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Abstract

Background: Understanding the localization of proteins in cells is vital to characterizing their functions and
possible interactions. As a result, identifying the (sub)cellular compartment within which a protein is located
becomes an important problem in protein classification. This classification issue thus involves predicting labels in a
dataset with a limited number of labeled data points available. By utilizing a graph representation of protein data,
random walk techniques have performed well in sequence classification and functional prediction; however, this
method has not yet been applied to protein localization. Accordingly, we propose a novel classifier in the site
prediction of proteins based on random walks on a graph.

Results: We propose a graph theory model for predicting protein localization using data generated in yeast and
gram-negative (Gneg) bacteria. We tested the performance of our classifier on the two datasets, optimizing the
model training parameters by varying the laziness values and the number of steps taken during the random walk.
Using 10-fold cross-validation, we achieved an accuracy of above 61% for yeast data and about 93% for gram-
negative bacteria.

Conclusions: This study presents a new classifier derived from the random walk technique and applies this
classifier to investigate the cellular localization of proteins. The prediction accuracy and additional validation
demonstrate an improvement over previous methods, such as support vector machine (SVM)-based classifiers.

Background
Protein localization is a general a term that refers to the
study of where proteins are located within the cell. In
many cases, proteins cannot perform their designated
function until they are transported to the proper location
at the appropriate time. Improper localization of proteins
can exert a significant impact on cellular processes or on
the entire organism. Therefore, a central issue for biolo-
gists is to predict the (sub)cellular localization of proteins
[1-3], which has implications for the functions and interac-
tions [4,5] of proteins.
With the development of new approaches in computer

science, coupled with an improved dataset of proteins
with known localization, computational tools can now

provide fast and accurate localization predictions for
many organisms as an alternative to laboratory-based
methods. Therefore, many studies have begun to address
this issue. To predict the cellular localization of proteins,
soon after their proposal of a probabilistic classification
system to identify 336 E.coli proteins and the 1484 yeast
proteins [6], Paul Horton and Kenta Nakai [7] also
compared their specifically designed probabilistic model
with three other classifiers on the same datasets: the
k-nearest-neighbor (kNN) classifier, the binary decision
tree classifier, and the naive Bayes classifier. The resulting
accuracy using stratified cross-validation showed that the
kNN classifier performed better than the other methods,
with an accuracy of approximately 60% for 10 yeast
classes and 86% for 8 E. coli classes.
Feng [8] presented an overview about the prediction of

protein subcellular localization, and in 2004, Donnes and
Hoglund [9] introduced past and current work on this
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type of prediction as well as a guideline for future studies.
Chou and Shen [10] summarized the more recent
advances in the prediction of protein subcellular localiza-
tion up to 2007. A variety of artificial intelligence technol-
ogies [11-15] have now been developed, including neural
networks, the covariant discriminate algorithm, hidden
Markov models (HMMs), Decision Tree and support vec-
tor machines (SVMs). Among these methods, the SVMs
are always considered as a powerful algorithm for super-
vised learning.
Besides, there are other methods proposed too, like

the YLoc tool implemented by Briesemeister et al. [16]
and the PROlocalizer [17] which integrated web service
to aid the prediction. Recently, the random-walk-on-
graph technique [18-20] has been applied to biological
questions such as the classification of proteins into func-
tional and structural classes based on their amino acid
sequences. Weston et al. presented a random-walk ker-
nel based on PSI-BLAST E-values [21] for protein
remote homology detection. Min et al. [22] applied the
convex combination algorithm to approximate the ran-
dom-walk kernel with optimal random steps and applied
this approach to classify protein sequence. Freschi et al.
[23] proposed a random walk ranking algorithm to pre-
dict protein functions from interaction networks. Ran-
dom walks are closely linked to Markov chains, which
inspired Yuan [24] to apply a first-order Markov chain
and extend the residue pair probability to higher-order
models to predict protein subcellular locations. Garagea
et al. [25] also presented a semi-supervised method for
prediction using abstraction augmented Markov models.
This study introduces a novel random walk method

for protein subcellular localization based on amino acid
composition. By mapping the protein data into a
weighted and partially labeled graph where each node
represents a protein sequence, we implemented a ran-
dom walk classification model to predict labels of unla-
beled nodes based on our previous theoretical work
[26]. We present an intuitive interpretation of the graph
representation, label propagation and model formula-
tion. We additionally analyzed the performance of the
method in predicting the (sub)cellular localization of
proteins. This method produced results that were both
competitive and promising when compared to the state-
of-the-art SVM classifier.

Results
Our random walk classifier (RaWa) was coded in
MATLAB. Given the training data and their classes, we
computed the state matrix Y and weight matrix W. In
our experiment, the similarity or weight between two
nodes was given according to the radius basis function
(RBF)

sim(vi, vj) = e−γ‖xi−xj‖2

= e
−

∥∥xi − xj
∥∥2

2σ 2

To prove the effective classification performance of our
method, we compared our classifier with RBF-SVM by
implementing LibSVM [27], and the g = 1/2s2 of our
RaWa and RBF-SVM was optimized over the interval {2-11,
2-9, ..., 29, 211}. In this study, we adopted an n-fold cross-
validation measurement to produce the highest predication
accuracy, which was computed by dividing the number of
correctly classified data points by the size of the entire
unlabeled dataset.

Predicting the (sub)cellular localization of proteins
Since our classifier involved two parameters, the laziness
parameter a for constructing transition matrix and the
random walk step t, we first tested the performance of our
classifier on different combinations of a and t. Then,
under the optimized parameter settings, we compared our
approach with various measurements to the SVM
classifier.
Influence of a and t
We investigated a maximum walk of 30 steps and five
parameters: 0.05, 0.25, 0.5, 0.75 and 0.95. Figure 1 and
Figure 2 depict the predictive accuracy curves of our
random walk classifier on yeast and Gneg datasets,
respectively. Each figure contains five lines that corre-
spond to each a and depicts the trend of accuracy ratios
with increasing t. The test results were obtained from
10-fold cross validation.
We found that a large number of steps were unneces-

sary for the RaWa classifier to achieve the best results.
First, the complete graph offers each label a chance to
reach the unlabeled node in at least one step. Second,
both figures show that good accuracy was always
obtained when the value of t was low. In contrast, the
accuracy gradually declines after the peak value of t.
This decline may probably due to the fact that with the
increasing of t, Pt will become trivial and in turn mis-
lead the classification. This situation is quite apparent in
Figure 2. In addition, Szummer and Jaakola [28] found
that small constant values of t (about t = 8) were effec-
tive on a dataset with several thousand examples.
Since the labeled training data is often deterministic,

the transition matrix built over the labeled data is com-
monly treated as a unit matrix in semi-supervised ran-
dom walk methods. However, the best result for the
yeast data was achieved when a = 0.75. This value gave
the labeled nodes more freedom to move to each other,
whereas the best result for the Gneg data was achieved
when a = 0.95. Consequently, it is necessary to import
the laziness parameter when the training data is not
fully reliable; a can usually be set above 0.5.
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Comparisons with SVM
According to the above results, our method achieved a
total prediction accuracy of 61% for yeast data, and
>93% accuracy for Gneg data. Furthermore, to quantify
the performance of our proposed algorithm, we
employed SVMs and compared the two methods by
computing the widely used measures of Specificity and
Sensitivity. Table 1 compares the ability of the two
methods to classify yeast data into 10 classes, while
Table 2 shows the comparison for the Gneg data with 5
classes. We also compared the total accuracy of both
classifiers; these data are presented in the final row of
the table.
Each classifier was able to produce results with high sen-

sitivity and specificity, but neither could identify the pro-
teins that localized to the VAC site. The RaWa performs
slightly better since it could predict the proteins that loca-
lized to POX and ERL, whereas the SVM could not.

As illustrated in Table 2, both classifiers produced high
sensitivities and specificities on the 5 locations, but
according to the total accuracy listed in the last row, our
classifier outperformed the SVM by 1%.
We further compared the two classifiers using receiver

operating characteristic curves (ROCs). Figure 3 and
Figure 4 depict the results for yeast and Geng, respec-
tively, and each figure contains the ROC curve for the
RaWa method on the left and the ROC curve for the
SVM method on the right. These figures together offer
an intuitive comparison and show that our RaWa classi-
fier is effective and that the results are comparable to
those derived from a SVM-based method.

Discussion
Herein, we propose a novel classification model for label
propagation through random walks on graphs. We first
initialized an undirected complete graph over the
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Figure 1 Classification accuracies (in %) of yeast data given varying random walk steps and laziness parameters.
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Figure 2 Classification accuracies (in %) of gram-negative bacteria data given different random walk steps and laziness parameters.
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labeled data whose data points act as the nodes and
pairwise distances act as the weights. Then, labels and
weights are employed to construct the state matrix and
state transition matrix so that any node can start a ran-
dom walk and propagate its label to any unlabeled data
point after several steps. This model is also optimized
by a kernel method and regularization so as to provide
flexible control over the transition matrix.
One interesting possibility for future work is to develop

algorithms for a clever selection of the labeled dataset and
the kernel based on the data. In this study, we used the
very simple Gaussian kernel with the identity covariance
matrix, which likely does not exploit the similarity infor-
mation conveyed in the data points.

Conclusions
Protein cellular and subcellular localization has been an
important facet of research because of its role in charac-
terizing protein functions and protein-protein interactions.
In this study, we developed a novel approach based on a
random walk technique to predict protein localization. We
demonstrated that this approach improves the accuracy of
predicting protein (sub)cellular localization and is easy to

train. When compared to the SVM classifier, our results
are both competitive and promising.

Methods
Data preparation
To apply our method to predict and classify protein (sub)
cellular localization, we utilized two datasets: the widely
used yeast data from the UCI database and the gram-
negative bacteria proteins from the Cell-PLoc package.
The yeast data, including 1484 items with 8 attributes,
were used to predict the cellular localization of proteins
and have been categorized into 10 classes. The second
dataset was first used by Shen and Chou in their predic-
tors [29,30] particularly for the prediction of gram-nega-
tive bacteria proteins. This dataset contained 1114 gram-
negative (Gneg) bacterial proteins classified into 5 subcel-
lular locations according to experimental annotations.
None of the proteins had more than 25% sequence iden-
tity to any other in the same subset (subcellular location).
Detailed information is provided in Table 3.
First, we represented a protein sample P with L amino

acid residues by its evolutionary and sequence informa-
tion. Here, for simplifying the formulation without losing
generality, we use the numerical codes 1, 2... 20 to repre-
sent the 20 native amino acid types according to their
single character symbols in alphabetical order. Then, the
position-specific scoring matrix (PSSM) was introduced
as a descriptor of evolutionary information. The PSSM
produced a matrix ML×20 where Mi®j represents the
score of the amino acid residue in the ith position of the
protein sequence being mutated to amino acid type j
through evolution.
However, according to the PSSM descriptor, proteins

with different lengths will correspond to matrices with
different numbers of rows. To allow the PSSM descrip-
tor to have a uniform representation, a given protein
sample P could be represented by the mean value of
each row: P̄PSSM = [M̄1, M̄2, · · · M̄20]T

M̄j =
1
L

L∑
i=1

Mi→j(j = 1, 2, · · · , 20)

However, as a result, all the sequence-order information
would be lost. To avoid the complete loss of the sequence-
order information, we also adopted the concept of the
pseudo-amino acid composition (PseAA), as originally
proposed in [31]. According to the representation of the
PseAA, the protein P is formulated by

Pλ
PseAA =

[
p1, p2, · · · , p20, p20+1, p20+2, · · · , p20+λ

]T
(λ < L)

where p1,p2,...,p20 are associated with the conventional
amino acid composition, reflecting the occurrence fre-
quencies of the 20 native amino acids in the protein P.

Table 1 Sensitivity and Specificity for yeast data using
10-fold cross-validation including the total predication
accuracy

RaWa SVM

Sensitivity Precision Sensitivity Precision

MIT 57.38 68.29 54.9 65.0

NUC 54.08 59.95 51.0 64.0

CYT 68.90 55.67 72.1 47.7

ME1 84.09 55.22 72.7 68.1

EXC 51.43 64.29 57.1 58.8

ME2 39.22 57.14 41.2 52.5

ME3 77.91 74.71 81.6 76.4

VAC 0 - 0 -

POX 55.00 84.62 0 -

ERL 1 83.33 0 0

Total Accuracy 61.3±0.11 60.2±0.28

Table 2 Sensitivity and Specificity for gram-negative
bacteria data using 10-fold cross-validation including the
total predication accuracy.

RaWa SVM

Sensitivity Precision Sensitivity Precision

Cytoplasm 89.3 94.0 93.6 85.6

Extracell 82.4 91.0 83.8 86.1

Inner membrane 98.2 93.7 95.9 96.5

Outer membrane 85.6 89.2 84.5 90.1

periplasm 79.3 91.1 84.5 85.2

Accuracy 93.3±0.24 92.1±0.46
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We thus represented the protein P by combin-
ing PSSM and PseAA in the following form
FT = [P̄PSSM,Pλ

PseAA]
T.

In order to obtain the PseAA values, the lambda was
set to 49, and the weight was 0.05. Since there are 3
proteins whose lengths were shorter than 49 amino
acids, we obtained 1111 proteins with 89 features.

Problem formulation
Usually, a training set (X, C) specifies the set of labeled
data and the set of their classes, n is the number of
tuples in X, and then the classes of a test set can be pre-
dicted. We first considered an initial graph of the form
G(V, E, W), which was constructed over the training set,
where V is the set of nodes and its member vi only
responds to (xi, ci). This graph is assumed to be com-
plete; therefore the edge set E is trivial. We thus pro-
vided the labeled nodes with a certain probability to

travel to other nodes (explained below). W represents
the edge weight matrix sized n×n and indicates the pair-
wise similarities, wij = sim(vi,vj) = sim(xi,xj).
We also let Y be a set of m labels that can be applied

to nodes of the graph. After the initial weighted graph
was generated, a state transition matrix P = [Pij]n×n was
defined to infer the probability pij that one node vi tran-
sitions to the state of node vj. P is generally computed
as P = D-1W, where the diagonal matrix D = diag(W1n)
and 1n is a n-dimensional vector with all values set to 1.
We next converted yi into a vector of labels (i.e.,
Y = [y1, y2, ..., yn]m×n), where yi = [y1i,y2i,...,ymi]

T. There-
fore, the label or state of vi is cj if and only if yji = 1.
Y can be also referred to as the state matrix of V or X.
Given the state matrix and transition matrix, a simple

random walk on V is described as the process that the
state yi of any node vi transitions with the probability pij
to the state yj of node vj. Thus, the states of labeled data
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Figure 3 ROC curves illustrating the comparison of RaWa and SVM methods on data from yeast.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
RaWa ROC

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
SVM ROC

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 4 ROC curves illustrating the comparison of RaWa and SVM methods on data from gram-negative bacteria.
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are not encoded as the absorbing states. Random walks
on readily labeled nodes are meaningless since we uti-
lized the information already encoded in the partially
labeled graph to help us predict labels, but the initial
graph G is just a labeled graph. Therefore, given each
data point lacking a label from the test set, we added it
to graph G as an unlabeled node. The traditional classi-
fication problem has thus been converted to a node
classification problem on a partially labeled graph by
this method.

Random walk classification model
We next aimed to deduce a simple classifier based on the
nodes that are labeled so it can be applied to predict the
labels of the unlabeled nodes. Our solution was a state vec-
tor y that provides the label for an unlabeled data point x.
We first provide an example to clarify the process of

label propagation through random walks. Consider an
initial graph G constructed over the training data (X, Y) =
{(x1, c1), (x2, c1), (x3, c2)}. Each data point lacking a label is
added into graph G as an unlabeled node. Figure 5 displays
such a graph G’ after three unlabeled data points were
added. The graph G’ is often assumed to be label-con-
nected to become completely labeled [32]; that is, it is pos-
sible to reach a labeled node from any unlabeled node in a
finite number of steps. For example, if in a random walk,
the sixth node v6 ends at the second node v2, then this
node will be labeled as c1.
Node classification relies on a random walk originat-

ing at the unlabeled node vj and ends at one labeled
node vi after several steps, and in this way, vj obtains its
label from vi. If during the walk an unlabeled node
reaches a labeled node for the first time, it will not
remain at that node because the labeled nodes are not

absorbing states; rather, the unlabeled node will move to
another node with a certain probability. Since graphs G
and G’ are undirected and symmetric, a random walk
that starts at vj and ends at vi can be also revertible.
Next, we assume p(vi, v) to be the state-transition

probability with which a walk proceeds from node vi in
V to the new node v represented by unlabeled data
point x. The state y of new node v is represented as

y =
∑
vi∈V

p(vi, v)yi = Ypv

where

pv
def
= p(V, v) =

⎡
⎢⎢⎢⎣
p(v1, v)
p(v2, v)

...
p(vn, v)

⎤
⎥⎥⎥⎦

Table 3 Information about gram-negative and yeast data

Proteins Site Number

Gram-negative bacteria proteins Cytoplasm 140

Extracellular 74

Inner membrane 687

Outer membrane 97

Periplasm 116

Yeast Cytosolic or cytoskeletal (CYT) 463

Nuclear (NUC) 429

Mitochondrial (MIT) 244

Membrane protein, no N-terminal signal (ME1) 163

Membrane protein, uncleaved signal (ME2) 51

Membrane protein, cleaved signal (ME3) 44

Extracellular (EXC) 37

Vacuolar (VAC) 30

Peroxisomal (POX) 20

Endoplasmic reticulum lumen (ERL) 5

Figure 5 A simple partially labeled graph.
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For the node vi in V, we have

p(V, vi) = D−1wi = D−1

⎡
⎢⎢⎢⎣
w1i

w2i
...

wni

⎤
⎥⎥⎥⎦

Similarly, for the new node v not in V, p(V, v) is com-
puted as:

p(V, v) = D−1w(V, v) = D−1

⎡
⎢⎢⎢⎣
w(v1, v)
w(v2, v)

...
w(vn, v)

⎤
⎥⎥⎥⎦

Therefore, the state y of v can be obtained by the fol-
lowing equation:

y = Yp(V, v)

= YD−1w(V, v)

= YD−1WW+w(V, v)

= YPW+w(V, v)

where W+ denotes the pseudo-reverse matrix of W.
This is preferred over the inverse of W because W may
sometimes be singular. w(V, v) is a column vector that
indicates the similarity between the new node v and
nodes in V.

Model training
In order to train an effective classifier, the labeled data
should be fully utilized; however the influence of noise
within the training data should be avoided, especially
because biological measurements always contain a cer-
tain amount of noise.
Therefore, we trained our classification model with a

prediction adjustment using complementary training
data. We first partitioned the training data X in a
balanced fashion, which resulted in two subsets with a
similar size, each having a certain amount of data
belonging to each class in C. The two subsets S and T
thus have properties such that S∪T = X and S∩T = F.
Next, we allow the two complementary sets to predict
each other with the above equation, and we can get:

FS(T) = YSPSW
+
Sw(S,T)

FT(S) = YTPTW
+
Tw(T, S)

To evaluate the performance of this prediction, we
computed the test loss on S and T according to the fol-
lowing equations:

εFS = ε(FS,X,T) =
∥∥YSPSW+

Sw(S,T) − YT
∥∥2
F

εFT = ε(FT ,X, S) =
∥∥YTPTW+

Tw(T, S) − YS
∥∥2
F

where classifier’s performance increases with decreas-
ing test loss. Moreover, we defined the total loss as

εFX =
εFSεFT

εFS + εFT

Though the total loss could be minimized through
repeated random partitions of the training data, it is
time consuming. We note that the test loss also indi-
cates the importance of its corresponding subset, so we
can impose a weight on each subset to highlight this dif-
ference. We then defined the state matrix to be:

Ỹ = �αY = [αSYS,αTYT] s.t. αS + αT = 1

The weight vector was computed as follows:

�α =
[

αS

αT

]
=

1
εFS + εFT

[
εFT
εFS

]

For the transition matrix, we usually consider a multi-
step random walk; for t steps, we just replace P with Pt.
During a random walk of t steps, the state of the new
node v or new data point x is:

y = �αYPtW+w(V, v)

Previous studies have treated the labeled nodes as
absorbing states, such that P = I, but here we considered
lazy random walks, i.e., Pt = (aI + (1-a)P)Pt-1, where aÎ
(0,1) is a laziness parameter indicating that the nodes
will stay at their current positions with probability a

Further improvement with the kernel method and
regularization
Usually, k(u, v) denotes the kernel function so that k(X,
x)=[k(x1, x), k(x2, x),..., k(xn, x)]

T. We defined the kernel
matrix K in the space (X, X) as K = k(X, X) = [k(xi, xj)]

n×n, and F was defined as a classifier. The kernel func-
tion k(X, x) and kernel matrix K were employed to sub-
stitute for the similarity metric w(V, v) and weighted
matrix W, respectively.

wij
def
= w(vi, vj) = k(xi, xj)

With the kernel method embedded, we formulated
our random walk classifier as:

F(x) = ỸPtK+k(X, x)

Again, assuming F̂ = ỸPt, the final classification model
is represented as:

F(x) = F̂K+k(X, x)
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The idea underlying the random walk methods is that
the probability of labeling a node v with a label (or
state) y is the total probability that a random walk start-
ing at v will end at a node labeled y. F(x) therefore is
more likely to return a probability distribution such as
F(xi) = F(vi) = [f1i, f2i, ..., fci]T, where each distribution fji
refers to the total probability that the a random walk
starting at node vistops at any node labeled cj after t
steps. The largest fji allows vi to be assigned label cj.

fji =
∑

vi∈V|yji=1
pij

K sometimes is a singular matrix because of insuffi-
cient data or the existence of noise, or there could be
more than one optimized solution for W. In either case,
computing w is not recommended. We thus use regular-
ization to improve upon ill-posed problems. To enhance
the robustness of our classifier, we introduced a regular-
ization parameter l into the kernel matrix, thereby for-
mulating the regularized random walk basic classifier. In
our experiments, we fixed l to 0.0001 to avoid interfer-
ence from the original data.

F(x) = F̂(K + λI)+k(X, x)

If the dimension of X is d, then the time cost for com-
puting the kernel matrix and pseudo-reverse matrix to
build the model for our classifier is O(dn2) and O(n3),
respectively. F̂K+ requires a complexity of O(mn2), where
m ≤ n, so the overall cost is estimated as O(dn2) + O(n3) +
O(mn2) = O(max{d, n}n2).
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