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Abstract

Background: Huge numbers of genomes can now be sequenced rapidly with recent improvements in sequencing
throughput. However, data analysis methods have not kept up, making it difficult to process the vast amounts of
available sequence data. This increased processing time is especially critical in DNA sequence clustering because of
the intrinsic difficulty in parallelization. Thus, there is a strong demand for a faster clustering algorithm.

Results: We developed a new fast DNA sequence clustering method called LCS-HIT, based on the popular CD-HIT
program. The proposed method uses a novel filtering technique based on the longest common subsequence to
identify similar sequence pairs. This filtering technique makes the LCS-HIT considerably faster than CD-HIT, without
loss of sensitivity. For a dataset of two million DNA sequences, our method was approximately 7.1, 4.4, and 2.2
times faster than CD-HIT for 100, 150, and 400 bases, respectively.

Conclusions: The LCS-HIT clustering program, using a novel filtering technique based on the longest common
subsequence, is significantly faster than CD-HIT without compromising clustering accuracy. Moreover, the filtering
technique itself is independent from the CD-HIT algorithm. Thus, this technique can be applied to similar clustering
algorithms.

Background
Clustering is a data mining method that aims to identify
similar groups in huge datasets, and is widely used in var-
ious bioinformatics fields, such as cancer class discovery
[1] and protein structure prediction [2]. Biological
sequence clustering is one of the main applications of
clustering in bioinformatics, and has two main objectives:
first, to reduce the size of the dataset by identifying repre-
sentatives for each cluster and removing redundant
sequences; and second, to find sequence patterns that
appear in the dataset by checking cluster sizes (the num-
ber of members).
Recent progress in DNA sequencing has enabled us to

amass huge amounts of genomic data in a short time.
While current sequencers produce relatively short

sequences (≈150 bases), the number of such sequences is
huge (≈10 million). However, the analyses of these vast
amounts of data require a considerable amount of time.
This necessitates a shift in focus from sequencing
throughput to the computational speed of algorithms for
sequence data analysis. Generally, clustering algorithms
require O(N2) time for N sequences, making it difficult to
scale them to large datasets. Several algorithms have
been developed for more efficient sequence clustering for
very similar sequences [3]; however, it is still difficult to
rapidly group remote homologous sequences into a clus-
ter based on sequence identity [4,5].
For clustering based on sequence identity, CD-HIT [6,7]

is one of the most widely used sequence clustering tools.
CD-HIT is used on public databases such as Uniprot [8]
and PDB [9] to remove redundant sequences, and has also
been used for various bioinformatics analysis, including
metagenomic data analysis [10]. It clusters sequences on
the basis of sequence identity between pairs, and can deal
with large datasets in a relatively short time by relying on
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an approximate clustering approach and short word filter-
ing. Short word filtering greatly decreases the burden of
the sequence alignment calculation by identifying similar
sequences on the basis of matches between short subse-
quences. However, although this filtering scheme is very
computationally efficient, it is too approximate to exclude
many dissimilar sequence pairs. Thus, even this well-
known tool requires at least 2 days to cluster 10 million
sequences. Furthermore, given the potential of the next
generation of sequencers, it is clear that further speed
enhancement is necessary.
Here, we present a faster and more accurate clustering

program named LCS-HIT. We introduce a novel filter-
ing technique to select similar sequence pairs on the
basis of the longest common subsequence (LCS) before
the sequence alignment process. This approach is much
faster than sequence alignment and is stricter than short
word filtering. Thus, our clustering algorithm is signifi-
cantly faster than CD-HIT without compromising on
clustering accuracy.
The program and source code of the LCS-HIT, which

are freely available for download at http://www.bi.cs.titech.
ac.jp/lcshit/, are implemented in C++ and are supported
on Linux with GCC (version 4 or later) and GNU make.

Methods
Algorithm
Our sequence clustering method consists of several
parts, as shown in Figure 1, and operates according to
the following sequence of steps:
Let Q be the set of sequences to be clustered and R=∅

be the set of existing cluster representatives.
For each q ∈ Q,

(a) Compare q and R by using the short word table,
and find the set Rq,k(⊆ R), the subset of representa-
tives with ≥ t common k-mers (partial sequences of
k nucleotides) with q (short word filtering).
(b) For each q and each r ∈ Rq,k,

(i) Compute the length of the longest common
subsequence LLCS(q, r) between q and r. If LLCS
(q, r) is above a certain threshold, save the pair
as a candidate similar sequence pair that may
belong to the same cluster. Otherwise, q and r
are considered to belong to different clusters
(LCS filtering).
(ii) For each saved sequence pair q and r, compute
the optimal sequence alignment using affine gap
penalties and the sequence identity between q and
r. If the sequence identity is greater than or equal
to the threshold s, then q and r are considered to
belong to the same cluster, and q is added to r’s
cluster (the cluster representative is not updated).

Otherwise, they are considered to belong to dif-
ferent clusters.

(c) If q does not belong to any existing cluster, then
create a new cluster whose member and representa-
tive is q. q is also registered in the short word table,
and let R ← R ∪ q.

An optimal alignment must be computed when check-
ing whether a pair of sequences belongs to the same clus-
ter. However, the time complexity of computing an
optimal alignment is O(mn) by dynamic programming,
where m and n are the lengths of the two sequences.
This is very slow, making it unrealistic to attempt to
compute alignments for all combinations of sequences.
Additionally, the number of sequence pairs with a
sequence identity less than the threshold s is much more
than the number of similar sequence pairs with a
sequence identity above the threshold. Thus, our method
filters similar sequence pairs by a faster method in
advance, and prunes the comparison set of dissimilar
pairs. As a result, the number of alignment computations
dramatically decreases, and the whole clustering process
can be completed in a reasonable length of time. In the
following sections, we describe the two filtering methods:
short word filtering and the proposed LCS filtering.
When a new cluster is created, the first assigned
sequence is selected as the representative for its cluster.
Representatives of existing clusters are not updated, even
if new sequences are added to the clusters. This means
that the clustering result depends on the order of input
sequences, while the computational cost in comparing an
input sequence with the cluster representative can be sig-
nificantly reduced. Our clustering method is largely
based on CD-HIT and retains many similarities. How-
ever, there are two main differences; our method employs
a new filtering process (LCS filtering) after short word fil-
tering, and different filtering criteria are used for short
word filtering.

Filtering similar sequence pairs based on the longest
common subsequence
Short word filtering can process large amounts of
sequence data in a short time because of the low compu-
tational complexity. Thus, it is suitable for filtering large
sequence datasets. However, the filtering is rough: many
dissimilar sequence pairs, i.e., with sequence identity less
than the threshold s, pass through the short word filter.
Thus, the subsequent sequence alignment process will be
hampered and the overall computation time for cluster-
ing will be prolonged. Instead, it is necessary to introduce
a fast and accurate filtering process after the rough, short
word filtering stage. Here, we introduce a new filtering
method that relies on the relationship between the length
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of the LCS and the sequence identity. Although the com-
putational cost for determining the LCS is generally not
negligible, a bit-parallel algorithm can be used to acceler-
ate its calculation and avoid a bottleneck.

The longest common subsequence
Let a subsequence be created by picking up elements
from a main sequence while preserving their relative
order. The LCS is the longest common subsequence
among all possible common subsequences. For example,
“TAGC” is the LCS of “ATCAGTC” and “CTAGAC.”
Finding the LCS of a sequence pair is equivalent to
aligning the two sequences to maximize the number of
the matched elements.

The length of the longest common subsequence
The LCS of two sequences X = (x1, x2, . . . , xm) and
Y = (y1, y2, . . . , yn) can be computed as follows:
Let Xi = (x1, x2, . . . , xi)(0 ≤ i ≤ m) and

Yi = (y1, y2, . . . , yj)(0 ≤ j ≤ n); and let LLCS(X, Y) be the
length of the LCS between X and Y. Then,

LLCS(Xi, Yj) =

⎧⎨
⎩

0
(
if i = 0 or j = 0

)
LLCS(Xi−1, Yj−1) + 1

(
if xi = yj

)
max

(
LLCS(Xi, Yj−1), LLCS(Xi−1, Yj)

) (
if xi �= yj

)

Generally, LLCS(X, Y) can be computed by dynamic
programming, which has an O(mn) time complexity.

LCS filtering for similar sequence pairs
The length of the LCS of a sequence pair, LLCS(X, Y),
equals the number of matches in the sequence align-
ment that maximizes matches between the two
sequences. Suppose the sequence X is longer than or
of equal length to Y(m ≥ n). The sequence identity of
a sequence pair equals the number of matches in
the alignment that maximizes the alignment score for
the two sequences divided by the shorter sequence
length n.
From this, the following relationship holds between

the length of the LCS and the sequence identity.

LLCS(X, Y)
n

≥ Sequence identity (1)

Figure 1 Flowchart of proposed method.
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This means that the ratio of LLCS(X, Y) to the
sequence length n equals the upper boundary of the
sequence identity of the two sequences. Using this rela-
tionship, dissimilar sequence pairs whose sequence iden-
tity is less than the threshold s can be pruned by
checking whether LLCS(X, Y)

/
n is greater than s before

computing the sequence identity.

Advantages of LCS filtering
First, LCS filtering can be performed with the threshold of
sequence identity s as the filtering criterion and does not
need new heuristic thresholds. Second, sequence pairs
with sequence identity greater than the given threshold s
always pass LCS filtering (no false negatives), because
LLCS(X, Y)

/
n is always larger than the sequence identity.

Thus, LCS filtering can be considered a suitable filtering
process to follow the short word filter and precede the
alignment computation.

Fast bit-parallel LLCS computation
As described above, using LLCS(X,Y), we can filter simi-
lar sequence pairs more accurately than the short word
filter. However, the time complexity of the LLCS(X,Y)
computation by dynamic programming is O(mn), which
is too large.
Nevertheless, there are several bit-parallel LCS-length

computation algorithms whose time complexity is
almost O(n), which can compute LLCS(X,Y) in a reason-
able amount of time [11-13]. We used the most efficient
of Hyyro’s bit-parallel algorithms to reduce the compu-
tation time for LLCS(X,Y).
Here, bi denotes i repetitions of bit b. With this notation,

we can write 1111 = 14 and 0011100 = 021302 . Addition-
ally, let � be the set of alphabets that appear in X and Y,
and let σ = |�| be the number of alphabets.

Let ComputePM(X) be defined as in Figure 2, where
“|” denotes the bitwise OR operation. ComputePM(X)
sets the corresponding positions of bits of PM (posi-
tion matrix) for each nucleotide in the sequence X.
With this ComputePM(X), LLCS(X, Y) can be com-
puted as shown in Figure 3. In the figure, “&” denotes
the bitwise AND operation, and + and - denote arith-
metic addition and subtraction of integers, respectively.
These operations will require carries and borrows
between adjacent bits.
The time complexity of ComputePM(X) is,

O (σ 	m/w
 + m) and that of LLCS is O (σ 	m/w
 n),
where w is the bit-length of a variable used for storing
sequence data. Therefore, we can see that the computa-
tion of ComputePM(X) and LLCS(X, Y) is much faster
than dynamic programming, and also faster than the
alignment computation.

Modification of short word filtering
Short word filtering is a fast filtering method for finding
similar sequence pairs between existing cluster represen-
tatives and a query sequence. It checks for the number
of common k-mers (partial sequences of k nucleotides)
between the two to find a match. The theory behind
this method is that a pair of similar sequences with high
sequence identity must have short identical words. The
value k should be decided according to the length of the
query sequences and the threshold of sequence identity.
The short word filter is used in CD-HIT, but in the pro-
posed method, we use different filtering criteria to
accommodate the subsequent LCS filter. In short word
filtering, k-mers in the representatives are indexed in an
index table (short word table) in advance; thus, cluster
representatives with specific k-mers can be filtered
quickly.

Figure 2 Computation of ComputePM(X).

Namiki et al. BMC Bioinformatics 2013, 14(Suppl 8):S7
http://www.biomedcentral.com/1471-2105/14/S8/S7

Page 4 of 8



Registering cluster representatives with the short word table
When a new cluster is created, its representative must
be registered with the short word table. First, every kth
k-mer of a new cluster representative sequence is enum-
erated. Next, all the enumerated k-mers are indexed in
the short word table and associated with the representa-
tive of the cluster that the k-mers belong to.
The short word table is implemented in the form of an

index table. This data structure enables rapid enumeration
of cluster representatives that contain a specified k-mer. In
the case of nucleotides, the number of entries in the index
table should be at least 4k since there are four DNA bases
and the number of possible k-mers is 4k.

Searching cluster representatives in the short word table
When searching for cluster representatives that have
common k-mers with the query sequence, all k-mers in
the query sequence must be first enumerated. Then,
cluster representatives with those k-mers are searched
using the short word table. If there are t or more com-
mon k-mers between the query and a cluster representa-
tive, this pair of sequences passes the short word filter
as a candidate of similar sequences belonging to the
same cluster. Dissimilar sequence pairs, i.e., those with
fewer than t common k-mers, are discarded.
The threshold t should be set according to the length of

sequences, k, and the threshold of the sequence identity s.
In our method, t is set relatively low because our short
word filtering only enumerates every kth k-mer of the
cluster representatives. Ideally, t should be t′

/
k, where t′ is

the threshold used in CD-HIT’s short word filter.

The characteristics of the modified short word filter
As mentioned above, the short word filter used in our
method enumerates every kth k-mer of cluster representa-
tives and all k-mers of the query sequences. By contrast,

CD-HIT’s short word filter enumerates all the k-mers of
the cluster representatives and query sequences. There are
two main advantages of enumerating and registering every
kth k-mer instead of all the k-mers. The first is that the
size of the short word table in main memory is reduced to
about 1/k. Second, the computation time necessary for
searching cluster representatives in the short word table is
also reduced because the number of entries decreases to
about 1/k.
On the other hand, there are several possible demerits.

Our short word filter uses a lower threshold t than that
of CD-HIT; therefore, it is possible that the number of
dissimilar sequence pairs may increase because of coin-
cidental partial matches between sequences. Also, short
word filtering fails to find a common k-mer between
similar sequences if mismatches and gaps between a
cluster representative and the query sequence appear at
equal intervals.
However, the first demerit can be addressed by introdu-

cing a fast and more accurate filtering process after the
short word filter and before the alignment process. Our
method uses LCS filtering for this purpose. The second
demerit occurs very rarely, because DNA sequences are
not random sequences, and it can be considered as a rare
case that mismatches and gaps in a sequence pair will
appear at equal intervals, even when their sequence iden-
tity meets the threshold s.

Results and discussion
Performance evaluation
We implemented our clustering method in C++ and
compared its efficiency and accuracy with those of CD-
HIT. For this evaluation, we used two different types of
datasets of short reads. One type comprised artificial
datasets, including short reads, generated by the MetaSim
software [14] from the Bacillus amyloliquefaciens

Figure 3 Computation of LLCS(X, Y) by bit-parallel algorithm.
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genome sequence. The datasets included reads of fixed
length. We used three different patterns of sequence
lengths (100, 150, and 400 bases) and three different
dataset sizes (one million, two million, and five million
sequences). Thus, the total number of the datasets was
nine. The other datasets comprised real sequencing data
for metagenomic samples obtained by Roche’s 454 and
Illumina/Solexa sequencers. The 454 dataset includes
34,719 reads of lengths from 41 to 629 bases, and the
Illumina dataset includes 6,822,944 reads with lengths
from 60 to 75 bases.
We set the thresholds and parameters as follows: the

threshold of sequence identity s was 0.9, the length of
short word k was 9, the thresholds of the number of com-
mon k-mers t were 1 (for 100 bases and 150 bases) and 4
(for 400 bases). The setting of each parameter, especially
sequence identity s, is highly dependent on the application
and it should be determined during the research. Here, we
used a value of s that has often been used in previous
metagenomic analysis [10]. We ran the clustering pro-
grams on a workstation running SUSE Linux 10 with a
single-core AMD Opteron processor (2.8 GHz) and 32 GB
of memory.
Tables 1, 2, 3 show the computation times of the clus-

tering processes for the artificial sequencing datasets.
Performance ratios of LCS-HIT to CD-HIT are shown
in parentheses.
These results clearly show that LCS-HIT was faster in all

cases. For the dataset with two million DNA sequences,
our method was approximately 7.1, 4.4, and 2.5 times fas-
ter than CD-HIT for 100, 150, and 400 bases, respectively.
The speed enhancement was large for shorter sequences,
whereas longer sequence lengths tended to obtain less
improvement with the proposed algorithm. One of the
reasons for this is that the longer are the sequences, the
greater is the number of cases where sequence pairs with
a sequence identity less than the threshold have an
LLCS(X, Y)

/
n value larger than the threshold. This is

because there is more opportunity to make an alignment
with sufficient matches using many gaps in a longer
sequence pair. Thus, both our method and CD-HIT suffer
the same increases in computational time for increases in
sequence length (Figure 4). This problem might be solved
by considering gaps in LCS alignments and compensating
the LCS score.
Table 4 shows the number of clusters generated by

each method. Although there is no large difference

between the clustering results, CD-HIT sometimes did
not correctly cluster similar sequence pairs that LCS-
HIT could correctly assign. The short word filter in
CD-HIT is too strict, and even similar sequence pairs
sometimes fail to pass through. However, our modified
short word filter is relatively loose, allowing more non-
similar sequence pairs to pass. Nevertheless, almost all
similar sequence pairs pass through our filter.
We also applied our method to real sequencing data-

sets, Roche’s 454 and Illumina/Solexa reads, as shown in
Table 5. Our method outperformed CD-HIT for both
datasets, but did especially well for Illumina/Solexa,
probably because of the shorter reads in the Illumina/
Solexa data.

Discussion
LCS-HIT uses, at most, 1.6 times more memory than CD-
HIT; it was about 5 GB for five million 400-base
sequences. Our method only registers every kth k-mer in
the short word table; therefore, the memory required for
our short word table is less than that required by CD-HIT.
However, the CD-HIT program sets an upper boundary
for memory usage by the short word table (800 MB by
default), and can run in this limited memory space. There-
fore, overall, CD-HIT uses less memory than LCS-HIT,
even though our method has a smaller short word table.
There is still room for improvement in the memory usage
of LCS-HIT, and thus it cannot be concluded that our
method is inferior in this respect at this point.
In this work, we used a bit-parallel algorithm for calcu-

lating the length of LCS. However, much faster implemen-
tations of the LCS calculation have already been proposed.
For instance, Chen et al. proposed an Message Passing
Interface (MPI)-based fast parallel algorithm for finding
the longest common sequence [15] and Yang et al. pro-
posed an efficient parallel algorithm on GPUs [16]. Thus,
clustering may be accelerated using these methods. How-
ever, from the profiling of the program, the LCS calcula-
tion consumed less than 5% of total computation time,
thanks to the bit-parallel algorithm. Therefore, it is

Table 1 Computation time for each sequence length (1
million sequences)

100 bases 150 bases 400 bases

CD-HIT 41m40s 45m15s 1h4m29s

LCS-HIT 7m10s (5.8) 13m45s (3.3) 31m22s (2.1)

Table 2 Computation time for each sequence length (2
million sequences)

100 bases 150 bases 400 bases

CD-HIT 2h11m47s 2h17m56s 2h50m38s

LCS-HIT 18m42s (7.1) 31m41s (4.4) 1h7m26s (2.5)

Table 3 Computation time for each sequence length
(5 million sequences)

100 bases 150 bases 400 bases

CD-HIT 11h17m22s 11h28m17s 14h57m56s

LCS-HIT 2h11m09s (5.2) 3h4m43s (3.7) 6h42m23s (2.2)
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difficult to increase the speed of the whole clustering pro-
cess by accelerating only the LCS calculation.

Conclusions
We developed the LCS-HIT fast clustering algorithm for
DNA sequence data, which employs a new filtering
scheme based on the longest common subsequence
(LCS). This filtering scheme allows accurate pruning of
dissimilar sequence pairs that are not discarded by short
word filtering alone. Thus, it accelerates the clustering
process as a whole.
The LCS filter is also effective as a second filter when

relaxing the filtering criterion of the short word filter to

reduce computation time. For two million DNA
sequences, LCS-HIT was about 7.1, 4.4 and 2.5 times fas-
ter than CD-HIT for 100, 150, and 400 bases, respectively.
LCS-HIT will enable clustering of huge DNA datasets that
cannot be handled with conventional sequence clustering
tools in a reasonable amount of time. Moreover, the filter-
ing technique itself is independent from the CD-HIT algo-
rithm. Thus, this technique can be applied to similar
clustering algorithms.
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Table 4 Number of clusters (2 million sequences)

100 bases 150 bases 400 bases

CD-HIT 1,242,054 1,015,466 493,384

LCS-HIT 1,185,704 970,419 480,201

Table 5 Computation time for real sequencing datasets

454 Illumina/Solexa

CD-HIT 2m47s 27h2m5s

LCS-HIT 44s (3.8) 3h44m31s (7.4)
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