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Abstract

Background: Markov state models have been widely used to study conformational changes of biological
macromolecules. These models are built from short timescale simulations and then propagated to extract long
timescale dynamics. However, the solvent information in molecular simulations are often ignored in current
methods, because of the large number of solvent molecules in a system and the indistinguishability of solvent
molecules upon their exchange.

Methods: We present a solvent signature that compactly summarizes the solvent distribution in the high-
dimensional data, and then define a distance metric between different configurations using this signature. We next
incorporate the solvent information into the construction of Markov state models and present a fast geometric
clustering algorithm which combines both the solute-based and solvent-based distances.

Results: We have tested our method on several different molecular dynamical systems, including alanine
dipeptide, carbon nanotube, and benzene rings. With the new solvent-based signatures, we are able to identify
different solvent distributions near the solute. Furthermore, when the solute has a concave shape, we can also
capture the water number inside the solute structure. Finally we have compared the performances of different
Markov state models. The experiment results show that our approach improves the existing methods both in the
computational running time and the metastability.

Conclusions: In this paper we have initiated an study to build Markov state models for molecular dynamical
systems with solvent degrees of freedom. The methods we described should also be broadly applicable to a wide
range of biomolecular simulation analyses.

Background
The simulation of biological processes at the molecular
scale has the potential to give insight into a wide range of
properties and phenomena that are important to science,
engineering, and medicine – with protein folding, or mis-
folding, being perhaps the most famous example [1,2].
Indeed, simulations can give, in principle, atomic-level
detail with great temporal precision over a wide range of
application areas, thus greatly complementing and
expanding on what one can currently do experimentally.
Today, with powerful individual processors, large

computer clusters, as well as with very large distributed
clusters of processors, one can routinely generate massive
quantities of simulation data for a given phenomenon of
interest, often in full-atomic detail along many trajectories.
There is an increasing need to mine such massive data

sets in order to gain insight into the fundamental phenom-
ena under study. From these data sets, the goal is to
understand at some more macroscopic level the structure
of the paths taken during the simulation. The key chal-
lenge facing dynamical simulation on the molecular scale
is to overcome the gap between the timescales where
interesting biologically relevant conformational changes
occur (typically microseconds or even longer) and those
we can simulate at atomic resolution (typically nanose-
conds). The length of atomic simulations is limited by the
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need to take small time steps, which is determined by the
high frequency motions.

Markov state models
To meet such a challenge, a lot of recent effort has been
devoted to constructing stochastic kinetic models, often in
the form of discrete-time Markov state models (MSMs),
from relatively short molecular dynamics simulations
[3-11]. These models are built from short timescale simu-
lations and then propagated to extract long timescale
dynamics. The MSMs partition configuration space into a
number of distinct states, called metastable states, such
that the intra-state transitions are fast but the inter-state
transitions are slow. Such separation of timescales ensures
that the model is Markovian, in that the probability of
being in a given state at time t + Δt depends only on the
state at time t.
In a MSM, the time evolution of a vector representing

the population of each state can be calculated as P(nτ ) =
[T(τ)]nP(0), where P(nτ) is a vector of state populations
after n time steps and T(τ) is the column-stochastic tran-
sition probability matrix with lag time τ (simulation time
step). Note that any model is Markovian for a sufficiently
long lag time τ, because the system is able to converge to
an equilibrium distribution from any arbitrary initial dis-
tribution after one lag time. The key point is to build a
model with a lag time that is shorter than the timescale
of the process of interest with a reasonable number of
states.
To build such dynamical models, it is necessary to map

out the dominant long lived, kinetically metastable states
and then determine the rates for transitioning between
these states. A few different approaches have been devel-
oped to generate good state decompositions. If the low-
dimensional manifold containing all the slow degrees of
freedom is known a priori, then the configuration space
can be partitioned into free energy basins to define these
metastable states, such as by examination of the potential
of mean force [10-14]. Without this prior knowledge,
some attempts have turned to conformational clustering
techniques which assume that geo-metrically distinct
clusters may also be kinetically distinct [15-18].
In [4], Chodera et al. proposed a first algorithm that

can automatically discover kinetically metastable states
for the construction of MSMs. They use a geometric
clustering algorithm to split the configuration space into
a large number of small microstates, and then lump them
into kinetically distinct macrostates. Later, Bowman et al.
developed an open source software package MSMBuilder
based on this framework [6]. The software provides tools
for clustering data based on geometric relationships and
for constructing and manipulating MSMs based on this
initial clustering. It also includes tools for verifying that
the resulting model is Markovian as well as analyzing and

visualizing the model. There are also several recent works
developed related to these methods [7-9].

Solvent degrees of freedom
Since the dynamics of biological macromolecules are
usually coupled with the surrounding solvent, many
molecular simulations involve both a solute and a solvent
(typically water). Some previous works have shown the
necessary of accounting for the solvent structure to accu-
rately characterize the dynamics and free energy land-
scape of the biological macromolecule systems, such as
the RNA hairpin-loop motif [19], alanine dipeptide [20]
and the BphC enzyme [21]. In this setting, both solute
and solvent atoms are placed in a box and then move fol-
lowing some predefined force field, yielding a sequence
of snapshots of the atom positions. The number of atoms
is kept constant in this process.
Although people have recognized that solvent coordi-

nates may be critical in some phenomena [19-25], in the
step of data analysis people often assume configurations
lie exclusively in the configuration space of the macro-
molecule, and simply ignore the solvent information. For
example, in [4], it presume that de-correlation of
momenta and reorganization of the solvent is faster than
the process of interest. One difficulty in dealing with sol-
vent degrees of freedom is the large number of solvent
molecules in a system (typically thousands). Besides, it
also requires to account for the indistinguishability of
solvent molecules upon their exchange. One impressive
work in this direction is [22], which used a generic neural
network model to identify reaction coordinates from a
database of candidate variables including water related
ones. However, to use this approach researchers have to
define the candidate variables. Furthermore, the result
from the neural network model may not be easy to inter-
pret, which is a drawback as a data exploration tool.
In this paper, we propose to generalize the current

methods to include the solvent degrees of freedom. We
first present a new distance metric which encodes the
solvent information in molecular configurations, and
then incorporate it into the construction of MSMs.
Finally we apply our method to several biological model
systems and assess its performance.

Methods
Many of the dynamical systems which occur in biochem-
istry take place in very high dimensional spaces. Our
main goal is to develop techniques to obtain the simplest
kind of qualitative information about high-dimensional
molecular dynamical systems. Perhaps the most signifi-
cant piece of information one has about the data set is
the distance metric which specifies the distances between
pairs of points (molecular configurations). For macromo-
lecules, a commonly used metric for estimating the
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distance between two molecules is the RMSD distance,
defined as the root mean squared deviation of the Carte-
sian coordinates of heavy atoms in the molecules after a
minimizing rigid body translation and rotation alignment
[26,27]. In this section, we design a new distance function
for comparing the solvent profiles, and then use it to
construct MSMs with solvent degrees of freedom.

Distance functions
In molecular simulations, a system consists of both a
solute (macromolecule) and a solvent (water). Suppose
the solute structure contains m atoms, and the solvent
involves n water molecules. We denote X = {x1, x2, ..., xm}
as the set of solute atoms, and Y = {y1, y2, ..., yn} repre-
senting the set of solvent atoms. (For water molecules,
we only record the oxygen atom at the vertex and ignore
two hydrogen atoms at the tips, so each yi corresponds to
the oxygen atom of a water molecule). Then, the results
of the simulations become sequences of point sets {X, Y},
which are obtained by sampling at random from the con-
figuration space and then following the trajectory for a
certain time interval.
We first point out two properties when comparing dif-

ferent configurations {X, Y}:

• m ≪ n – typically the number of solute atoms is
less than 100, while there can be thousands of sol-
vent molecules in a system.
• {y1, y2, ..., yn} are indistinguishable upon their
exchange – when considering the interaction between
the solute and the solvent, we do not care about the
identities of Y. In other words, two configurations are
considered as the same if they only differ by a permu-
tation of solvent molecules.

To address the indistinguishability of solvent molecules
upon their exchange, one may consider methods that
compute the optimal matching between the solvent mole-
cules, such as minimum cost flow [28], or the Hungarian
algorithm [29]. However, these matching based algorithms
would require O(n3) time, which is slow for systems with
thousands of solvent molecules. The computational cost
can be reduced if we only focus on solvent molecules
around the solute, such as its k-nearest neighbors. How-
ever, this solution is not stable because a small perturba-
tion in the configuration may cause the set of k-nearest
neighbors to vary a lot.
We present a new distance function that measures the

geometric similarity between different configuration. The
idea is we compute some signatures/descriptors f(X, Y)
that compactly summarize the high-dimensional data sets
{X, Y}, and then define the distances using these signa-
tures. As mentioned above, we would like the signature

f(X, Y) to satisfy the following properties:

1. f(X, Y) is continuous in the input space X and Y, so
a small perturbation of the system does not change
the signatures too much.
2. f(X, Y) is symmetric in Y = {y1, y2, ..., yn}, so the sol-
vent molecules are indistinguishable upon their
exchange.
3. yi’s far from X have less weights in f(X, Y), because
these solvent molecules have little impact to the
solute.

To meet these properties, we define the signature f(X,
Y) as follows. Given a point x Î X, we transform the

space using a Gaussian kernel K
(
x, y

)
= exp

(
−||x−y||2

2σ 2

)
,

where ||x - y|| is the Euclidean distance between points
x and y, so that yi’s far from X become less important.
We then define the signature of a single point x relative

to space Y as f (x,Y) =
n∑
i=1

K
(
x, yi

)
. By summing up all

kernels K (x, yi), the result is invariant under permuta-
tions of solvent molecules. Finally, we define f(X, Y) as a
signature vector {f(x1, Y), f(x2, Y), ..., f(xm, Y)}, which takes
O(mn) computation time.
Intuitively, the signature vector f(X, Y) summarizes the

solvent distribution around each solute atom. We then
define the distance between two configurations simply as
the Euclidean distance between their signature vectors.
In fact, there are various choices of functions that can
satisfy these properties (1-3), while the one we proposed
here is simple and fast to compute.

Constructing Markov state models
In this section, we integrate the solvent information into
the construction of MSMs. We will follow and extend
the methods described in [4,6]. Basically, these
approaches has two steps – a split step to reduce the size
of the data set based on geometric shapes, and then a
lump step to incorporate kinetic information from
trajectories.
Splitting
Modern computer simulations can easily generate data
sets with millions of configurations, making analysis of
these massive data sets computationally challenging. An
important method for shrinking the data sets is to apply a
clustering algorithm to obtain a family of clusters (micro-
states) of much smaller size than the original data set.
Here each cluster should be small enough to ensure that
the intra-state transitions between configurations in the
same cluster are fast.
In the split step, all N configurations (104 - 107) are

grouped into K microstates (102 - 104) based on their
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structural similarity. Due to the large size of the data set,
it is more practical to apply a fast geometric clustering
algorithm, such as the k-center or k-medoid algorithm
with O(KN) time complexity [30,31]. Another important
factor is the choice of distance functions in these cluster-
ing algorithms. In the traditional solute-based models,
the RMSD distance is often used as a standard metric to
measure the structural similarity. With the distance func-
tion we defined between solvent configurations, we are
able to identify solvent-based metastable clusters.
Furthermore, we may combine these two distance func-
tions together to build a model with both solute and sol-
vent information.
Suppose we want to build a model with K microstates,

we first group all N configurations into
⌈√

K
⌉

solute

clusters using the RMSD distance, and then indepen-

dently group all configurations into
⌈√

K
⌉

solvent clus-

ters using the distance based on solvent signatures. In
the next step, we consider two configurations to be in
the same microstate if and only if they are assigned to
both the same solute cluster and the same solvent clus-

ter, and thus there are totally
⌈√

K
⌉2

states at the end.

Note that some states might be empty if there is no
configuration assigned to their corresponding {solute,
solvent} cluster pairs. In this case, we may increase the
number of solute/solvent clusters a little bit larger to
make sure that we have at least K non-empty states.
(An alternate solution is to group all configurations into⌈√

K
⌉

solute clusters first, and then generate
⌈√

K
⌉

solvent clusters for configurations within each solute

cluster independently, instead of generating
⌈√

K
⌉

glo-

bal solvent clusters.) Finally, we form the K microstates
by simply merging the smallest states (this step can be
skipped if we do not need to form exactly K
microstates).
More generally, we can generate K1 solute clusters and

K2 solvent clusters (with K1K2 ≥ K), and then combine
them into K microstates. In fact, the traditional solute-
based model can be seen as a special case where K2 = 1,
and the solvent-based model is a special case where K1

= 1. Note that in this case, the running time for geo-
metric clustering becomes O((K1 + K2)N). By setting

K1 = K2 =
√
K , we achieve the optimal running time

O
(√

KN
)
– which is much faster than O(KN) time for

large K (because we are generating hundreds/thousands
of microstates).
Lumping
Because the clustering algorithms do not produce clus-
ters of any particular uniform shape or size, we have

lost the original metric information after the split step.
What one retains, however, is the computation of prob-
abilities for transitioning from one microstate to
another. This means that we retain a coarse version of
the dynamics. In the next step, these microstates are
lumped into macrostates based on their kinetic transi-
tions in the trajectories. Since this step does not con-
sider solute/solvent information about configurations,
we simply follow the same approach described in [4].
In the lump step, the K microstates are grouped into L

macrostates (< 102) so as to maximize the metastability.
The metastability Q of a decomposition into L macro-
states is defied as the trace of its transition probability

matrix Q =
L∑
i=1

Tii (τ ) . Intuitively, a poor decomposition

would result in a small Q, as trajectories started in some
states exit rapidly; conversely, a good decomposition with
strongly metastable states would result in a large Q, as
trajectories remain in each state for long times.
In the original approach, a simulated annealing algo-

rithm [32] is used to optimize the metastability in lump-
ing. The algorithm starts with an arbitrary initial
solution that assigns K microstates into L macrostates.
In each step, a microstate is selected uniformly at ran-
dom, and reassigned to a new random macrostate (the
new solution is rejected if a macrostate becomes empty
after this change to ensure that there are L macrostates).
If the new solution has a larger metastability Q’ than the
old solution Q, the new solution is accepted; otherwise

it is accepted by a probability of exp
(
Q′ − Q

T

)
, where

T is a temperature parameter which is set to be the
inverse of the step number. The allowance for these
“downhill” moves can potentially save the method from
becoming stuck at local optima.

Results and discussion
The method we described here would be generally
applicable to a wide range of biomolecular simulation
analyses. In this section, we pick several examples and
test the performance of our method in these different
models.

Solvent-based clusters
We first apply our method to a small alanine dipeptide
system, which has been used as an example in the
MSMBuilder [4,6]. We pick a 5 nanoseconds trajectory of
alanine dipeptide in explicit water, with a frame rate of 1
picosecond.
In this model, the solute structure Ace-Ala-Nme con-

sists of 22 atoms and the solvent contains 885 H2O. For
each configuration, we extract 10 solute atoms X = {x1,
x2, ..., x10} consisting of all heavy atoms on the backbone
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chain (see Figure 1(a)), and also Y = {y1, y2, ..., y885}
representing the water molecules. We next reduce the
dimensionality of this point set {X, Y} by computing its
signature f(X, Y).
Intuitively, the signature vector f(X, Y) summarizes the

solvent distribution around the solute. To see this, we
map the signatures of all configurations onto a lower
dimensional space using the principle component analy-
sis (PCA) [33]. Figure 1(b) shows the top three PCA
directions for f(X, Y), where the colors represent weights
for each dimension. The first principle component is
basically the average of f(xi, Y) at all solute atoms, which
represents the amount of water around the whole solute
structure. The second principle component distinguishes
the two ends of the backbone chain, which tells us
whether the water molecules are gathered on the left
side or the right side. Furthermore, the third principle
component distinguishes the two ends and the middle
part, for example in the case when the two ends are
folded close to each other. A six-states decomposition
for all solvent signatures using the k-center clustering is
shown in Figure 1(c), where the space is partitioned
based on these PCA directions.
In protein backbone geometry, it is known that the

torsion angles j and ψ are the primary degrees of free-
dom of the solute structure. (The solvent coordinates
have been shown to be the next most important degrees
of freedom in this dynamical system [20,22].) For exam-
ple, Figure 1(d) shows a five-states decomposition using
the k-center clustering with RMSD distances, projected
onto the (j, ψ) torsion angles map (similar to the man-
ual state decomposition described in [14]). However,
these solute-based clusters are very different from those
solvent-based clusters – if we project the solvent clus-
ters onto the torsion angles map, they no longer show a
clustering behavior (see Figure 1(e)). This also motivated
us the construction of the combination model which
integrates both solute and solvent information, as
described in the splitting section.

In the above alanine dipeptide example, the solute
structure is small and may in some sense be considered
as a convex object, because the water molecules rarely
enter the region inside the solute structure. We next
turn to another example of carbon nanotube in water,
whose solute atoms form a very concave structure.
Because this model simulates water molecules going in
and out of a carbon nanotube, it is a good test of
whether the solvent distribution inside the solute struc-
ture can be captured by our method.
We have a 10 nanoseconds trajectory of carbon nano-

tube in water, with a frame rate of 1 picosecond. The
solute X consists of 144 fixed carbon atoms with a cylind-
rical nanostructure, and the solvent Y contains 951 H2O.
In [23], it has been observed the spontaneous and continu-
ous filling of a nonpolar carbon nanotube with a one-
dimensionally ordered chain of water molecules, and a
minute reduction in the attraction between the tube wall
and water can dramatically affect pore hydration, leading
to sharp transitions between empty and full states on a
nanosecond timescale (see Figure 2(a)). This can also be
verified using our method by computing the water number
inside the nanotube, which we define as the integral of
point signature f(x, Y) over the cylindrical region V inside
the nanotube. Here we use a normalized Gaussian kernel

K
(
x, y

)
=

1(√
2πσ

)3 exp

(
−

∥∥x − y
∥∥2

2σ 2

)
. Note that the water

number
∫
V
f (x,Y)dx =

∫
V

n∑
i=1

K
(
x, yi

)
dx =

n∑
i=1

∫
V
K

(
x, yi

)
dx .

As s ® 0, K(x, yi) converges to the Dirac delta function
centered at yi, and thus ∫VK(x, yi)dx can be seen as an indi-
cator function I(yi Î V). So, the water number roughly
counts the number of water molecules inside the nano-
tube, except that it is a continuous function. Figure 2(b)
plots the water number inside the nanotube over a period
of 3000 frames. In this figure, we can clearly see that the
system transits between empty and full states, with fast
intra-state transitions and slow inter-state transitions. (In a

Figure 1 Alanine dipeptide. (a) Solute structure. (b) Top 3 PCA directions for signature f(X, Y) (s = 1). (c) A solvent-based state decomposition
mapped to the PCA space. (d) A solute-based state decomposition on the torsion angles map. (e) Projection of solvent-based clusters onto the
torsion angles map.
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full state, there can be at most six water molecules inside
the nanotube. Note that the leftmost and rightmost ones
appear near the boundary of region V, so each of them
contributes about 1/2 to the water number.)
However, the above computation of water number relies

on the fact that the system dynamics depends on the dis-
tribution of water molecules inside the nanotube. In gen-
eral, we have no prior knowledge about how to choose a
proper region V of interest, but we can use the solvent sig-
nature f(X, Y) = {f(x1, Y), f(x2, Y), ..., f(xm, Y)} as a compact
representation of the solvent distribution around the car-
bon nanotube. Figure 2(c) plots the pairwise distances
between these solvent signatures, and we can see a notable
block structure in this matrix – it is easy to distinguish
empty and full states, because the distances between
empty/empty, or full/full states are small, while the dis-
tances between empty/full states are large. For example, if
we apply the k-center clustering with K = 2, it returns two
clusters correspond to these two main metastable states,
with intra-state transition probabilities 0.96 (empty) and
0.94 (full) respectively.
Figure 2(d) shows a more refined model with K = 4. In

addition to the empty and full stable states, it includes

two transition states with much smaller intra-state transi-
tion probabilities. The centers of these two new clusters
correspond to configurations in which the nanotube is
left/right half-full. This implies that for a transition
between the empty state and the full state, all water
molecules inside the nanotube enter (leave) from either
the left side, or the right side, but not simultaneously
from both directions. (In Figure 2(a), we can see that the
dipole moments of all water molecules inside the nano-
tube point to the left direction.) Furthermore, the inter-
state transition probabilities between these two transition
states are very small, which means it is unlikely that
water molecules inside the nanotube in a left half-full
state can shift into a right half-full state, and vice versa.
Thus, the model we derived here coincides with the
observations in [23].

Comparing different models
We have defined three types of models in the construction
of MSMs: (1) a solute-based model using RMSD distances,
(2) a solvent-based model using solvent signatures, and
(3) a combination model integrating both the them. In this
section, we compare the performances of these different

Figure 2 Carbon nanotube. (a) Empty and full metastable states. (b) Water number inside the nanotube. (c) Pairwise distance matrix between
solvent signatures (s = 1/3). (d) MSM with 4 states.
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models. In particular, we use the metastability as a mea-
sure, which is also the objective function that we opti-
mized in building MSMs.
Figure 3(a) shows the experiment results for the alanine

dipeptide model. To compare results with different num-
ber of states, we have normalized the metastability Q by
the number of clusters (microstates/macrostates) as the
vertical plot. The dotted line at the bottom shows a naive
lower bound for any clustering algorithm – if we ran-
domly assign each configuration to one of the K clusters,
then the expected average of metastability is 1/K.
For splitting, the k-center algorithm is used as the fast

geometric clustering algorithm since it returns clusters
with approximately equal radii [8]. The dashed lines show
the results after the split step. In the solute-based model,
we see that the average of metastability decreases very
quickly as we increase the number of microstates, while
the solvent-based model seems to be much more stable
(this also implies the solvent changes slower than the
solute in the alanine dipeptide system). The combination
model performs close to the solvent-based model, how-

ever, the advantage is that it takes only O
(√

KN
)
time,

instead of O(KN) time.
For lumping, we first split all configurations into K =

100 microstates, and then lump them into L macrostates
for each 1 ≤ L ≤ 50. For each test case, we run the simu-
lated annealing algorithm 100 times independently, and
each run simulates for 10000 steps. The solution with the
highest metastability sampled in any run is selected to
define the lumping into macrostates. The solid lines show
the results after the lump step, and the gap between solid
and dashed lines corresponds to the improvement by
simulated annealing. After incorporating the kinetic infor-
mation, we see that the metastabilities for the solute-based

model and the combination model are significantly
improved, and thus the combination model gives the best
result. The reason is that for solute configurations, there
may exist structures which are geometrically close but are
kinetically very different, because the deformation from
one to another may needs to follow a long trajectory to
avoid collisions between backbone links [9]. However, for
solvent configurations, there are no such links between
different water molecules (only H-O links within each
water molecule), so solvent configurations that are geome-
trically close should also be kinetically close. Therefore,
the gap in the solvent-based model is much smaller than
those in the other two models.
We have also verified this result on another data set for

the collapse of benzene rings (see Figure 4), which simu-
lates the dewetting and hydrophobic interaction in a bio-
logical system [24,25]. In this model, the solute consists
of two separate hexagonal rings, each having 6 carbon
atoms with 6 attached hydrogen atoms, and the solvent
contains 2470 H2O. The system is simulated for 100
nanoseconds, with a frame rate of 2 picoseconds. The
experiment results for this benzene rings model are
shown in Figure 3(b), in which the performance is close
to the previous alanine dipeptide model.

Conclusions
In this paper we have initiated an study to build Markov
state models for molecular dynamical systems with sol-
vent degrees of freedom. We have introduced a Gaus-
sian-based signature to compactly represent the solvent
distribution in the configuration space, and incorporated
this information into the construction of MSMs to iden-
tify metastable solvent clusters. We have also tested our
method on several different biological data sets and find
that our approach improves the existing methods both in

Figure 3 Metastability of MSMs. (a) Alanine dipeptide. (b) Benzene rings.
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the computational running time and the metastability.
We believe that the methods we described would be
more generally applicable to a wide range of biomolecu-
lar simulations.
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Figure 4 Snapshots of different configurations in the benzene rings system.
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