate tab.

Enhanced parallel sets view

To visualize the concordance and discordance of multi-
ple clustering results in more detail, we utilized parallel

Figure 2 Three overviews supported in XCluSim. (a) The parameter information view provides the parameter settings used for the clustering
results produced. The table in the parameter information view is for a clustering algorithm, and it shows a bar in each cell to represent the
number of clustering results using the corresponding parameter setting. (b) The force-directed layout overview intuitively shows similarity among
multiple clustering results with the distance between nodes representing similarity. () The dendrogram overview shows similarities between
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sets [3]. We enhanced the parallel sets for effective clus-
tering result comparison by designing more appropriate
interactions and revealing more relevant information,
i.e., stable group (explained in detail later in this
section). In the parallel sets view (Figure 1D, 3), each
horizontal row of stacked bars represents a clustering
result. A tiny gap is placed between each bar to assist
users to correctly perceive a single cluster since adjacent
bars can occasionally have similar colors when the Tree
Colors scheme is used. Rows are arranged in such a way
that the distance between adjacent rows encodes the
dissimilarity between the corresponding clustering
results. Each horizontal bar in a row represents a cluster
in the corresponding result. We define a stable group of
items as a set of items that are clustered together
through all selected clustering results. A stable group is
represented as a ribbon-like band across all rows. Since
the parallel sets view only enables comparisons based
on a linear ordering of results, users can interactively
switch any two rows by dragging one over the other.
When the vertical order of the rows is changed, all rows
are replaced accordingly to reflect the similarity between
new adjacent clustering results.

The aggregated band representation for links connecting
items in a stable group significantly reduces visual clutter
compared to the use of a single line representation to con-
nect individual items. The width of a band is an important
visual cue that encodes important information about a
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stable group (i.e. its size) in XCluSim. Users can easily
recognize the largest groups of items that are clustered
together across multiple clustering results as they spot
thick bands. Moreover, users can visually estimate the sta-
bility of a cluster by looking at the width of each stable
group in it. For example, since the average width of stable
groups in @ is bigger than @ in Figure 3A, a user can
infer that @ is a more stable cluster than @. Cluster-simi-
larity based on the color-coding of bars (i.e. clusters) helps
to facilitate the comparison of multiple clustering results.
However, the aggregation method could still suffer
from clutter due to band-crossings. We applied a rear-
rangement algorithm [6] to address this issue. To pro-
vide more flexible user interaction depending on a
user’s need, we divided the algorithm into two rearran-
gement features: rearranging clusters (i.e. bar rearrange-
ment) and rearranging their members (i.e., band
rearrangement). These features can be evoked by press-
ing on the button at the bottom of the enhanced parallel
sets view (Figure 1D). When a user uses any of these
two features, smooth animated transition is supported
to reduce the cognitive burden that accompanies users’
attempts to trace the movement of bands or bars.
XCluSim provides more user interactions to overcome
the cluttering problem. First of all, users can alleviate the
visual clutter in the region of interest by rearranging the
bars in a row. This involves dragging them horizontally.
After manually rearranging bars (i.e. clusters), users can
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employ the band rearrangement feature to reduce the
visual clutter of bands across multiple rows due to the
current manual arrangement of bars in the row.
Secondly, there is a band filtering feature similar to that
in [11]. The stable group histogram at the bottom of
Figure 3C shows the distribution of bands by size. There
are two blue filtering bars on both sides. Users can filter
out bands that are too small or too big from the parallel
sets view by adjusting the position of the filtering bars.
Finally, when the mouse pointer hovers over a cluster, it
highlights the bands, allowing the clusters to show their
flows across other clustering results clearly (Figure 3B).
This can be helpful when a user is especially interested in
stable groups that belong to a specific cluster.

The perception of a stable group’s size could be dis-
torted by a line width illusion [22]. Such an illusion
causes humans to perceive line width incorrectly at
slanted angles. This distortion may disrupt the task of
band size comparison. In order to prevent it, we adopt
the common angle plot [22] idea (Figure 3C). By com-
paring the straight, vertical parts of bands, users can
compare the sizes of the stable groups more accurately.
However, since the common angle plot represents a sin-
gle line as three connected straight lines, it may generate
more clutter and occlusions. Thus, it is better to use this
feature when only a small number of bands are dis-
played in the parallel sets view.

Tabular list view

Users can access detailed information concerning the
selected clustering results with each result in a separate
tab in the tabular list view (Figure 4). The tabular view
provides detailed information in two different modes:
the group-by mode and the heatmap mode. In the
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group-by mode, users can see the data grouped by
stable groups or by clusters. A group is represented by
a representative item in a single row with the number
of group members between parentheses. Moreover,
there is a line graph glyph in each row to show the
overall average pattern of the corresponding group. In
the heatmap mode, the tabular list view shows numeri-
cal details with each cell color-coded according to its
value. There is a text search field on top of the tabular
list view so that users can directly access specific items.
A user can export a selected subset of data (e.g. a spe-
cific stable group) as a CSV text file for further
analysis.

XCluSim provides brushing and linking among all
visualization components. Thus, the tabular list view is
coordinated with all visualization components in XClu-
Sim. Thus, whenever a user selects a group of items in
any visualization, they are highlighted in the tabular list
view to help the user access detailed information about
them. In addition, when the mouse pointer hovers over
an item in a component, it highlights the item in white-
blue color, and all related items on the other compo-
nents are also highlighted. This could lead to additional
meaningful insights. For example, hovering a mouse
pointer over the title of a specific algorithm in the para-
meter information view results in the highlighting of all
related clustering results in overviews and detail views
(Figure 1). As a consequence, users are able to under-
stand that K-means clustering can produce totally differ-
ent clustering results depending on the clustering
parameters chosen (e.g. compare “K-means clustering
(10)” to “K-means clustering(11)” in the dendrogram
overview in Figure 1).
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Interactive data manipulation

Simple file formats such as comma separated values
(CSV) and tab-delimited text are used for XCluSim.
XCluSim enables researchers to interactively manipulate
the input dataset when loading it, prior to clustering it
(Figure 5). Users can generate a ratio value by selecting
two columns from the original dataset. XCluSim pro-
vides filters such as a range filter and RPKM threshold
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adjustment. It also provides features for calculating fold
changes.

Visualization for individual clustering results

To make XCluSim a more general visual analytics tool
for comparing clustering results, we try to provide a
wide variety of clustering algorithms. First of all, we
implement frequently-used clustering algorithms in

(-1 [-]
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XCluSim. These include Hierarchical Agglomerative
Clustering [1], SOM clustering [23], K-means clustering,
and OPTICS clustering [24]. Moreover, all clustering
algorithms from Weka [20] are also available in XClu-
Sim. Users can also import any clustering results made
by any other clustering algorithms that are not available
in XCluSim.

Taxonomy of visualization techniques for visualizing
clustering results

Different clustering algorithms work on different princi-
ples. For example, there are three major categories of
clustering algorithms: hierarchical, partitional, and den-
sity-based. Clustering algorithms in different categories
need different visualization techniques to effectively
visualize their clustering results.

To suggest effective visualizations for each category of
clustering algorithms, we first surveyed visual encoding
techniques for visualizing the clustering results of var-
ious algorithms (Table 1). Sedlmair et al. presented a
related taxonomy of factors in visual cluster separation
[28]. They evaluated the effect of each factor on visual
cluster separation in scatterplots. Building upon this
work, we consider the appropriateness of visual encod-
ing techniques in representing the characteristics of
each type of clustering algorithm. To broaden the per-
spective of our taxonomy, we further categorize the
visual encoding techniques in terms of Gestalt principles
of grouping [27]: similarity, proximity, connectedness,
and enclosure.

Similarity: The similarity principle is the one most
commonly used in cluster visualization. It helps users to
perceive cluster membership by employing similar
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colors, shapes, or sizes. Among them, color is the most
frequently used visual cue. However, using color as the
main visual cue may not scale well because the use of
human color perception to discriminate between classes
is limited to a number of colors. Thus, it is often used
in conjunction with visual cues such as in reachability
plot [20] and silhouettes plot [5].

Proximity: This principle facilitates the perception of
cluster membership by placing related items closer
together. For example, in the silhouettes plot [14], bars
belonging to the same cluster are placed next to each
other. However, this principle is not used alone. It is typi-
cally used together with other visual cues. For example,
the partitioned heatmap sometimes puts gaps between
clusters to show their boundaries clearly [2,8,10,11].

Connectedness: The connectedness principle helps
users to identify groups by connecting related items
using a visual artifact such as a line. Line connection is
one of the most powerful visual cues among the Gestalt
principles of grouping. However, it can confuse users
when there are too many lines in a single view. The
connectedness principle is especially used with hierarch-
ical clustering results since hierarchy structures can best
be demonstrated with line connections. For example,
HCE (2], Matchmaker [8], and others use this principle
to represent clusters in dendrograms.

Enclosure: The enclosure principle is adopted particu-
larly when drawing a closed boundary containing items
belonging to a cluster. For example, when a dataset con-
tains spatial information, all items of a cluster are shown
on a color-coded region with a solid boundary [13,25].
Another typical technique based on this principle is the

Table 1. Taxonomy of visualization techniques for visualizing clustering results

Principle to Show Cluster Membership

Visualization Component

Clustering Algorithm

Main Secondary Hierarchical Partitional Density-based
Similarity Proximity Scatterplot + Color A A [17] A [16]
(color or size)
*Graph (vertex as item) + Color A A [5] A [16]
*Bar chart (Reachability Plot) X X O [15,20,24]
Enclosure Colored shape A [25] A A [13]
*Parallel coordinate plot + Color A [6] A A
Proximity Similarity and Enclosure  Bar chart (Silhouettes Plot) A O [514] @)
Connectedness Similarity and Proximity ~ *Dendrogram 0289 X A
(line connection)
Normal tree A [26] X A
Circular tree A [26] X A
Enclosure Proximity *Heatmap + Partitioning O O O
Similarity and Proximity ~ Treemap A [26] X X

*Visualization techniques supported in XCluSim

Visualization components for visualizing clustering results use visual cues based on Gestalt principles of grouping [27] to represent cluster membership. We
categorize the visualization components by principle and indicate how appropriate each visualization component is for showing clustering results by different
types of clustering algorithms. (i.e. “O” for most appropriate, “A” for moderately appropriate, and “X” for not applicable).
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partitioned heatmap [10,11]. It is a powerful way to dis-
play raw data while clearly specifying the boundary sur-
rounding the members of each cluster.

In addition to these four Gestalt principles of group-
ing, there are some attempts to use abstract representa-
tions (such as glyphs or special shapes) for clusters
without showing any individual items in clusters. The
cluster graph [29] uses an abstract representation of a
circular node for a cluster. Clusters derived from SOM
clustering results are visualized in a hive-shaped grid
view while each item is abstracted as a node [23]. As
these attempts do not allow for the visualization of indi-
vidual items, they are not a good fit for the classification
based on Gestalt principles.

After reviewing and categorizing visual encoding tech-
niques for visualizing clustering results, we selected
visualization techniques appropriate for visualizing each
of three main kinds of clustering algorithms (namely,
hierarchical clustering, partitional clustering, and density
based clustering). In the next three subsections, we
describe the visualization techniques in detail.
Visualization technique for hierarchical clustering
We visualized HAC results with the combination of a
dendrogram and heatmap visualization (Figure 6A),
where users could interactively compress/expand, flip,
and swap sub-trees. The batch compression of sub-trees
using the minimum similarity bar [2] is also possible. By
adjusting the position of the similarity bar, users can
dynamically determine the clusters. There is a compact
bird’s-eye overview using heatmap [30] in the left most
part which is tightly coupled with the dendrogram. By
dragging a black-bordered rectangle that represents the
current viewport (see the black rectangle in the top left
of Figure 6A) in the heatmap overview, users can effi-
ciently navigate through the dendrogram+heatmap view.
Visualization technique for partitional method
Partitional clustering results other than SOM clustering
(e.g. K-means clustering, EM clustering, farthest first
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clustering, etc.), and all imported results are visualized
in a force-directed layout (Figure 6B), where each clus-
ter is represented as a rectangle whose size is propor-
tional to the cluster size. The force between nodes is
determined by the similarity between members of each
cluster so that similar clusters are closely positioned and
have thicker links between them. To show an overview
of a cluster, XCluSim also visualizes the average pattern
of all members of the cluster in a line chart, which is
shown as a glyph in the cluster’s node. XCluSim also
supports semantic zooming to enable users to explore
clusters in more detail. When a cluster is zoomed into,
more details of its members are dynamically visualized
in a parallel coordinate plot.

SOM clustering results are visualized using the typical
hive-shaped visualization (Figure 6C), where each hexa-
gonal cell represents a cluster. In XCluSim, the back-
ground intensity of each cell represents the size of the
corresponding cluster. As a visual summary of each
cluster, XCluSim presents the average pattern of the
cluster members in a line chart within each hexagonal
cell. XCluSim also supports semantic zooming. Users
can zoom into a cluster by double-clicking on the corre-
sponding cell and look at the details of their members
in a parallel coordinate plot in the same way they would
in a force-directed layout.

Visualization technique for density-based method

Density-based clustering algorithms calculate a kind of
density-related information for each item during the
clustering process. For example, OPTICS [24] calculates
the reachability distance for each item. We believe that
users can more intuitively understand a density-based
clustering result when the density-related information is
revealed. Therefore, a bar-chart-like visualization, with
each item arranged on the horizontal axis and the den-
sity-related information on the vertical axis, can effec-
tively visualize density-based clustering results. The
conventional reachability plot for OPTICS is a typical

(a) (b)

Figure 6 Visualization techniques for individual clustering results in XCluSim. (a) Dendrogram+heatmap visualization for hierarchical
agglomerative clustering results. (b) Force directed layout for every partitional clustering result and imported clustering results. () Common
hive-shaped visualization for SOM clustering results. (d) Reachability plot together with parallel coordinate plot for OPTICS.

(c) (d)
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example. In XCluSim, we enhance the plot for better
cluster identification and for improved examination of
details (Figure 6D). To clearly show the position of each
cluster, XCluSim places a horizontal bar from the start
to the end positions of the cluster right below the reach-
ability plot. The parallel coordinate plot at the bottom
shows more details of cluster members. These two plots
support brushing and linking between the cluster mem-
bers. For example, when a mouse pointer hovers over a
cluster in the reachability plot, the lines for the mem-
bers of the cluster are highlighted in the parallel coordi-
nate plot.

Implementation

XCluSim was developed using Java Standard Edition 7
(Java SE 7), which enables it to run on any platform
with JRE version 1.7 or higher. We used the Piccolo 2D
framework to implement visualization components and
interactions. Weka’s clustering algorithms were inte-
grated into XCluSim using Weka SDK 3.6 [20].

Results and discussion

Case studies

To evaluate the efficacy of XCluSim, we conducted two
case studies with our collaborator in a major bioinfor-
matics research laboratory. He is a senior research engi-
neer and has years of experience in genome and
transcriptome analyses.

Elucidating the role of ferroxidase in cryptococcus
neoformans var. grubii H99 (case study 1)

This study was carried out in his laboratory for 80 min-
utes. Pre- and post-study interviews were conducted for
10 minutes each. The participant used XCluSim for
50 minutes after a 10-minute tutorial. We used a dataset
containing normalized expression levels of 6,980 genes
belonging to the Cryptococcus neoformans var. grubii
H99 strain. The dataset had been prepared for his pre-
vious work [31].

His task was to elucidate the role of ferroxidase (cfol)
by knocking it out. He was interested in finding a mean-
ingful set of genes whose expression would be influ-
enced and in identifying the affected pathways. For the
task, he tried to see the effect of fluconazole on two dif-
ferent strains: the wild type of Cryptococcus neoformans
var. grubii H99 and the cfol mutant of the same strain.
In the dataset, each gene has four expression levels: two
different strains, each cultured in two conditions (i.e.
wild-type strain and cfol mutant with and without flu-
conazole treatment).

When he loaded the data, he made four new data col-
umns of ratio values, including the wild-type strain with
fluconazole versus the wild-type strain without flucona-
zole treatment (WT+F/WT-F) and the cfol mutant with
fluconazole versus the cfol mutant without fluconazole
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treatment (MT+F/MT-F) (Figure 5). Subsequently, he
adjusted the RPKM threshold and used log fold changes
to filter out less interesting genes for more efficient
analysis.

After data pre-processing, XCluSim showed the results
of three clustering algorithms (i.e. HAC, SOM cluster-
ing, K-means clustering) in three independent views.
Since he was most familiar with dendrogram and heat-
map visualization, he examined the HAC results first.
He was interested in genes that were highly expressed
with fluconazole treatment. Among them he found the
gene named Ergll (CNAG_00040). He said that this
gene was reported to be associated with azole resistance.

Next, he tried to see which genes were stably grouped
together across different clustering results. He tried to
load as many clustering results as possible to see the dif-
ferences between them. The parameter information view
provided him with a good overview of all clustering
results (clustering algorithms and their parameters). He
was able to make diverse clustering results without gen-
erating any duplicate results.

After generating 15 different clustering results, he
selected four diverse results from the FDL overview to
find out which genes were clustered together with
Ergll. However, he recognized that the stable groups
were excessively thin because of the result named
“FarthestFirst(6).” This had to do with the fact that it
was the most dissimilar result to other selected cluster-
ing results (Figure 1). So he removed that result from
the parallel sets view. Then he selected a more similar
one named “KMeans Clustering(4)” (Figure 3A). He sub-
sequently accessed the stable group with Ergll directly,
utilizing the search feature in the tabular list view. He
was able to confirm that 17 other genes belonged to the
stable group. After validating the members of the stable
group with an enrichment analysis, he found that most
of them (10 out of 18) belonged to the ergosterol bio-
synthetic pathway.

Once he had selected the stable group in the tabular
list view, he was able to efficiently inspect the flow of
the group across different clustering results in the
enhanced parallel sets view (Figure 3B). While he looked
into the flow of the stable group across all rows (the
rightmost highlighted-band in Figure 3B), he also
noticed that the clustering result from “KMeans Cluster-
ing(4)” had the tightest cluster, which included the
stable group. However, there were no more genes out-
side the stable group in the cluster that belonged to the
ergosterol pathway.

Then he tried to find the best algorithm and those of
its parameters that gave the tightest cluster containing
genes belonging to the ergosterol pathway. Since
“KMeans Clustering(4)” had previously been the best
clustering result among the selected results, he ran
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K-means clustering algorithms with different parameters
to arrive at similar results. He then inserted three of the
most similar results in the parallel sets view (Figure 3C).
Again, he highlighted a stable group with Ergl (the band
indicated with a red arrow in Figure 3C). By checking
the flow of the stable group crossing each result, he
recognized that “KMeans Clustering(14)” gave the tight-
est cluster. This led to the conclusion that K-means
clustering with the corresponding parameter configura-
tions (i.e. Euclidean distance as the distance metric and
9 as the number of clusters) was the best result for the
given dataset among all the results.

Finding a clustering result that clearly represents biological
relations (case study 2)

A second case study was subsequently carried out with
the same participant in his laboratory. The study was
conducted for 150 minutes on a different day. Since the
participant was already familiar with XCluSim, we
skipped the tutorial. In the study, he relied on the gene
expression profiles of 169 genes in Escherichia coli,
which used a DNA microarray [32]. In the dataset, each
gene contained 19 expression levels in order to investi-
gate the effects of the perturbations on tryptophan
metabolism. The expressions were measured under the
following conditions: wild type growth with and without
tryptophan (five conditions), wild type growth with and
without tryptophan starvation (nine conditions), and the
growth of wild type and a ¢rp repressor mutant (five
conditions).

Through the case study, the participant wanted to find
a clustering result that clearly reflected biological rela-
tions in tryptophan metabolism. In the original paper
[32], the authors used HAC to cluster the 169 gene
expression profiles measured in the 19 conditions. It
was indicated in the paper that genes showing similar
expression responses did not necessarily fall into the
same cluster. One example included the genes asso-
ciated with aromatic amino acid metabolism.

He first wanted to see if the optimal algorithm and its
parameters in the previous case study would work for
another dataset. To determine this, he produced 11
clustering results in XCluSim, including the result pro-
duced using previous optimal settings: K-means cluster-
ing with Euclidean distance as the distance metric and 9
as the number of clusters. He validated each cluster in
the result ("KMeans Clustering(6)” in Figure 7A)
through an enrichment analysis using the DAVID web-
site (http://david.abcc.ncifcrf.gov/). After validating each
cluster, he concluded that most of the clusters were
grouped well in the sense that they represented biologi-
cal relations in pathways. However, he recognized two
problems in the result. First of all, a cluster that had
both Arg and Art regulons also contained a gene named
tnaA that was considered to be noise. This was because
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tnaA showed a different expression pattern and was not
highly related to other cluster members in biological
terms. Secondly, one gene from the fli operon, fIiS, fell
into a different cluster from the other genes in the same
operon while they had homogeneous expression
patterns.

By utilizing visualizations in XCluSim, he wanted to
find the clustering result that properly represented biolo-
gical relations as “KMeans Clustering(6)” while the two
problems were revisited. For this intended task, he
selected all the similar results from the FDL overview:
“KMeans Clustering(5)”, “KMeans Clustering(8)”, and
“KMeans Clustering”. Then he accessed the stable groups
that contained tnaA and the Arg/Art regulon. He easily
recognized that genes in both the Arg and Art regulons
fell into same stable group while tnaA was not stably
clustered with them. The results, which separately clus-
tered tnaA from the Arg and Art regulons, were “KMeans
Clustering(5)” and “KMeans Clustering(8)”. Similarly, by
checking the flow of stable groups in each horizontal row,
he easily recognized that two clustering results that used
the correlation coefficient as a distance metric clustered
two stable groups together: one with the fli operon and
the other with fIiS. The two results were “KMeans Clus-
tering(5)” and “KMeans Clustering”. As a consequence,
“KMeans Clustering(5)”, using the correlation coefficient
as the distance metric and 13 as the number of clusters,
was the most satisfying result for the dataset.

Additionally, our participant gained insight by seeing a
stable group in XCluSim. Genes in the trp operon (i.e. trpE,
trpD, trpC, trpB, and trpA) were stably clustered together
with yciF through the four different results (see the high-
lighted stable group in Figure 7A). Since yciF was assigned
to a putative function, he said that the gene might be clo-
sely related to tryptophan synthase as a trp operon.

After he found the best result, he compared it with a
clustering result provided in the original work [32] to
see if his result better represented biological relations
(Figure 7B). The clustering result presented in the paper
had been prepared prior to the study and was imported
to XCluSim for visual comparisons. After comparing
two results, he found that some of the genes involved in
aromatic amino acid metabolism, aroF, tyrA, aroL, and
aroP, were clustered together in our best result while
only three of them fell into the same cluster in their ori-
ginal result. Moreover, their result did not cluster fliS
with the other fli operon. These results suggested that
the authors of the original work [32] could have gener-
ated more biologically meaningful results if they had
used XCluSim in the first place.

Discussion
During the case studies, we received positive subjective
feedback on XCluSim from the participant. He especially
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Figure 7 Results of the second case study are visualized in the enhanced parallel sets view. (a) The highlighted stable group contained the
trp operon with yciF. (b) Visual comparison of two results: the best clustering result ("'KMeans Clustering(5)") derived from the case study and a
result ("A Result from Original Paper”) presented in the original research paper [32].
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liked the ability to identify stable groups across multiple
clustering results. Moreover, he was satisfied that he
could select and run diverse clustering algorithms and
interactively compare them by adding/removing a clus-
tering result to/from the enhanced parallel sets view. He
could quickly shift his attention to a more interesting
set of results for more in-depth comparison. However,
he also pointed out the limitations of XCluSim. Since

filtering sets of items was only available at the data
manipulation step, he said it would be helpful to allow
users to interactively filter raw data in the visualization
components as well.

We color-coded each cluster consistently across the
whole system using the Tree Colors scheme after build-
ing a hierarchical structure of all clusters from multiple
clustering results. With the help of this color coding,
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overviews became even more useful in XCluSim. While
the color encoding was applied for a specific purpose in
this work (i.e. for the visualization of clusters), we think
it can also be applied to parallel sets applications in a
more general and scalable way. For example, instead of
distinguishing only a small number of categories while
visualizing a categorical dataset, it might be possible to
distinguish many more nodes in the parallel sets once a
hierarchical structure of the nodes has been built in a
similar manner to the one we employed in XCluSim.

We provided a taxonomy of visualization techniques
for visualizing clustering results based on the Gestalt
principle of grouping and the types of clustering algo-
rithms. The design space defined by this taxonomy can
help researchers to make design decisions for clustering
results visualization. By thinking about visualization
techniques in terms of the Gestalt principle, researchers
can come up with better visual encoding without over-
looking important features. For example, since the graph
layout is used to visualize cluster memberships by color-
coding each item [5,16], one can also utilize the enclo-
sure principle (like GMap [33] and BubbleSets [34]) to
represent their membership more clearly.

Future work

At present, when a clustering algorithm does not assign all
items to clusters, all un-clustered items are treated as a
single cluster in XCluSim. OPTICS and DBSCAN cluster-
ing algorithms can give rise to results of this kind. XClu-
Sim treats un-clustered items as a group of less interesting
items as if it were a special cluster. Otherwise, it could
make a huge number of stable groups since each un-clus-
tered item will become a single stable group. This would
make it hard for users to gain insight from visualizations.
In the future, we plan to improve XCluSim to resolve this
problem. For example, we can represent these kinds of
groups with different textures in the parallel sets view to
distinguish them from other normal clusters.

In this paper, we concentrated mostly on supporting
comparison tasks based on the concordance/discordance
of multiple clustering results. However, since bioinfor-
maticians’ cluster analysis is highly integrated with the
validation stage, it would also be valuable to provide a
visual representation of cluster validity measures (e.g.
internal cluster validity indices). For example, the gray
scale intensity of each band (i.e. stable group) in the
parallel sets view, which currently represents the size of
a stable group, can be utilized to represent its internal
validity measures. In such a case, stable group provided
by XCluSim will become more reliable information.

Conclusion
In this paper, we presented XCluSim, a visual analytics
tool that enables users to compare multiple clustering
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results. XCluSim provides three different overviews to
help users grasp their overall similarity relationships in a
more scalable and flexible way. Moreover, the enhanced
parallel sets view enables users to detect differences
among select clustering results even more clearly by using
improved user interactions. To help users not only com-
pare but also explore individual clustering results more
effectively, we proposed dedicated visualizations for each
of the three distinctive classes of clustering algorithms. To
design them, we defined a design space for clustering
results visualization by building a visualization taxonomy
based on the Gestalt principles of grouping. This taxon-
omy could be useful for other researchers when they
design new visualizations for a clustering result. We con-
ducted case studies to evaluate the usefulness of XCluSim,
and the participants gave positive feedback.

List of abbreviations
HAC: Hierarchical agglomerative clustering; SOM: Self-organizing map; EM:
Expectation-maximization; FDL: Force-directed layout.
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