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Abstract

Frequent subgraph mining is a useful method for extracting meaningful patterns from a set of graphs or a single
large graph. Here, the graph represents all possible RNA structures and interactions. Patterns that are significantly
more frequent in this graph over a random graph are extracted. We hypothesize that these patterns are most likely
to represent biological mechanisms. The graph representation used is a directed dual graph, extended to handle
intermolecular interactions. The graph is sampled for subgraphs, which are labeled using a canonical labeling
method and counted. The resulting patterns are compared to those created from a randomized dataset and
scored. The algorithm was applied to the mitochondrial genome of the kinetoplastid species Trypanosoma brucei,
which has a unique RNA editing mechanism. The most significant patterns contain two stem-loops, indicative of
gRNA, and represent interactions of these structures with target mRNA.

Introduction
In most organisms the process of protein synthesis is well
understood. Deoxyribonucleic acid (DNA) is transcribed
into messenger ribonucleic acids (mRNA), which are then
translated into polypeptides that fold to create proteins.
However there are a few families of organisms where the
process deviates from the norm. One such family is the
Kinetoplastida in the kingdom Excavata. The mRNA pro-
duced from the mitochondrial DNA of this family cannot
be directly translated into protein but must be prepared by
a process called RNA editing. This process is mediated by
short RNA molecules called guide RNA (gRNA) [1].
Another closely related family, Diplonema, also has a
unique editing system in its mitochondria. In this case the
genes are fragmented into “modules” which are tran-
scribed separately and then assembled by an unknown
mechanism [2].
Little work has been done in the development of com-

putational methods for discovering gRNA. The existing
methods suffer from poor precision and dependence on
experimental transcript data [3,4]. Even less has been

done for Diplonema. The current research has only
shown that known cis-splicing mechanisms are not pre-
sent and suggests that RNA guides or proteins mediate
the process [2]. A computational approach was used in
one study but again suffered from a lack of precision,
generating millions of candidate structures [5].
The objective of this new methodology is to discover

RNA interactions occurring in known or novel RNA-
mediated mechanisms. These mechanisms involve RNA
with a specific secondary structure formed by comple-
mentary sequences within the molecule. Depending on
the location of these stems different substructures can be
created. There are four basic substructures: stem-loops,
interior loops, bulges and pseudoknots. These RNA also
contain complementary sequences to other RNA, such as
target mRNA, to allow them to form a quaternary struc-
ture. If all possible stems between a set of molecules
were known, any RNA mechanism would be a subset of
those stems. The problem then becomes finding that cor-
rect subset of stems. However the number of possible
stems is very large, and the number of combinations of
these stems is enormous.
The first challenge is determining how to represent the

data. The information of interest is the position of the
complementary sequences, the length of these sequences,
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and the relative locations of these sequences. Since this
data is many single units of information, interconnected
by there relative locations, it is well suited for a graph
representation. Furthermore, graphs are ideal for repre-
senting complex topologies, which in this context allows
for representation of complex RNA structures and inter-
actions. Graph representations for RNA structure have
been used in other studies, usually using a planar tree
graph representation [6]. In tree graphs, loops are col-
lapsed into nodes and the stems forming the loop
become edges. The main drawback with tree graphs is
that pseudoknots cannot be represented. A proposed
solution was to add additional edges between nodes that
form pseudoknots [7] however this breaks down the tree
representation and a special case must be made for
matching these structures. Recently an extension of tree
graphs was developed, call 3D tree graphs, for modeling
tertiary structures [8].
An alternative solution is to use the reverse representa-

tion, that is, stems become nodes and loops become two
edges. With this modification pseudoknots can be repre-
sented by three edges between two nodes. This type of
graph is called a dual graph [6]. However some ambigu-
ities may occur with this representation. The order of
stems while going along the RNA strand can be modified
but would still produce the same dual graph. This can be
resolved by creating directed edges, creating the directed
dual graph representation, which was used in this work
[6]. This representation is more robust than tree graphs
with no disadvantages, and its application to modeling the
interactions between many RNA molecules has not been
explored. An example of each graph representation is
shown in Figure 1.
Recently this representation was used on a moderately

large scale to produce the RNA as Graph (RAG) database
[6,9]. This database stores dual graph representations
of all known RNA motifs as well as their tree graph

versions. The algorithm produced approximately 53,000
dual graphs up to a size of 9 nodes from individual RNA,
which they classified as RNA-like and non-RNA-like.
This is dwarfed by the search space of all possible RNA
structures across multiple molecules, which is in the
order of tens of millions of subgraphs.
Another graph representation using the reverse repre-

sentation is a “stem graph” developed by Hamada et. al.
[10]. This is a directed, labeled graph where the nodes
represent candidate stems. The edges represent the rela-
tive locations of the stems and are labeled P (Parallel), N
(Nested) or K (Pseudoknotted) to capture how stems are
orientated. Like dual graphs, this representation can sup-
port pseudoknots because of this labeling technique.
However this approach requires edges from each node to
all the downstream nodes. This could cause scalability
issues for complex or large structures.
A graph created from all complementary sequences will

be largely noise. An accepted method for extracting use-
ful data from graphs is called Frequent Subgraph Mining
(FSM). FSM is the process of finding subgraphs in a
graph with a frequency no lower than a specified thresh-
old. In the single graph setting, the number of “embed-
dings” of a subgraph within the graph are counted to
determine frequency. This presents unique challenges
since many embeddings can be overlapping which could
lead to the frequency not being downward closed. More
specifically, the anti-monotonicity property would not
hold, which declares that a subgraph can only be frequent
is all of its subgraphs are frequent [11].
Many approaches solve this problem by creating an

overlap graph [12,13], where a subgraph instance is a
node and an edge exists between nodes if the instances
overlap. The size of the maximum independent set (MIS)
is determined and is used as the support value. This is
costly since finding the MIS is a NP-complete problem
[14] so generally it is approximated or alternative

Figure 1 Tree graph versus dual graph example. Example RNA structure (A) with corresponding tree graph (B) and directed dual graph (C) [6].
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approaches are used. Fiedler and Borgelt [15] suggested a
definition called harmful overlap support. This method
still calculates the MIS, however it divides overlaps into
two kinds, harmful and simple. The process is sped up by
ignoring the simple overlaps and still maintains anti-
monotonicity. Bringmann and Nijssen [16] defined a new
support measure that does not rely on the calculation of
MIS but instead on the number of unique nodes in the
graph to which a node of the pattern is mapped. There-
fore it is less expensive computationally than the other
two methods, but still relatively costly.
Another challenge is determining whether two sub-

graphs have the same topology. This is called the subgraph
isomorphism problem and it is also NP-complete [17].
Various approximations have been proposed including the
use of canonical labeling. Canonical labeling allows for a
“code” to be assigned to a subgraph that will be consistent
even if the order of vertices and edges changes [12]. This
is accepted as the fastest method for determining subgraph
isomorphism [12,18,19]. There was no need to expand this
method or develop a new method.
A difficulty of single-graph FSM is the often enormous

size of the input graph and consequently the search
space. Few algorithms attempt to search the entire search
space and do not scale well, such as hSiGraM/vSiGraM
[12]. Most approaches use heuristics or stochastic meth-
ods to find approximate solutions. Some examples are
compression-based methods (SUBDUE [19]), pruning
methods (GREW [13]) and sampling methods [20] in
order of how well they scale, worst to best.
We present here a generalization of the directed dual

graph for both intramolecular and intermolecular comple-
mentary regions, thus capturing secondary structure as
well as interactions between RNA structures. We devel-
oped a new frequent subgraph mining method specifically
for this type of representation and show that it can be
effectively used to find de novo, biologically plausible
structures. This is also the first application of FSM on dual
graphs and of FSM for the discovery of RNA motifs and
interactions in a single graph (including intermolecular)
setting.

Methods
Finding complementary regions
The first step of the algorithm is to find all possible
complementary regions between the input sequences. A
complementary region of a sequence is another
sequence where the nucleotides complement each other
(A-U/T, C-G, G-U/T) and are in reverse order. The
algorithm used to match the sequences is a naive
method involving matching each position i in a
sequence of size n with every other position n-j, with
some heuristics. Firstly, since i and j are indexing the
same sequence, comparing i = 1 to j = 2 is equivalent to

i = 2 to j = 1. Therefore the heuristic of enforcing j > i
is used to avoid finding duplicate matches. Secondly the
maximal match is always used and the match positions
are stored from the last iteration so i + 1 is not matched
to j − 1. This avoids the creation of nested matches
which would greatly increase the number of nodes with-
out adding any more information. The matches must be
of specified minimum size and can only contain a cer-
tain percent of G-U matches.
An alternative approach for filtering matches using

stacking energy was also implemented. This is done by
summing the stacking energies of each matching pair of
nucleotides based on the previous matching pair. If mis-
matches are allowed, the mismatch energy is used for
mismatching pairs. The energy values and procedure
were derived from the Vienna package implementation
[21]. Consequently every node created has an associated
free energy in kcal/mol. This value can be used to filter
nodes to reduce the size of the graph and improve the
quality of the final structures. Shorter stems and stems
with higher G-U pairs are naturally filtered in this way.

Graph representation
The graph representation used is the directed dual
graph [6]. In this representation every complementary
region is represented as a node. Unpaired nucleotides
are represented as edges which are directed in the 5’ to
3’ direction. The graph is also not necessarily fully con-
nected since edges are only created between nodes on
the same molecule. This representation was adapted to
handle intermolecular interactions by adding the notion
of intermolecular nodes. Edges are only created between
nodes on the same molecule. This allows all possible
interactions to be captured without the creation of
excess edges for each node.
Every node can have at most two predecessors and

two successors. The nodes at the 5’ and 3’ ends of the
sequences will have one fewer. This leads to the relation
|E| = 2|V | − 1, which indicates the graph is (2,1)-sparse.
The sparseness of this representation justifies the use of
an adjacency list rather than a matrix. However since
the edges are always between adjacent nodes the data
structure can be simplified to a list of nodes. Addition-
ally every node has a reference to a “sister node” else-
where in the list. This allows for both sequences in a
match to be treated as one node while still maintaining
the simplicity of the list data structure. In other words,
if you traversed the sequence from 5’ to 3’, every node
will be visited exactly twice, and that path would create
the graph (Figure 2).
When a complementary region is found, two nodes

are created. One node is for the sequence at the ith
position and the other is the sister node with the
sequence at the jth position. The first node is added to
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Figure 2 Example of graph building given two input sequences. Example of graph building given two input sequences. All intermolecular
(A) and intramolecular (B) complementary regions are discovered and enumerated (C). Traversing the sequence using the priority queue, the
nodes corresponding to each region can be created to form the final graph (D). An example of a three node subgraph being sampled from a
dual graph (E).
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the master list of nodes and the sister node is added to
a priority queue. The priority queue ensures the nodes
are sorted based on position. If the priority queue is not
empty it is checked for nodes that have an index match-
ing the current position. If such a node exists it is
popped out of the queue and added to the master list
(Algorithm 1). The procedure builds the graph in O
(nlogn) where n is the number of complementary
regions, due to sorting occurring in the queue.
Algorithm 1 Pseudo-code for building the graph.
1: max = last position
2: queue = new PriorityQueue
3: graph = new Graph
4: for all Sequences : S do
5: for i = S.start; i ≤ S.end; i + + do
6: if queue not empty then
7: sisN ode = queue.peek()
8: while sisN ode.location = i do
9: graph.addNode(sisN ode)
10: sisN ode = queue.peek()
11: end while
12: end if
13: for j = max; j ≥ i; j − − do
14: if Not nested of last match then
15: if match(i,j) then
16: create node
17: create sisN ode
18: graph.addNode(node)
19: queue.add(sisN ode)
20: end if
21: end if
22: end for
23: end for
24: end for

Sampling of subgraphs
The created graph now becomes the search space for
frequent subgraph mining. Since edges are the unpaired
nucleotides between two adjacent nodes, two nodes that
are not adjacent would not have an edge connecting
them but still form a valid subgraph. This makes the
use of a pattern-growth method for searching the graph
insufficient since many potential graphs will be missed.
Therefore it is necessary to sample sets of nodes, which
changes the edges between the nodes. For example, if
the nodes 1, 3 and 4 are selected from the graph in
Figure 2 D, it would produce the subgraph in Figure 2 E.
Note that the edges (1, 2) (2, 3) and (1, 5) (5, 4) become
edges (1, 3) and (1, 4) respectively.
This causes a unique challenge that cannot be solved

with common FSM algorithms. This is because formally
the subgraphs produced are actually graph minors,
which is a graph produced by contracting edges of the
original graph. Since the inspiration for this work was

drawn from mining traditional subgraphs, we will adopt
the term “subgraph” for the graph minors produced.
Consequently the search space is much larger than the
set of all true subgraphs. The search space is large
enough that a deterministic search of all subgraphs is
infeasible. For this reason it was decided that a sampling
approach would be used with the assumption that if the
sample size is large enough the proportions of frequent
subgraphs in the sample would be equal to that of the
entire graph.
The sampling method used, k-nearest neighbor, uses a

k parameter rather than a sample size parameter. A ran-
dom node is selected in the graph and all overlapping
nodes are flagged as “unavailable”. The algorithm then
adds (k − 1)/2 nodes in both the 5’ and 3’ direction
until a subgraph of size k is created, if enough nodes are
available. This method is preferred over the random
method since it has a bias toward creating structures
with elements close to each other which are more likely
to occur in nature. Furthermore it draws out more
intramolecular nodes, which are vastly outnumbered by
intermolecular nodes. This method has an additional
option to allow unrestricted overlap of intermolecular
and intramolecular nodes, but not two nodes of the
same type. This allows subgraphs to represent both
states of a mechanism, which are when the molecules
are separate and when they are bound.

Canonical labeling
To determine the frequency of each subgraph, iso-
morphic graphs need to be grouped and counted. This
is accomplished by labeling each subgraph based on
topology, node labels and edge labels. The combination
of these labels allows for the canonicalization of the sub-
graphs and greatly increases the speed of comparing
graphs. In the general case for simple undirected graphs,
this process is as difficult as the subgraph isomorphism
problem which is NP-Complete. This is because for a
given subgraph, all possible permutations of node/edge
labels must be compared and the lexicographically lar-
gest or smallest label must be selected [12]. Due to the
ordered nature of the directed dual graph representa-
tion, the nodes can only be arranged in one way and
therefore only one label can exist. This makes it possible
for the labeling process to be completed in linear time
with respect to the size of the subgraph.
Each subgraph is labeled and compared to other

already labeled subgraphs. At this point a unique label
based on node IDs is checked for determining auto-
morphism which ensure no duplicates are counted. Every
time a unique subgraph is found a “pattern” is created
which encapsulates the label information and stores
instances of the pattern. Subsequent subgraphs are com-
pared to existing patterns and either added or form new
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patterns. The combined labels are hashed for fast access
and matching. Once all subgraphs are labeled the final
output is the set of patterns.
All labels are sequences of digits or boolean values

separated by pipe characters. The topology label is cre-
ated by assigning indices to nodes as they are visited in
the subgraph. If a sister node is reached the index of
first instance is used. This method can capture any dual
graph topology and will have a one-to-one mapping of
labels to topologies. Match length and intermolecular/
intramolecular labels are the values assigned to the
nodes, in the order that the nodes are visited. The for-
mer describes how many nucleotides are in the comple-
mentary sequence and the latter whether the match is
between sequences on the same molecule or different
molecules. The length values are normalized to a dis-
crete scale, 0 to 5 by default (Table 1).

Determining statistically significant patterns
Frequencies of patterns on their own are not very useful
for determining biologically relevant patterns. Some pat-
terns are far more likely to occur over others by chance.
For example a pattern containing one node with the mini-
mal match length will always be most frequent, but is not
very useful for further analysis. To solve this problem the
algorithm runs twice, once with the real data and again
with the data randomize. The randomization was done
using a Markov chain of order 1 to randomize the input
sequences while maintaining nucleotide and dinucleotide
frequencies. The size and number of molecules were also
maintained. This produces two sets of patterns which can
then be compared to determine patterns that are signifi-
cantly more frequent in the biological data. Both the
observed graph and background graph may have millions
of nodes, making it infeasible to have multiple randomized
background graphs.
Each pattern in each set has a number of unique

embeddings. The first step is to determine the propor-
tion of embeddings (p) associated with each pattern by
dividing the frequency ( f ) over all embeddings (N)
(Equation 1). The total number of embeddings is equal
to the number of valid subgraphs sampled from the
entire graph. For the proportions of the sample to
reflect the real proportions, the number of subgraphs
selected in the sample must be large. As the number of
subgraphs sampled approaches the total number of pos-
sible subgraphs, the hypothetical proportions approach

the real proportions of the graph. A benefit of using
proportions over raw frequency values is that they are
relative to the total number of subgraphs, which will
vary between the two sets.
The next step is to find all the differences between the

proportions for each pattern. Due to the large number
of embeddings and patterns, the proportions are very
small. Taking the differences of these numbers would
yield another set of very small numbers. Furthermore
there would be a bias towards patterns with large num-
bers of embeddings which can have large numerical dif-
ferences even if they are relatively close. For this reason
the ratio between proportions are used. This ratio is cal-
culated by dividing the observed proportion (pobs) by the
expected proportion (pexp) (Equation 1).
To avoid divide-by-zero errors, if the expected fre-

quency is zero then the frequency is set to one. Since
the expected frequency cannot be predicted and assum-
ing the value is one skews the distribution, these values
are not used in further calculations. However they are
retained to estimate the p-value for rare patterns after
the distribution is created. Conversely if the observed
frequency is zero, then the pattern is ignored also
because any assumption would skew the distribution.
Therefore the ratios used for the final step are only
those that correspond to patterns that exist in both sets.

pobs =
fobs
Nobs

pexp =
fexp
Nexp

lpr = log
(
pobs
pexp

)
(1)

The final step is to examine the resulting set of ratios.
The distribution of the ratios themselves lay between one
and zero where most observations are close to one and
drop exponentially when moving towards zero. However
taking the log of the ratio produces an almost normal dis-
tribution (Figure 3). As would be expected there is a skew
towards the positive end since they correspond to patterns
found in higher frequency in the observed results. How
close the distribution is to the normal distribution was
quantified using an Anderson-Darling test for normality
[22]. The test yielded a p-value between 0.03 and 0.05,
which means the difference between the distributions is
just significant enough to reject the null hypothesis. How-
ever the Anderson-Darling test is very sensitive and there-
fore it was decided that the distribution is sufficiently close
to normal to make the assumption that it is normal. The
consequence of this assumption is that some p-values may
be smaller than those produced from the actual distribution
and subsequently overestimate the significance of certain
patterns.

Table 1 Labels corresponding to the graph in Figure 1

Property Label

Topology 0|1|1|2|2|3|3|0

Match Length 4|5|4|5

Inter/Intra Intra|Intra|Intra|Intra
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The mean and standard deviation of these log ratios are
calculated and used to create a normal distribution. From
this distribution the p-value is calculated for each pat-
tern’s ratio by determining one minus the cumulative
probability. Patterns are then ranked by p-value and
those with the best p-value represent potential biological
mechanisms. The construction of the normal distribution
and operations on the distribution were implemented
using Apache Math Commons version 3.2.

Experimental setup
Two kinds of data sets were used for evaluation. The first
is a controlled synthetic data set and the second is a real
data set. Synthetic data is produced by generating random
sequences and inserting positive examples. Other exam-
ples can be inserted to create various levels of noise. The
real data set is from biological data with known examples
that can be verified. If the algorithm can perform well for
these two cases, where the performance can be empirically
determined, then the algorithm can be used with confi-
dence on an unknown data set. A third data set, the mito-
chondrial genome of Diplonema papillatum, was also
used as a data set with an unknown mechanism.

Synthetic data
The synthetic data is based on the gRNA mechanism of
Trypanosoma brucei. The input is split into two sequence
types, minicircles and mRNA. 200 sequences are syn-
thetic minicircles and 5 sequences are synthetic mRNA,
each sequence being 800nt. The ratio of minicircle to
mRNA as well as the length of each sequence was derived
from real data. The true ratio of minicircle to mRNA is
approximately 38:1 which is close to the used ratio of
40:1. Maxicircle mRNA transcripts are an average length

of 737nt [3], which was rounded to 800nt for this data
set. Minicircle lengths for Trypanosoma brucei are, on
average, approximately 1Kb long [23], however 800nt
was selected to have a balanced data set. The nucleotide
composition was determined by counting nucleotide fre-
quencies in the real data. The frequencies were deter-
mined by chromosome type and the approximate percent
composition of each nucleotide was used to generate the
synthetic sequences.
The model gRNA were made of three complementary

sequences. Going from 5’ to 3’ these are an anchor sequence
followed by two stem-loops. The anchor overlaps withe the
first stem-loop as it does in nature [24]. The anchor is 12nt
long, based on the maximum size provided in the work of
Hajduk and Ochsenreiter [25]. Stem-loop stem sizes vary so
a conservative size of 10 bp was chosen. The spacing
between these elements was chosen to be 5nt. This produces
a pattern with a label “0|1|1|2|2-inter|intra|intra”, however
the pattern label “0|1|0|2|2-intra|inter|intra” would also be
acceptable if the stems were extended by chance.
An algorithm was then used to insert model gRNA into

the sequences by modifying regions of the sequences. This
algorithm identifies three regions of appropriate length and
location. The first is stored and the reverse complement is
inserted into one of the mRNA, creating the anchor. The
second and third are also converted into reverse comple-
ments and inserted downstream to created the stem-loops.
Four gRNA were inserted into each minicircle which is the
median number of gRNA genes per minicircle, with the
range being between three and five gRNA [23].

Trypanosoma brucei data
The second data set used to test the algorithm was a
real biological dataset from the public KISS database [3].

Figure 3 Histogram of log ratios. Histogram of log ratios of the proportions of subgraphs for patterns produced from the synthetic data set.

Gawronski and Turcotte BMC Bioinformatics 2014, 15(Suppl 13):S2
http://www.biomedcentral.com/1471-2105/15/S13/S2

Page 7 of 15



The complete data has minicircle sequences and mRNA
transcripts, both edited and unedited. Since the unedited
mRNA is included in the edited mRNA, only the edited
mRNA was used. This also reduces the number of false
positives due to anchors being found in unedited
regions. The data also includes mRNA from normal
genes that do not undergo editing, which were removed.
In the context of RNA editing, it is often simple to
determine which mRNA undergoes editing by compar-
ing the sequence to experimentally determined mature
mRNA or polypeptide sequences. The final data set
includes 455 minicircles and 12 mRNA sequences. The
approximate total length was 358,000nt for the minicir-
cle sequences and 8,800nt for the mRNA sequences.

Diplonema papillatum data
This data set was used to test the algorithm in a case
where the mechanism is unknown. The data was taken
from the work of Kiethega et. al. [5]. It includes the com-
plete mitochondrial genome as well as expressed
sequence tags (EST) which were used as the first input
where ppRNA are expected to be found. This portion of
the data contains approximately 6,000 sequences. The
second input are the 9 modules of the cytochrome oxi-
dase subunit 1 gene, since this is the only gene the
authors have sequenced so far. The total size of the data
set is 3,450,000nt for the first input and 1600nt for the
second. All ESTs with unknown sequences (only ‘N’
characters) were removed and areas with low complexity
were masked with ‘N’ characters. This brought down the
size of the data set to 2,816,000nt. This is still signifi-
cantly larger than the other data sets so it was also useful
for testing the scalability of the algorithm.

Metrics
For metrics, precision and recall were used, generated
from a contingency table. Since the data is imbalanced
(1:150 positive to negative example ratio), precision and
recall are more effective than accuracy and specificity as
a metric of performance [26]. In the context of the
experiments the examples are subgraph embeddings. The
actual positive examples are the inserted or real gRNA.
When the synthetic data set was used, the subgraphs
must have a label matching the correct pattern label and
have node locations that are within a specified distance
from the actual positions. This distance was set to 5nt for
all test since any extension beyond this would be unlikely
to occur by chance.
The predicted positive examples are the embeddings

corresponding to the patterns which meet p-value and
frequency thresholds. Since a sampling technique is used
the total number of real positive examples only includes
those that were sampled and all others remain unclassi-
fied. This is unlike conventional data mining techniques

where the complete set of positive and negative examples
can be enumerated. This is an important factor to con-
sider when interpreting the results.
The Trypanosoma brucei data set is from the KISS

database which also stores all experimentally verified
gRNA as well as gRNA predicted using a modified
BLAST search. These matches are stored in General
Feature Format (GFF), which were parsed to extract the
locations of anchors where the gRNA binds to the pre-
mRNA. Whenever a frequent subgraph is identified, it is
checked for an intermolecular node. The start and end
locations of this node with respect to each input
sequence are extracted. These locations are then com-
pared to those of the real locations from the GFF files.
If a match is found, the subgraph is considered a true
positive (or false negative). This method is not as strin-
gent as the method used for synthetic data.
The objective score used to compare the final results is

the F-score (Equation 2). This score is based on the har-
monic mean of the precision and recall. The harmonic
mean is different from the arithmetic mean because it is
less sensitive to outliers. This is appropriate in this context
since values closer to each other are preferred. For exam-
ple, 1% precision and 100% recall would have a higher
arithmetic mean than 50% precision and 20% recall, even
though it is less meaningful. However the harmonic mean
is higher in the latter than in the former. The F-score is
also weighted (b), which allows for favoring precision over
recall or vice versa. In these experiments the value is fixed
to 1, since neither is preferred. The F-score is compared to
the F-score of the baseline, calculated using the same
number of positive and negative examples as the actual
result but chosen at random.

Fβ score =
(
1 + β2) × precision × recall(

β2 × precision
)
+ recall

(2)

Results and discussion
Synthetic data
Analyses of each parameter was carried out and a test
case of the best parameters was created (Table 2). This
test case has 8 different combinations with 6 replicates
per parameter combination. The average of the 6 repli-
cates was used for comparison.
The results of this test case are summarized in Table 3.

The initial results showed precision values significantly
lower than the recall. For this reason the test case was
run again with a more stringent p-value. The best score
was for run number 4, with a F-score of 63.18%. The best
single run was the third replicate of run number 2 which
yielded a precision of 98.31% and recall of 79.48%. This
run also had the maximum precision of all runs. The
highest recall recorded was 97.57% from the third
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replicate of run 4. The specific replicates are not shown
here but are provided in [27]. All tests performed much
better than the random classifier (P = 6.29 × 10−5), as
determined by a paired t-test.
The baseline performance varies between runs with

some runs having higher precision and recall than
others. This may be an indicator that a specific run is
only better than others because it should be better sim-
ply by chance. To objectively compare the various runs,
the results should be corrected depending on the corre-
sponding baseline. To accomplish this, the F-score of
the baseline results are subtracted from the F-score of
the observed results. Considering this, the best result is
run number 1, with a 5% higher corrected F-score than
run number 4.
The best result produces exactly one significant pat-

tern which contains nearly all of the inserted structures
(Table 4). This is the pattern containing an anchor and
two stem-loops where the anchor starts just before the
first stem-loop. The other runs for this set of parameters
also included this pattern, as well as a similar pattern

that have the anchor incorrectly downstream of the two
stem-loops. The average p-value for all of the runs was
8.04 × 10−7. The false negatives are most likely the
other correct pattern of |0|1|0|2|2|, where the anchor is
entirely within the hairpin. The only way for this result
to be better would be for the second correct pattern to
be the second result. The other two results for run 2
were similar, with one or two patterns with high fre-
quency of correct embeddings.

Trypanosoma brucei data
Like the synthetic data set, a test case of the best para-
meters was created (Table 5). This test case has 8 differ-
ent combinations with 6 replicates per parameter
combination. The average of the replicates is used for
comparison.
The results for this test case are summarized in Table 6.

The best F-score was lower than that of the synthetic data
set, however still significantly better than the random clas-
sifier (P = 0.033). The best run was determined to be run
number 4 with an F-score of 40.13%. However run num-
ber 2 achieved the highest precision, with one replicate
having 100% precision. The other replicates of this run
were approximately 40% while run number 4 consistently
had >80% precision. The best recall for a single replicate
was 33.63% from run number 3. Again this was only one

Table 2 Parameters selected for the final experiments

Run Length % GU Iterations K Genes Norm P-Value Support

1 9 0 1000000 3 2 2 0.00001 10

2 10 0 1000000 3 2 2 0.00001 10

3 9 0 1000000 3 2 2 0.00001 20

4 10 0 1000000 3 2 2 0.00001 20

5 9 0 1000000 3 2 8 0.00001 10

6 10 0 1000000 3 2 8 0.00001 10

7 9 0 1000000 3 2 8 0.00001 20

8 10 0 1000000 3 2 8 0.00001 20

Table 3 Average F-scores across replicates for each combination of parameters from Table 2 for the synthetic data set

Observed Baseline

Run Precision Recall F-Score Precision Recall F-Score F-Score Diff

1 46.81% 67.77% 55.38% 5.13% 6.52% 5.74% 49.63%

2 42.72% 52.95% 47.29% 16.65% 16.03% 16.33% 30.95%

3 38.80% 57.36% 46.29% 4.70% 7.79% 5.86% 40.43%

4 51.21% 82.46% 63.18% 15.74% 23.76% 18.94% 44.24%

5 19.71% 63.73% 30.11% 5.44% 16.39% 8.17% 21.94%

6 25.38% 82.33% 38.79% 15.33% 53.32% 23.82% 14.98%

7 17.84% 45.99% 25.71% 5.70% 14.14% 8.12% 17.59%

8 27.64% 76.46% 40.60% 16.39% 45.38% 24.08% 16.52%

Avg. 33.76% 66.13% 43.42% 10.64% 22.92% 13.88% 29.53%

Bold results are the best for the given metric.

Table 4 The pattern result of the best run (run 2.3)

P-value Frequency Label

9.40E-7 532 0|0|0|-|0|1|1|2|2|-|inter|intra|intra|
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replicate, while run number 4 was more consistent with
>20% recall. Even when considering the differences in
baseline scores, run number 4 remained the best run.
Again, the individual replicates are not shown here but are
provided in [27].
The best result of run number 4 produced 11 patterns

shown in Table 7. The two most significant patterns are
anchors flanked by stem-loops both downstream and
upstream. There is a fair amount of overlap in the down-
stream stem-loop with the anchor. The elements that
were expected are present but not in the order that was

expected. The next two patterns are anchors broken into
separate nodes either by gaps or areas of high GU%. The
fifth pattern is the most interesting. It appears to not be
the correct pattern, but if it is separated into two sub-
graphs it would produce two |0|1|0| patterns which is a
correct anchor with an encompassing stem-loop. The
gRNA seems to be able to edit at two different sites on the
ATPase subunit 6 gene.
All of the embeddings for the first pattern correspond

to the same anchor on the gene cytochrome oxidase
subunit 3 and second pattern to NADH dehydrogenase
subunit 7. Each embedding links the gene to gRNA
gene on different minicircles. These are likely duplicate
minicircles, since Trypanosoma brucei has many copies
of each minicircle. As would be expected, the probability
that these minicircle duplicates would occur by chance
in the background data is very unlikely so this pattern
would be drawn out. These minicircles are amongst
those with the largest number of duplicates.

Stacking energy experiment results
The Trypanosoma brucei data was used for additional
experiments using a stacking energy model for filtering
stems. The best parameters from the previous runs were
used with an additional free energy (FE) parameter. The
range for energy cutoffs chosen was from -12.00 kcal/
mol to -16.00 kcal/mol. Outside of this range the num-
ber of nodes was either too large or too small to

Table 5 Parameters selected for the final experiments

Run Length % GU Iterations K Genes Norm. P-Value Support

1 10 0.4 1000000 3 2 2 0.01 1

2 10 0.4 1000000 3 2 5 0.01 1

3 12 0.4 1000000 3 2 2 0.01 1

4 12 0.4 1000000 3 2 5 0.01 1

5 14 0.4 1000000 3 2 2 0.01 1

6 14 0.4 1000000 3 2 5 0.01 1

Table 6 Average F-scores across replicates for each combination of parameters from Table 5 for the Trypanosoma
brucei data set

Observed Baseline

Run Precision Recall F-Score Precision Recall F-Score F-Score Diff

1 6.85% 0.33% 0.63% 0.18% 0.01% 0.01% 0.61%

2 46.59% 11.36% 18.26% 0.21% 0.07% 0.11% 18.15%

3 80.52% 15.82% 26.45% 1.15% 0.20% 0.33% 26.11%

4 84.80% 26.29% 40.13% 1.26% 0.38% 0.59% 39.55%

5 2.63% 5.84% 3.63% 2.78% 6.06% 3.82% -0.19%

6 7.48% 21.13% 11.05% 2.89% 8.70% 4.34% 6.71%

Avg. 38.14% 13.46% 16.69% 1.41% 2.57% 1.53% 15.16%

Bold values are the best value for the category.

Table 7 Patterns produced by best replicate of run
number 4

P-value Freq. Pattern TP%

9.25E-07 57 0|4|0|-|0|0|1|2|2|-|intra|inter|intra| 100%

2.92E-05 59 0|3|0|-|0|0|1|2|2|-|intra|inter|intra| 91.53%

2.18E-04 19 0|0|2|-|0|1|2|2|1|0|-|inter|inter|inter| 100%

4.47E-04 16 0|4|0|-|0|1|2|0|1|2|-|inter|inter|inter| 75%

7.62E-04 14 0|0|4|-|0|1|2|0|1|2|-|intra|inter|inter| 71.43%

0.001375 60 4|0|-|0|1|1|-|inter|intra| 96.67%

0.001895 11 0|3|0|-|0|1|2|2|0|1|-|inter|inter|intra| 54.55%

0.00224 21 0|0|3|-|0|1|0|2|1|-|intra|intra|inter| 80.95%

0.003987 169 0|3|-|0|1|0|-|intra|inter| 80.47%

0.005346 57 0|2|0|-|0|0|1|2|2|-|intra|inter|intra| 75.44%

0.005664 8 0|4|-|0|1|0|1|-|inter|inter| 37.50%
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produce good results. Similarly to the previous runs, 6
replicates were used for each choice of energy cutoff.
The results are summarized in Table 8.
The F-scores produced were consistently lower than the

basic method. However this may be because the “best”
parameters for the basic method are suboptimal for the
free energy method. Specific replicates were able to
achieve F-scores approximately equal to those produced
from the basic method (data not shown). The patterns
produced from one such replicate is shown in Table 9.
Although the F-score is similar, the patterns produced are
closer to the true structures. Nearly every pattern contains
an anchor and a stem-loop, either downstream of, or
encompassing, the anchor. The second pattern was exam-
ined more closely by comparing the positions of the stems
to those in the KISS database. The instances where the
anchor matched correctly, the stem-loop also matched
those annotated in the database. This was not often seen
in the results of the basic approach.

Diplonema papillatum data
Some preliminary experiments were run on a third data-
set with the mitochondrial genome from Diplonema
papillatum. In this case the mechanism in unknown so
precision and recall cannot be calculated. The hypothe-
sized mechanism involves a RNA guide joining two
mRNA modules by binding to 6nt regions at the ends of
each module. Since the hypothesized anchors are of 6nt,

the minimum complementary length was set to this
value with a low 10% GU maximum to ensure only
good anchors are created. The maximum number of
molecules was increased to 3, since 3 are involved in the
hypothetical mechanism. Normalization was set to 4
bins, and p-value and support were set to 0.1 and 1
respectively. The value of K was initially set to 3 to
return the simplest possible structure, but the resulting
set was empty. Increasing the K value to 4 returned
many more results.
The top 5 results of this experiment are presented in

Table 10. As can be seen in the pattern column of the
table, 4 of the 5 patterns have two intermolecular nodes
so they have potential to be a ppRNA. However, the
patterns with two intermolecular nodes adjacent each
other are always on the same module, which leaves pat-
terns 1 and 3 as potential ppRNA. The first pattern has
embeddings that include anchors on module 3/4 as well
as anchors on module 7/8. The embeddings of the third
pattern also cover module 3/4 and additionally module
4/5 and module 6/7.
From the third pattern, a hypothetical ppRNA can be

constructed (Figure 4). This structure has two stems,
one followed by the other, and two anchors near the
first stem. The first anchor is just upstream of the stem,
while the other one is within the stem. The double
stem-loop with an anchor within the stem is similar to
the gRNA structure. However the locations of the
anchors on the modules are not near the end, so this
may make this structure not viable.

Performance comparison
There does not seem to be any published algorithms
attempting to find both intermolecular and intramolecular

Table 8 Results for experiments using stacking energy cutoff

Observed Baseline

FE (kcal/mol) Precision Recall F-score Precision Recall F-score F-score Diff

-12 36.04% 17.16% 22.88% 0.64% 0.32% 0.42% 22.46%

-13 25.28% 20.88% 22.11% 1.33% 1.42% 1.31% 20.80%

-14 30.98% 26.37% 28.16% 1.87% 98.06% 1.95% 26.22%

-15 23.54% 34.31% 27.82% 3.88% 5.77% 4.62% 23.19%

-16 25.21% 30.11% 27.15% 5.51% 6.93% 6.14% 21.02%

Table 9 Top ten patterns produced from the best
replicate using stacking energy cutoff

P-Value Freq Pattern TP%

2.98E-09 112 4|0|-|0|1|1|-|true|false|-| 97.32%

2.86E-08 81 1|3|-|0|1|0|-|false|true|-| 58.03%

3.12E-07 56 4|0|0|-|0|1|1|0|2|2|-|true|false|false|-| 100%

4.99E-06 35 0|4|-|0|1|0|-|false|true|-| 91.43%

1.31E-04 222 0|3|-|0|1|0|-|false|true|-| 82.88%

2.55E-04 16 0|4|-|0|1|0|1|-|true|true|-| 75%

2.55E-04 80 3|0|-|0|1|1|-|true|false|-| 78.75%

3.39E-04 15 0|4|0|-|0|1|0|2|1|2|-|false|true|false|-| 100%

6.28E-04 26 0|2|0|-|0|1|2|2|1|0|-|true|true|false|-| 69.23%

6.28E-04 13 0|0|0|-|0|1|2|2|1|0|-|false|false|false|-| 0%

Table 10 Top 5 results for Diplonema papillatum data

P-Value Freq. Pattern

1.73E-06 12 0|0|0|0|-|0|1|2|2|1|3|-|inter|intra|intra|inter|

7.76E-06 20 0|0|0|0|-|0|1|2|3|2|0|1|3|-|inter|inter|intra|intra|

1.77E-05 9 0|0|0|0|-|0|1|2|1|3|3|-|inter|intra|inter|intra|

1.77E-05 9 0|0|0|-|0|1|2|0|1|2|-|intra|intra|intra|

5.81E-05 23 0|0|0|0|-|0|1|2|3|1|2|3|0|-|inter|inter|intra|intra|
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structures on this scale. However there are many tools
available for finding intramolecular, RNA structural
motifs. Therefore for comparison we conducted experi-
ments limiting the algorithm to find only intramolecular
structures. The results were compared to those of the

popular tool CMFinder 2.0 [28]. The dataset used to for
these experiments was made up of 50 sequences, each
approximately 270nt long, containing Selenocysteine
insertion sequence 1 (SECIS1). This RNA structure con-
tains 3 stems of various length nested within each other.

Figure 4 Predicted ppRNA. Predicted ppRNA based on the second pattern of the result set. The red regions mark the anchor which bind to
module 4 and module 5.
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The parameters used for RiboFSM allowed for stems of
size 3 with free energy below -6 kcal/mol. No normaliza-
tion was used and 1 million iterations were run. Further-
more the maximum mismatch parameter was used (set to
1), which was omitted in the previous experiments. This is
because when considering only intramolecular stems the
number of nodes is relatively small, so the algorithm can
handle the additional imperfect matches. Default para-
meters were used for CMFinder but the tool returned no
results. To resolve this the length of the motif candidates
was restricted to 60-80nt long, since all the structures are
within this range.
The resulting precision and recall for RiboFSM was 60%

and 12% respectively. For CMFinder, the precision was
40% and the recall was 36% (Figure 5). RiboFSM per-
formed better than CMFinder in terms of recall but was
worse in terms of precision. This is likely due to the size
of the smallest stem, which is 3 nucleotides long. Setting
the parameters to allow for nodes corresponding to such
short stems, along with one mismatch, creates a large
amount of noise. The p-value calculations, and subse-
quently the pattern filtering, is sensitive to noisy data.
However RiboFSM was not designed to find such specific
structures, but rather general patterns in sequences.

Conclusion
We presented a novel framework for the discovery of
RNA elements. It is an adaptation of frequent subgraph
mining techniques on a large directed dual graph, repre-
senting all possible complementary sequences. This is
the first instance of dual graphs being used in this way
and the first application of frequent subgraph mining
for this problem. Furthermore the dual graph represen-
tation was extended to not only represent secondary
structures but also interactions between RNA.

It was applied to a synthetic and real-world data set,
the Trypanosoma brucei mitochondrial genome, con-
taining known gRNA and their target mRNA. The
results are promising with the application being able to
find patterns representing gRNA structures with high
precision and recall. Furthermore the patterns linked
these structures to their target mRNA. The algorithm
was also applied to a Diplonema papillatum data set
where the mechanism is unknown. RiboFSM was able to
find patterns that could hypothetically guide editing in
the organism. These results indicate that the algorithm
will be able to predict novel gRNA and could later be
applied to other RNA-related applications.
One limitation of RiboFSM is scalability in terms of

graph building. Since the graphs being produced contain
every possible complementary sequence, as the sequence
length increases the number of nodes increases dramati-
cally. Although the execution time remains reasonable the
memory usage becomes very high, beyond the capabilities
of an average desktop computer. This can be mitigated by
increasing the minimum length of complementary regions,
but this reduces recall and may yield the algorithm ineffec-
tive for finding structures with short stems. However the
frequent subgraph mining component scales well as the
graph size increases and is capable of running billions of
iterations if necessary.
The algorithm can be improved or extended in a vari-

ety of ways. Currently the graph building component is
the bottleneck in terms of runtime due to the naive
approach used. Sophisticated methods exist for finding
all complementary sequences which run more efficiently
than the naive algorithm. One such method is the use of
a generalized suffix tree or array as used in Seed [29].
This would make it possible to find all complimentary
regions in linear time, improving on the current O(n2k)

Figure 5 Performance comparison. Precision and recall for RiboFSM and CMFinder for the SECIS1 dataset.

Gawronski and Turcotte BMC Bioinformatics 2014, 15(Suppl 13):S2
http://www.biomedcentral.com/1471-2105/15/S13/S2

Page 13 of 15



runtime. Furthermore, more heuristics could be devel-
oped to produce nodes which are most likely to be part
of a real structure or mechanism using biological knowl-
edge. For example, masking of low complexity regions.
Another way the algorithm may be extended is by

investigating other sampling approaches. Many such
approaches exist and have been used in other applica-
tions. One example would be Random Walks, where a
root node is chosen and then the subgraph is extended
by randomly choosing an edge. Probabilistic models
could also be integrated at this point, where the prob-
ability of adding a node to the subgraph depends on
properties of the node or how the node would influence
the structure. This may be based on free energy or
other properties of the complementary regions.
The labeling approach used can also be revisited.

Many different combinations of labels containing a vari-
ety of information could be used. Currently the nodes
are only labeled based on graphical properties. However
labels can contain biological information as well, such as
nucleotide composition or free energy. This process
could also be more sophisticated, with labeling based on
more than one node. This would be the case if a certain
protein binding motif was known, which is very impor-
tant since proteins are often involved with RNA
mechanisms. The motif would always produce a specific
subgraph, so if this subgraph was detected it could be
labeled based on this information. This would allow for
the creation of complex structures and systems. Also
the annotations would be useful for interpreting the
results.
The final area that can be explored is the calculation

of statistical significance. Currently the distributions of
ratios is assumed to be normal even though it is not
quite normal. Different distributions can be explore to
see if they are a better fit for the data, such as an
extreme value distribution. The entire approach is fairly
simple and could be replaced with a more complex sta-
tistical model. It would be especially effective if a model
could be created that would not rely on background
data at all. This would greatly reduce the runtime and
memory usage of the algorithm. This could be done by
predicting the properties of a randomized graph rather
than producing the graph itself.
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