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Abstract

DNA methylation is a common epigenetic marker that regulates gene expression. A robust and cost-effective way
for measuring whole genome methylation is Methyl-CpG binding domain-based capture followed by sequencing
(MBDCap-seq). In this study, we proposed BIMMER, a Hidden Markov Model (HMM) for differential Methylation
Regions (DMRs) identification, where HMMs were proposed to model the methylation status in normal and cancer
samples in the first layer and another HMM was introduced to model the relationship between differential
methylation and methylation statuses in normal and cancer samples. To carry out the prediction for BIMMER, an
Expectation-Maximization algorithm was derived. BIMMER was validated on the simulated data and applied to real
MBDCap-seq data of normal and cancer samples. BIMMER revealed that 8.83% of the breast cancer genome are
differentially methylated and the majority are hypo-methylated in breast cancer.

Introduction
DNA methylation refers to the chemical modification of
DNA nucleotides. One of the most common DNA methy-
lation is the modification of cytosine, which typically
occurs in CpG sites. When CpG sites in the promoter
region that transcription factors bind are methylated, per-
manent silencing of gene expression is observed in the cell.
DNA methylation is highly prevalent in cancer, involved in
almost all types of cancer development by altering the nor-
mal regulation of gene expression and silencing the tumor
suppressor genes [1]. There are three sequencing-based
technologies for whole-genome DNA methylation profil-
ing: bisulfite treatment[2] based or bisulfite sequencing,
methylated DNA immunoprecipitation followed by
sequencing (MeDIP-seq)[3], and Methyl-CpG binding
domain-base capture followed by sequencing (MBDCap-
seq)[4]. Among the three technologies, MBDCap-seq has

higher dynamic range and better sensitivities and it detects
more enrichment in CpG-dense methylated DNA regions
[5,6]. We choose to focus on MDBCap-seq data analysis in
this study.
Two computational problems concern these genome-

wide methylation data including methylation site detec-
tion and differential methylation region (DMR) detection.
The problem of methylation site detection is similar to
the peak detection for ChIP-seq. However, since methyla-
tion signals give rise to wider sequence read distribution
than that from ChIP-seq peak identification algorithms
such as SPP[7] and MACS[8] that are designed primarily
for ChIP-seq data analysis would produce poor identifica-
tion of methylation sites. Specific changes and new algo-
rithms have been proposed to account for the nature of
wider read distribution in methylation sequencing data.
For instance, Hidden Markov Model [9,10] have been
proposed to model the correlation between adjacent bins
of a methylation site. The main aim of DMR detection is
to identify aberrant DNA methylation regions that are
specifically associated with disease phenotype. It is also
fundamental to understanding the cause of altered gene
expression in cancer. Most of the popular DMR detection
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pipelines includes two parts: the first part concerns
detection of methylation sites in normal and disease sam-
ples individually and the second part includes identifica-
tion of differential methylated regions in disease sample
versus normal samples [11]. Many algorithms for differ-
ential methylation detection have been proposed includ-
ing for example ChIPnorm [11] and ChIPDiff [12].
ChIPnorm performs a quantile normalization on normal
and disease samples and applies differential analysis to
detect DMRs, whereas ChIPDiff detects enriched methy-
lation regions in normal and disease samples with a Bino-
mial model, and then performs differential analysis based
on a HMM. These existing algorithms are very powerful
tools in differential methylation analysis but they have
clear disadvantages especially when applied to MBDCap-
seq. First, the targeted resolutions of the data are rela-
tively low, for instance, the bin size in ChIPDiff is 1000
base pairs (bps). However for a typical MBDCap-seq
data, the resolution is normally 100bp bins. Second, these
existing pipelines mentioned above are two-step proce-
dures, which are prone to error propagation. If there is
an error in methylation site detection, this error will be
passed on to the following DMR detection step and
impact negatively the performance of differential methy-
lation. Last but not the least, with an exception in [13],
most existing algorithms were developed to handle single
sample. When replicates are available, they perform pre-
diction on individual samples separately and then fuse
the detection results from individual together. Such
fusion based algorithms is easily influenced by the erro-
neous predictions made at individual level. The algorithm
in [13] applies LOESS to normalize the difference
between replicate samples. However, it assumes that only
a small portions of methylation regions are DMRs [11],
which might not be applicable to all cases.
In this paper, we proposed a novel algorithm for dif-

ferential methylation regions (DMRs) detection based on
Hidden Markov Model (HMM) and we call the algo-
rithm BIMMER. BIMMER models the methylation sta-
tus and detect DMRs in normal and cancer samples
simultaneously. By doing this, BIMMER avoids error
propagation in the existing two-step pipelines and there-
fore can improve the performance of DMRs detection.
BIMMER was tested first on a simulated datasets and
applied to a real breast cancer MBDCAP-seq data. The
results from breast cancer data revealed that there are
8.83% of 30,804,183 bines detected with differentially
methylated status, most of which are hypo-methylated
in breast cancer samples.

Methods
Notation
Each MBDCap-seq data sample is pre-processed to be in
a BED file, which records the sequence reads counts in

consecutive 100 base pair (bp) bins over the entire gen-
ome. Let’s denote the sample size of the normal sample
MBDCap-Seq datasets as N1, that of the cancer dataset as
N2, and the total number of the bins is denoted as M. We
further denote the reads count of the ith bin in N1 normal

samples by a vector Xni =
[
Xni .1,Xni .2, . . . ,Xni .N1

]�, where
Xni,j is the reads count of the jth sample, and similarly the
reads count of the ith bin in N2 cancer samples by

Xci =
[
Xci.1,Xci.2, . . . ,Xci.N2

]�, where Xc i,k represents the

reads count in the kth sample. The aim of this work is to
predict the differential methylation status of the cancer
samples over the normal samples for every bin in the
genome.

Two layer HMM model for differential methylation
A bin is considered differential methylated if its methy-
lation status in the cancer sample is different from that
in the normal samples. Therefore, the methylation mod-
els for the N1 normal samples and the N2 cancer sam-
ples needs to be defined before proceeding to model the
differential methylation. To model the methylation sta-
tus, let mni = [0, 1] denote the methylation status of the
ith bin for the normal sample, where mni = 1 when the ith
bin is methylated and mni = 0 otherwise. Because the
methylation statuses in the adjacent binds are highly
correlated, a first order Markov chain is introduced (Fig-
ure 1), where the transition probability is defined as
An (i) = p

(
mni |mni−1

)
and the initial probability for bin 1

is defined as τn (i) = P
(
mn1

)
. Then for each bin, the read

counts would depend on the methylation status, which
is modeled as an i.i.d discrete distribution as

Bn
(
rj, d

)
=

∏N1
j=1 P

(
xnj = rj|mnj = d

)
. Taken together, the

methylation in the normal samples is modeled by an
HMM. Similarly, the methylation status for the cancer
samples can be also modeled by an HMM. Specifically,
if let mci = [0, 1] denote the methylation status of the jth
bin of the cancer samples, the transition probability and
the initial state probability are modeled as
Ac (i) = p

(
mci |mci−1

)
and τc (i) = P

(
mc1

)
, respectfully and

the emission probability is represented as

Bc (rk, d) =
∏N2

k=1 P
(
xck = rk|mck = d

)
. Next, let differential

status at the ith bin denoted by dmi = [0, 1], where

dmi =
{
1,whenmni �= mci

0, otherwise
. Because the differential methy-

lation statuses for the adjacent bins are also correlated,
dmi is further assumed to follow another first order
Markov chain (Figure 1), whose transition probability
and initial state probability are defined as
Adm (i) = p (dmi|dmi−1) and τdm (i) = P (dmi). Finally, we
need to model the relationship between the differential
methylation status dmi and the methylation statuses mni

and mci. In this work, we propose to model it as depicted
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in Figure 1 by the emission probability
P(mni |mni−1 ,mci , dmi), i.e., the normal sample methylation
status depends directly on the cancer sample methylation
status and the differential methylation status, in addition
to its own correlations between adjacent bins. It is easy to
see from Figure 1 that there are two sets of relatively well
defined relationships involved in this emission probability:
p
(
mni |mni−1

)
and P

(
mni |mci , dmi

)
. The first one

p
(
mni |mni−1

)
is the transition probability for the methyla-

tion status in normal sample and the second
oneP

(
mni |mci , dmi

)
models the dependence of mni on

dmianddmi, which can be intuitively defined as
P

(
mni |mci , dmi

)
= 0, if mni = mci but dmi = 1, or mni �= mci but dmi = 0

and P
(
mni |mci , dmi

)
= 1, otherwise, i.e., mni and mcihave to

be different if dmi = 1and otherwise they must be the
same. Now, the question is how to integrate p

(
mni |mni−1

)
and P

(
mni |mci , dmi

)
to model the emission

probabilityP
(
mni |mni−1 ,mci , dmi

)
. To this end, a popular

approach in data fusion is adopted, which combines them
through a weighted sum: P

(
mni |mni−1 ,mci , dmi

)
= αp

(
mni |mni−1

)
+ (1 − α)P

(
mni |mci , dmi

)

whereα is the weighting factor to be determined from
data. Taken together, we propose a two-layer HMM
model as depicted in Figure 1 for differential methylation
and we refer this model as BIMMER. With BIMMER, the
differential methylation status is predicted according to
the posterior distribution P(dmi|Xni ,Xci∀i). This posterior
distribution does not depend on the hard decisions on the
methylation states for the normal and cancer samples and
therefore overcomes the aforementioned problems of
error propagation. However, one difficulty is that in the
calculation of this posterior distribution, we need to calcu-
late the integration of all 9 model parameters: τn, τc, Bn, Bc,

Adm andα, Ac, τdm, Adm andα, which is analytically intract-
able. To solve this problem, we propose the next Expecta-
tion and Maximization (EM) solution.

The EM solution
Let Xn denote the collection of the reads counts in all M
bins for all N1 normal samples and Xc the collection of
reads counts in all M bins for all N2 cancer samples. Also,
let mn = [mn1,mn2, . . .mni]T, mc = [mc1,mc2, . . .mci]T and
dm = [dm1, dm2, . . . dmi]T. In order to obtain the EM solu-
tion, Xn and Xc are treated as the observed data but mn and
mc are considered as the unobserved data for the first layer
HMM whiledm is the unobserved data for the second layer
HMM. Here, � is used to denote the model parameter set.
For the simplicity of the computation, the first layer HMM
parametersτn, τc, Bn, Bc, An, Ac are learned directly from Xn

and Xc with Baum-Welch algorithm and excluded from
the EM process. Therefore, the parameter set � for BIM-
MER includes 3 parameter: � = {τdm, Adm,α}. Given a set
of initial or estimated parameters, the complete data likeli-
hood function is

L (�) = P (Xn,Xc,mc,mn, dm|�)

= τdm × τc × (α × τn + (1 − α) × P(mn1|mc1, dm1,�)) × P(xn1|mn1,�) × P(xc1|mc1,�)

×
M∏
i=2

[P (xni|mni,�) × P (xci|mci,�) × P
(
mci|mc(i−1),�

) × P
(
mni|mn(i−1),mci, dmi,�

)

×P (dmi|dmi−1,�)]

Then the log-likelihood function can be expressed as

log (l (�)) = log (τdm)

+ log (τc) + log (α × τn + (1 − α) × P (mn1|mc1, dm1,�)) + log (P (xn1|mn1,�)) + log (P (xc1|mc1,�))

+
M∑
i=2

[log (P (xni|mni,�)) + log ((xci|mci,�)) + log
(
P

(
mci|mc(i−1),�

))

+ log
(
P

(
mni|mn(i−1),mci, dmi,�

))
+ log(P (dmi|dmi−1,�))]

At the kth iteration, suppose that the estimated para-
meter set at the previous iteration is �k−1. Then, at E-
step, the conditional expectation of this log complete
data likelihood is calculated

Q
(
�;�k−1

)
= E�k−1

[
logL (�) |Xn,Xc

]
=

∑
mc

∑
mn

∑
dm

M∑
i=1

logP (Xn,Xc,mci,mni, dmi|�)

M∏
i=1

P
(
mci,mni, dmi|Xn,Xc,�k−1

)

In order to obtain P
(
mci,mni, dmi|Xn,Xc,�k−1

)
, the

forward-backward algorithm is used, where

P
(
mci,mni, dmi|Xn,Xc,�k−1

)
∝ P

(
dmi,mci,mni,Xn,Xc|�k−1

)

= P
(
dmi,mci,mni,Xn,1:i,Xc,1:i|�k−1

)
× P

(
Xn,i+1:M,Xc,i+1:m|dmi,mci,mni,Xn,,Xc,1:M,�k−1

)

= P(dmi,mci,mni,Xn,1:i,Xc,1:i|�k−1) × P
(
Xn,i+1:M,Xc,i+1:m|dmi,mci,mni,�k−1

)

P
(
dmi,mci,mni,Xn,1:i,Xc,1:i|�k−1

)
=

∑
dmi−1

∑
mc(i−1)

∑
mn(i−1)

P(dmi, dmi−1,mci,mc(i−1),mni,mn(i−1),Xn,1:i−1,Xc,1:i−1, |�k−1)

and

P
(
Xn,i+1:M,Xc,i+1:m|dmi,mci,mni,�k−1

)
=

∑
dmi−1

∑
mc(i−1)

∑
mn(i−1)

P
(
dmi+1,mn(i+1),mc(i+1),Xn,i+1:M ,Xc,i+1:M|dmi,mci,mni,�k−1

)

where Xn,p:q and Xc,p:q denote the collection of the
reads counts from bin p to bin q from the N1 normal

Figure 1 The proposed bi-layer HMM for differential
methyulation analysis. The first layer HMMs model the
methylation statuses in the normal and disease samples in the bins,
where Xc’s and mc’s represent the reads counts and the
methylations status in the normal samples, respectively, and Xn’s
and mn’s those in the cancer samples. The second layer HMM
models the relationship between the differntial methylation status,
dm, and the methylations statuses of mn and mc.
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samples and the N2 cancer samples, respectively. In the
forward step, we calculate

P
(
dmi, dmi−1,mci,mc(i−1),mni,mn(i−1),Xn,1:i−1,Xc,1:i−1|�k−1

)

= P
(
dmi, dmi−1,mci,mc(i−1),mni,mn(i−1),Xn,1:i−1,Xc,1:i−1|�k−1

)

×P
(
mci|dmi, dmi−1,mn(i−1),mc(i−1),Xn,1:i−1,Xc,1:i−1,�k−1

)

×P
(
dmi|dmi−1,mn(i−1),mc(i−1),Xn,1:i−1,Xc,1:i−1,�k−1

)

×P
(
dmi−1,mn(i−1),mc(i−1),Xn,1:i−1,Xc,1:i−1|�k−1

)

= P(Xni|mni,�k−1) × P
(
Xn,i+2:M ,Xc,i+2:m|dmi+1,mc(i+1),mn(i+1),�k−1

)

In the backward step, we have

P
(
dmi+1,mc(i+1),mn(i+1),Xn,i+1:M ,Xc,i+1:M|dmi,mci,mni,�k−1

)

= P(Xn(i+1)|dmi, dmi+1,mci,mc(i+1),mni,mn(i+1),Xn,i+2:M ,Xc,i+2:M,�k−1)

×P(Xc(i+1)|dmi, dmi+1,mci,mc(i+1),mni,mn(i+1),Xn,i+2:M ,Xc,i+2:M,�k−1)

×P(mn(i+1)|dmi, dmi+1,mci,mc(i+1),mni,Xn,i+2:M ,Xc,i+2:M,�k−1)

×P(mc(i+1)|dmi, dmi+1,mci,mni,Xn,i+2:M ,Xc,i+2:M,�k−1) × P(dmi+1|dmi+2,�k−1)

×P(Xn,i+2:M,Xc,i+2:M|dmi+1,mc(i+1),mn(i+1),�k−1)

Then, at M-step, the parameter set �k is updated from

�k−1 by maximizing the likelihood expectation with
respect to �k−1. This process is equivalent to maximiz-
ing he Q function with respective to the parameters �

�k = argmax�Q
(
�;�k−1

)
The maximization yields
τdm (z) =

∑
mc1

∑
mn1

P(dm1 = z,mc1,mn1,Xni,Xci|�k−1),

Adm(i) = P
(
dmi|dmi−1,�k−1

)
=
P

(
dmi, dmi−1,Xni,Xci|�k−1

)
P

(
dmi−1,Xni,Xci|�k−1

)

where

P
(
dmi, dmi−1,Xni,Xci|�k−1

)

=
∑
mci

∑
mni

∑
mn(i−1)

∑
mc(i−1)

P
(
Xni|mni,�k−1

)
P

(
Xci|mci,�k−1

)
P

(
Xn,i+1:M ,Xc,i+1:M|dmi,mci,mni,�k−1

)

×P
(
mni|dmi,mci,mni,mn(i−1),�k−1

)
P

(
mci|mc(i−1),�k−1

)
P

(
dmi|dmi−1,�k−1

)

×P
(
dmi−1,mci−1,mni−1,Xn1:i−1,Xc1:i+1|�k−1

)

and

P
(
dmi−1,Xni,Xci|�k−1

)

=
∑
mni−1

∑
mci−1

P
(
Xn,i−1:M,Xc,i−1:M|dmi−1,mc(i−1),mn(i−1),�k−1

)
P

(
dmi−1,mc(i−1),mn(i−1),Xn,1:i−1,Xc,1:i+1|�k−1

)

and

∂
∑

mc ,mn,dm log(P(Xc,Xn,mc,mn, dm|�)P(Xc,Xn,mc,mn, dm|�k−1))

∂α

=
M∑
i=2

∑
mci

∑
mni

∑
dmi

∑
mni−1

P(mci,mni, dmi,mni−1,Xc,Xn, |�k−1)

α +
P(mni|mci, dmi,�k−1)

P
(
mni|mn(i−1),�k−1

) − P(mni|mci, dmi,�k−1)

+
∑
mc1

∑
mn1

∑
dm1

P(mc1,mn1, dm1,Xc,Xn, |�k−1)

α +
P(m1|m1, dm1,�k−1)

τc − P(mn1|mc1, dm1,�k−1)

where the last equation is calculated by the Newton-
Raphson algorithm. Maximizing this Q function guaran-
tees that the likelihood L

(
�k

)
is always greater than

L
(
�k−1

)
, hence ensures global convergence of the

solution.

Model initialization and prediction of DMRs
To implement the EM algorithm, the initial parameter set
F(0) and the parameters for the first layer needs to be care-
fully defined because specific choice of these initial para-
meter values could lead to difference local optimal
solutions and affect the prediction performance. After the
convergence of the EM solution, the differential methyla-
tion statuses, dm, are predicted using the Viterbi algorithm
[14] as the chain of the states with the largest probability
given the estimated parameter set. Additionally, the methy-
lation statuses mc andmn can also be predicted using the
Viterbi algorithm provided the parameters of the first layer
HMM are set to the estimated ones.

Results
BIMMER was validated on both simulated data and applied
to a real breast cancer dataset. It was first tested on the
simulated systems, where the data models were assumed
known. Then, BIMMER was applied to a real breast cancer
dataset to explore the state of differential methylation.

Test on simulated data
A test dataset was simulated based on the graphical model
in Figure 1 to evaluate the performance of BIMMER. A
chain of dm was first generated based on given τdm and
Adm. The methylation status in normal and cancer sample
mc and mn were then generated based on a set of τc, τn, Ac,
An and weight parameter α. The read counts in each bin of
the normal and cancer sample Xc and Xn were generated
according to the emission probabilities Bn amd Bc. In addi-
tion, a Poisson noise was also added to the reads. Multiple
sets of 10 samples with 200,000 bins were generated with
different transition probabilities and weight factors (See
Table 1 for detailed parameter settings). For comparison,
two commonly used differential analysis algorithms: two
sample t-test and Wilcoxon Test [15,16] were also applied
to the simulation data. To test the performance of BIM-
MER under different conditions, two scenarios were con-
sidered, where in the first all the parameters except the
transition probabilities were fixed, whereas in the other
situation only the weight factors were allowed to change.
The prediction results were evaluated by the precision and
recall (PR) curve and receiver operating characteristic
(ROC) curve while the area under the curve (AUC) were
calculated for each algorithm (Figure 2). For all the simula-
tion tests, BIMMER outperformed both the two sample
t-test and Wilcoxon test. In each simulated scenario, the
performance of Wilcoxon test and the two sample t-test
were very similar. The Wilcoxon slightly outperformed the
t-test because the Wilcoxon test is more robust. For the
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Table 1 Parameter set used for simulation

Table 1-1

τc Ac Likelihood Of mc

0.99999 0.7296 0.2704 -1.619118E7

0.00001 0.0225 0.9775

Table 1-2

τn An Likelihood Of mn

0.99999 0.7614 0.2386 -2.928487E7

0.00001 0.0563 0.9437

Table 1-3

Symbols 0 1 2 3 4 5

mc = 0 0.9 0.04 0.03 0.01 0.01 0.01

mc = 1 0.26 0.24 0.2 0.18 0.08 0.04

Table 1-4

Symbols 0 1 2 3 4 5

mn = 0 0.8 0.08 0.07 0.03 0.01 0.01

mn = 1 0.22 0.26 0.20 0.16 0.1 0.06

Table 1-5

τdm Adm Weight α Likelihood Of dm

0.99999 0.9705 0.0295 0.3519 -4.538562E8

0.00001 0.2862 0.7138

Figure 2 The performance of BIMMER on Simulated Data. A The pricision-recall curves and the ROC curves for different transitional
probabiliteis of differential methylation status P (dmi = 1|dmi−1 = 1). The top row for P (dmi = 1|dmi−1 = 1) = 0.9, the middle row for
P (dmi = 1|dmi−1 = 1) = 0.8, and the bottom row for P (dmi = 1|dmi−1 = 1) = 0.7. B. The pricision-recall curves and the ROC curves for
different weights. The top row for α = 0.1, the middle row for α = 0.2, and the bottom row for α = 0.3.
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scenario, the transition probabilities of the simulation
were sets from 0.9 to 0.7 and the performance of BIM-
MER did not change much in terms of its PR and ROC
curve. For the second scenario, as the weight factors
increasing, the performance of BIMMER slightly

decreases. This makes sense because the weight factors
actually models the contribution factors of two probabil-
ities p

(
mni |mni−1

)
andP

(
mni |mci , dmi

)
. The larger this

weight factors is, the more uncertainty exist. As the
result, the prediction performance decrease. We further

Figure 3 The performance of BIMMER for different initial weights (0.01, 0.3). A. Results for the true weight ω = 0.1; B. Results for the true
weight ω = 0.2; C. Results for the true weight ω = 0.3.
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tested the influence of different initial values of the weight
on the final prediction of differential methylation in the
EM solution. This requires to be tested because α is
unique in our model. Different initial weights (0.01 and
0.3) were tested used in three simulations and the predic-
tion performance of BIMMER (Figure 3) showed little dif-
ference, indicating that the initial ω has little influence on
BIMMER’s prediction results. (The simulation transition
probability and the training result are provided in
Table 2) In conclusion, BIMMER can produce satisfactory
prediction results on the simulation data; it is also robust
against changes in the transition probabilities and the
weights.

Test on real data
To demonstrate the utility and further validate the per-
formance of BIMMER, we applied BIMMER to a real
dataset published in [4], which includes MBDCap-seq
reads of whole genome methylation profiles from 10
normal and 75 breast cancer tissues from the 1000
methylome project (http://cbbiweb.uthscsa.edu/KMethy-
lomes). The raw reads (FASTQ) file of MBDCap-seq
data was first aligned to UCSC hg18 genome by BWA
aligner [17]. The aligned SAM file was then converted
to BED format later for further analysis.
The initial model parameters of the EM algorithm are

defined in Table 3. Table 4 shows the estimated para-
meter set of the second hidden layer. The weight α was

predicted to be 0.3519, which means the transition
probability An possesses about 35.2% of influence while
the conditional probability P (nt|dt , ct) has about a
weight of 64.8% on the state of nt.
Among the entire genome, about 8.83% of the bins were

detected with differential methylation. Among these differ-
ential methylated bins, 95.6% of them are hypo-methyla-
tion (less degree of methylation in cancer), while only a
minority of bins (4.4%) presented hyper-methylation
(more degree of methylation in the cancer samples). Gen-
ome-wide differential rates on 4 regions (promoter region
(±2kbp of transcription start position), enhancer region
(100kbp after transcription end position), exons region
and gene body) are plotted in Figure 4, where the detailed
differential rates of the 4 regions in the 24 chromosomes
are shown in Table 5. As expected, the promoter region
and the exon possess higher differential methylation rate
than the enhancer regions and gene body. Interestingly,
chromosomes 1-2 have a significantly higher differential
methylation rates in 4 genomic regions than those regions
in other chromosomes.
Next the genome-wide methylation information was

mapped to individual genes to determine whether a
gene is differential methylated in the cancer samples vs.
the normal samples. For this mapping, 17814 gene sym-
bols were selected (TCGA-BRCA entry). The location
information of these gene symbols were downloaded
and mapped to the bin location. To avoid possible false

Table 2 Estimated parameters after training using different initial weight: 0.01 and 0.3

Weight of simulator 0.3 0.2 0.1

Initial weight for training 0.01 0.3 0.01 0.3 0.01 0.3

Transition of simulator Weight 0.2820 0.2850 0.1993 0.2002 0.0974 0.0980

0.97 Differential Transition 0.9705 0.9710 0.9698 0.9699 0.9689 0.9690

0.71 0.7146 0.7173 0.7186 0.7192 0.7048 0.7044

0.76 Patient Transition 0.7584 0.7584 0.7545 0.7545 0.7594 0.7594

0.97 0.9698 0.9698 0.9698 0.9698 0.9699 0.9699

0.66 Normal Transition 0.6300 0.6300 0.6562 0.6562 0.6867 0.6867

0.92 0.9173 0.9173 0.9217 0.9217 0.9289 0.9289

Table 3 Initial values and the prior probabilities of BIMMER.
mn 1 0 mc 1 0 dm 1 0 State mc mn dm

1 0.9 0.1 1 0.9 0.1 1 0.9 0.1 0 0.1 0.1 0.9

0 0.1 0.9 0 0.1 0.9 0 0.1 0.9 1 0.9 0.9 0.1

Table. 3-1 Table. 3-2 Table. 3-3 Table. 3-4

Table. 3-1 to Table. 3-3 are initial transition probabilities formn,mc and dm; Table. 3-4 enlists the initial probabilities of mn,mc and dm.

Table 4 The estimated parameters of the second hidden layer
τdm Adm Weight α

0.99999 0.9705 0.0295 0.3519

0.00001 0.2862 0.7138
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Figure 4 Differential rate of 4 types of genomic regions in different chromosomes.

Table 5 Differential rate of 4 regions on 24 chromosomes

Chromosome Promoter Exon Enhancer Gene Body

Chr1 0.005729 0.015478 2.331E-4 3.890E-4

Chr2 0.003440 0.009209 1.528E-4 2.357E-4

Chr3 0.001957 0.006006 9.138E-4 1.402E-4

Chr4 0.002017 0.005697 8.264E-5 1.336E-4

Chr5 0.001348 0.004764 9.434E-5 9.545E-5

Chr6 0.001857 0.005404 1.131E-4 1.300E-4

Chr7 0.002172 0.005126 1.022E-4 1.287E-4

Chr8 0.002223 0.004775 8.555E-5 1.182E-4

Chr9 0.001470 0.003957 6.925E-5 1.079E-4

Chr10 0.001583 0.004071 6.994E-5 1.044E-4

Chr11 0.001412 0.003576 6.113E-5 9.748E-5

Chr12 0.001212 0.003218 5.683E-5 8.236E-5

Chr13 0.001256 0.002956 5.161E-5 7.356E-5

Chr14 0.001070 0.002745 4.777E-5 6.970E-5

Chr15 0.001162 0.002940 4.717E-5 7.995E-5

Chr16 0.001172 0.002930 5.095E-5 8.412E-5

Chr17 0.001196 0.002969 5.242E-5 8.350E-5

Chr18 0.001090 0.002745 4.886E-5 7.272E-5

Chr19 8.860E-4 0.002388 4.385E-5 6.917E-5

Chr20 0.001014 0.002686 5.052E-5 7.976E-5

Chr21 9.763E-4 0.002416 4.783E-5 6.888E-5

Chr22 9.368E-4 0.002513 4.462E-5 7.624E-5

ChrX 6.024E-4 0.001642 2.793E-5 4.002E-5

ChrY 4.400E-4 0.001178 2.086E-5 2.979E-5

Total 0.001225 0.003201 5.644E-5 8.452E-5
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positive, a permutation test was conducted on the pre-
dicted methylation result to obtain the prediction p-value
and a 0.05 significant level was applied. Among this
17814 genes, 293 genes (additional file 1) were detected

with significant differential methylation. The methylation
status was very similar to that of the genome-wide result,
where among these 293, only 4 genes were hyper-methy-
lated and the rest are all hypo-methylated. Table 6 listed

Table 6 Top 20 differential methylated gene

GENE SYMBOL DIFFMETHY RATE METHYLATION STATUS

CDC5L 0.380952381 0

BCL3 0.333333333 0

C6ORF123 0.333333333 0

C6ORF124 0.333333333 0

COX6B1 0.333333333 0

CRYAB 0.333333333 0

GRIP2 0.333333333 0

HSD17B1 0.333333333 0

NAGLU 0.333333333 0

OR5M11 0.333333333 0

PHTF2 0.333333333 0

PIH1D2 0.333333333 0

PTPN12 0.333333333 0

RSBN1L 0.333333333 0

SFTPD 0.333333333 0

TAAR6 0.333333333 0

TAAR8 0.333333333 0

C6ORF192 0.317460317 1

AKR1C4 0.285714286 0

APOC2 0.285714286 0

Table 7 Differential rate of normal and patient samples for 22 breast cancer related genes

Gene Name Relation with Breast Cancer Differential Methylation Status Differential Rate

RECK Related to Survival Yes 0.2195

SFRP2 Related to Survival No

ITR Related to Survival Not maped

UGT3A1 Related to Survival No

ACADL Related to Survival Yes 0.3659

UAP1L1 Related to Survival Yes 0.2195

HSD17B12 Related to Tumor Size No

IMPACT Related to Tumor Size Yes 0.2683

IL6 Related to Tumor Size Yes 0.3171

PLAT Related to Tumor Size No

NCL Related to Tumor Size No

FES Related to Tumor Size No

PLAUR Related to Tumor Size No

ALK Related to Tumor Size No

IRF7 Related to ER+ No

RARA Related to ER+ Yes 0.2195

ACG2 Related to ER+ No

AXL Related to ER+ No

ZNF264 Related to ER+ No

DAB2IP Related to ER+ Yes 0.1951

FZD9 Related to ER+ No

SRC Related to ER+ No
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Figure 5 Density Plots of Breast Cacner Related Differentially Methylated Genes A. Density Plot for ACADL (Chr11:1,986,988-1,996,988). B.
Density Plot for DAB2IP (Chr20:42,346,800-42,356,800). C. Density Plot for IL6 (Chr18:5,228,722-5,238,722). D. Density Plot for IMPACT
(Chr9:2,150,455-2,160,455). E. Density Plots for RARA (Chr7:127,223,462-127,233,462). For each sub-figure, the plot includes 3 panels. The top panel
shows a single line of squares, each representing a predicted differential methylation at a bin, where red square denotes differentially
methylation. The second panel shows the reads density of 10 normal samples together with the predicted methylation status (the top indicator
line). The reads density is in red color and color intensity is proportion to the read counts. The green square in the indicator line denotes that
the bin is predicted to be methylated. The third panel shows the read density of 10 breast cancer patients and the corresponding predicted
methylation status.
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the top 20 methylated genes according to their differen-
tial methylation rates. The first ranked gene is CDC5L,
which encodes the cell division cycle 5-like protein.
[18,19] Research showed that this gene is highly involved
in the RNA-splicing and could be a target for cancers
[20,21]. The next 16 genes that shared the same differen-
tial methylation rate include BCL3, which is highly
involved in breast cancer metastasis and tumor progres-
sion [22-24], c6orf123 and c6orf124, two RNA genes
which have been showed to be associated with ovarian
cancer, CRYAB, a tumor suppressor gene [25], CRIP2, a
gene that encodes the cysteine rich intestinal protein 2
and has been implicated to have effect on suppressing
tumorigenesis [26], HSD17B1 gene that produces an
enzyme that catalyzes the conversion of esrone to estra-
diol, and is hypothesized to influence endometrial and
breast cancer risk[27,28], and PTPN12, which has been
shown to be involved in the ovarian cancer and breast
cancer and is also survival related [29-31]. Over all, a lot
of top ranked differential methylated genes show associa-
tions with breast cancer or other cancers. In addition, the
differential methylation status of three sets of breast can-
cer genes including six survival related genes, 8 tumor
size related genes and eight ER+ related genes (Table 7)
were examined. For the six survival related genes, 3 out
of five were detected with significant differential methyla-
tion. In contrast, both tumor size related and ER+ gene
sets have about 25% differential methylation rate. The
differential methylation density maps of a subset of these
genes were also shown in Figure 5. The density clearly
confirms that BIMMER has correctly identified the differ-
ential methylation regions and the advantages of the
HMM model for differential methylation analysis is clearly
shown. When a bin having similar reads counts in cancer
and normal sample sits in the middle of a stretch differen-
tial methylated region (Figure 5.A. second DMR region;
Figure 5.C last DMR region), it will be predicted differen-
tial methylation by BIMMER because BIMMER considers
correlation between adjacent bins. This gives BIMMER
the ability to avoid possible false negative predictions.

Discussion and future work
In this work, BIMMER, an HMM based algorithm for
DMRs detection for MBDCap-seq data is proposed. BIM-
MER models the methylation status and differential
methylation status simultaneously, which does not suffer
from the error propagation of existing two-step DMRs
detection algorithms. In addition, BIMMER can handle
replicate samples at the same time, producing more
coherent detections. BIMMER relies on an EM algorithm
to estimate the model parameters jointly. BIMMER was
validated using simulated data and applied to real breast
cancer datasets.

In the future work, four possible aspects could contri-
bute to the performance improvement of BIMMER. First,
adding more states of differential methylation into the
HMM model and including hyper- and hypo- methylation
type status will clearly provide better interpretation of the
result. Second, more accurate models can be developed to
model the differential methylation status and methylations
in different phenotype of samples. Third, more accurate
solution could be introduced to replace the weighted aver-
age approach. For example, product of experts (PoE) [32]
has been shown to be a power tool in recent studies.
Finally, more epigenetic information such as CpG island
or histone modification can be included into BIMMER to
produce biologically more relevant results.

Additional material

Additional File 1: List of significantly differentially methylated
genes reported by BIMMER. Differential methylation rates and
methylation status are also provided.
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