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Abstract

Background: Optimization procedures to identify gene knockouts for targeted biochemical overproduction have
been widely in use in modern metabolic engineering. Flux balance analysis (FBA) framework has provided
conceptual simplifications for genome-scale dynamic analysis at steady states. Based on FBA, many current
optimization methods for targeted bio-productions have been developed under the maximum cell growth
assumption. The optimization problem to derive gene knockout strategies recently has been formulated as a bi-
level programming problem in OptKnock for maximum targeted bio-productions with maximum growth rates.
However, it has been shown that knockout mutants in fact reach the steady states with the minimization of
metabolic adjustment (MOMA) from the corresponding wild-type strains instead of having maximal growth rates
after genetic or metabolic intervention. In this work, we propose a new bi-level computational framework—
MOMAKnock-which can derive robust knockout strategies under the MOMA flux distribution approximation.

Methods: In this new bi-level optimization framework, we aim to maximize the production of targeted chemicals
by identifying candidate knockout genes or reactions under phenotypic constraints approximated by the MOMA
assumption. Hence, the targeted chemical production is the primary objective of MOMAKnock while the MOMA
assumption is formulated as the inner problem of constraining the knockout metabolic flux to be as close as
possible to the steady-state phenotypes of wide-type strains. As this new inner problem becomes a quadratic
programming problem, a novel adaptive piecewise linearization algorithm is developed in this paper to obtain the
exact optimal solution to this new bi-level integer quadratic programming problem for MOMAKnock.

Results: Our new MOMAKnock model and the adaptive piecewise linearization solution algorithm are tested with
a small £. coli core metabolic network and a large-scale iAF1260 E. coli metabolic network. The derived knockout

strategies are compared with those from OptKnock. Our preliminary experimental results show that MOMAKnock

can provide improved targeted productions with more robust knockout strategies.

Introduction

Metabolic engineering has become an important envir-
onment friendly process in modern biotechnology, pro-
viding new potential solutions to many global problems,
including energy and environmental crisis [1-5]. Meta-
bolic engineering improves wild-type strains, typically
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from microbial organisms, by searching for metabolically
or genetically engineered strains for the optimal yields of
bio-based productions including industrial and pharma-
ceutical chemicals, for example, bioethanol [3], bioplas-
tics [6], and many synthesized amino acids like succinic
acid [7] for alternative energy resources, cosmetics and
pharmaceuticals with competitive cost compared to tra-
ditional chemistry-based technologies.

Classical metabolic engineering modifies individual
metabolic genes or pathways, typically followed by costly
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and time-consuming screening processes to select desir-
able mutants based on their resulting phenotypes [8].
The recent unprecedented advent of high-throughput
omics technologies has enabled more rational and effec-
tive metabolic engineering at systems level with a global
understanding of biological systems, leading to a pro-
mising new discipline—"genome-scale synthetic biology”
[9]. Integrated with computational modeling approaches,
genome-scale metabolic network models [10], capturing
coordinated interactions in cells, have made in silico
whole-cell simulations possible to identify globally opti-
mal targets for metabolic engineering with accurately
predicted phenotypes [11-13].

In silico genome-scale manipulation of metabolism
requires accurate metabolic flux dynamic analysis. Flux
balance analysis (FBA) framework [14] has laid the
foundation for many computational methods in meta-
bolic engineering. In FBA, the constraints imposed by
stoichiometry at metabolic flux steady states can be con-
cisely captured with a mathematical linear model for
balanced production and consumption fluxes. Based on
this framework, several metabolic flux distribution
approximation models have been proposed by the
researchers. The first simplified model assumes that
cells metabolize for maximum growth at steady states,
which naturally leads to the biomass maximization
model proposed in [15]. In [11], the authors point out
that knockout metabolic fluxes undergo a minimization
of metabolic adjustment (MOMA) process rather than
directly heading to the maximizing biomass state with-
out being exposed to long-term evolutionary pressure.
The simulation results based on this model have shown
better agreement with observations in experiments with
knockout strains. Another model named regulatory on/
off minimization (ROOM) [12] has been proposed to
address the long-term post knockout metabolic flux dis-
tribution predication problem. The ROOM model is still
based on the assumption that the underlying regulatory
mechanisms in cells aim to minimize flux changes after
genetic perturbations but constraining on the number of
reactions with large flux changes.

Researchers have proposed different metabolic engi-
neering methods based on these metabolic approxima-
tion models and typically the improved strains are
sequentially modified based on FBA with multiple
mutants. However, sequential metabolic engineering
strategies do not have the guarantee of the optimality.

n [13], the authors have introduced the OptKnock fra-
mework for suggesting gene deletion strategies for the
optimal overproduction of specific chemical compounds
based on the biomass maximization assumption. Opt-
Knock is formulated as a bi-level programming problem.
Its primal objective is to maximize the overproduction
of targeted bio-productions at the first or outer level
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under the condition that cells are still live, which is
modeled as the second or inner level optimization pro-
blem of maximizing the cell growth, approximated by
the assumption of maximization of biomass yields.
Although the biomass maximization assumption for
wild-type strains is justifiable, the same argument may
not be valid for engineered knockouts or other micro-
bial strains that were not exposed to long-term evolu-
tionary pressure [11]. Without enough constraints on
the resulting flux distributions, OptKnock may generate
impractical knockout strategies. As the MOMA assump-
tion provides more strict phenotypic constraints to
steady-state fluxes for engineered knockout strains with
validated congruency with experimental observations, it
may provide better constraints to knockout steady-state
flux distributions to systematically search for more rea-
listic knockout strategies in given metabolic network
models.

In this paper, we propose a bi-level programming fra-
mework for the identification of optimal genetic manip-
ulations under the MOMA assumption. With the new
MOMA assumption to approximate the condition to
maintain the cell liveness as the essential phenotypic
constraints, the inner optimization problem becomes a
quadratic programming (QP) problem rather than the
linear programming (LP) problem in OptKnock. To
address the raised computational complexity, we develop
a novel adaptive solution algorithm to solve this new bi-
level optimization problem. The new algorithm under
the minimizing flux adjustment assumption is tested on
metabolic networks and our preliminary experimental
results show that our framework can generate more
practical and robust knockout strategies compared to
OptKnock.

Methods

Backgrounds: FBA and MOMA

Before introducing our new bi-level programming pro-
blem to identify optimal metabolic genes or reactions to
delete for the maximization of targeted bio-productions,
we first review the mathematical foundations of FBA
[14] and MOMA [11]. FBA provides appropriate simpli-
fications for metabolic flux analysis by assuming the bal-
ance of production and consumption fluxes at steady
states of metabolic network models. Specifically, with
the prior stoichiometry knowledge, FBA assumes that
the weighted sum of network fluxes based on stoichio-
metric coefficients S is O: Z]Afl Sijvj=0,1<i<N,in
which we assume that the network model has M reac-
tions and N metabolites in total; S; is the stoichiometric
coefficient of metabolite i in reaction j; and v; denotes
the flux value of reaction j. For wild-type strains, as
mentioned above, a common assumption is that their
steady-state flux values follow an optimal distribution
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that maximizes the biomass production rate. The
steady-state flux distribution is approximately solved as
a LP problem to maximize the biomass production flux:
MAXy; 1 jom Vpiom Subject to the FBA stoichiometry con-
straints, in which v, is defined by summing up the
metabolite precursors that contribute to the biomass
production in FBA [11]. In OptKnock, the optimal gene
knockout strategy is to remove genes or reactions by
setting the corresponding v; to zero with the resulting
knockout flux distribution maintaining biomass maximi-
zation assumption.

As stated in [11], engineered gene knockouts in
laboratory usually cannot achieve the maximum growth
states as they have not been exposed to the same evolu-
tionary pressure as wild-type strains. Typically, mutant
strains initially stay as close as possible to wild-type
optimal steady states in terms of flux values. Computa-
tional simulations under the MOMA assumption con-
straining metabolic adjustment to be minimal have
demonstrated better agreement with observed flux
values in actual experiments [11]. Hence, flux distribu-
tions in mutated metabolic networks can be solved as a
QP optimization problem to minimize the L, distance
between the knockout flux values to wild-type steady-
state flux values:

] FR— . 2
rnvan (vj — wy)
j
S.t. Z Sijvj =0 ,Vi
j

Vele = Vglc uptake

target
Vbiom = Vyiom

min i Mmax \y:
v; §v]§vj Vi

where v; represents the flux value of reaction j in
mutant strains and w; is the corresponding flux value in
wild-type strains. The flux value for biomass production
Vpiom 18 similarly defined as mentioned earlier. In addi-
tion, the glucose flux value v, denotes the glucose con-
sumption rate, which is often set to a fixed value
Vete_uptake- Finally, v/ and v/ are the lower bound
and upper bound for v;, which are determined by the
availability of nutrients or the maximal fluxes that can
be supported by enzymatic pathways [11].

New bi-level programming framework

Following the modeling strategy in OptKnock [13], we
aim to derive optimal gene knockout strategies, which
consequently remove corresponding reactions for
desired biomedical overproduction while maintaining
obligatory cellular conditions, for example, cell mortal-
ity. However, as it has been shown that the assumption
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of biomass maximization for steady-state cellular condi-
tions may not correctly predict metabolic flux distribu-
tions for knockouts [11,13], we replace the internal
cellular objective of maximizing biomass yield in Opt-
Knock [13] by the MOMA assumption [11], which has
led to better predictions of steady-state flux allocations
for genetically engineered strains. With this critical
change from OptKnock, we formulate a novel bi-level
programming model for gene knockouts in which the
inner optimization problem is a QP problem.

Mathematically, we introduce binary variables y; € {0,
1}, 1 € j < M, denoting gene or reaction knockout stra-
tegies in which reaction j either is knocked out (y; = 0)
or remains active (y; = 1). The identification of optimal
knockout strategies y; under MOMA requires to solve
the following bi-level programming problem:

man Vchemical

min Z (Uj - w]‘)z
V' jijschemical
s.t. Z Sijvj =0, Vi
s.t. J

Vglc = Vgic ?{frfge’ie
Vbiom = Viiom

min max ;
VI < v S Uy Y

Y (1-y) <K

j
Y =10,1},

in which K is the allowed maximum number of
knockouts and v pe;micar corresponds to the reaction that
produces the desired biochemical production target.
Note that we do not count in the flux change for the
target reaction in the inner problem as it would contra-
dicts to our primal optimization for maximal biochem-
ical overproduction.

Adaptive linearization strategy for an exact optimal
solution

We emphasize that the nested inner optimization pro-
blem is a QP problem with respect to flux allocation v;
in knockout strains. As this nested inner problem is
convex, we can still get its dual problem and the strong
duality condition still holds for the inner primal and
dual problems. Following the similar direction of [13],
we can develop a single-level equivalent formulation by
enforcing the objective value of the inner primal pro-
blem equal to that of its dual problem. However, the
resulting formulation will be a mixed integer quadrati-
cally constrained programming problem, which poses a
huge computational challenge when solving real pro-
blems. Because of this major change due to the intro-
duction of the inner QP problem under the MOMA
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assumption, the transformation in OptKnock to a typical
single-level mixed integer linear programming (MILP)
problem based on the linear programming (LP) duality
theory is not directly applicable any more.

To derive efficient solution algorithms for our new bi-
level programming gene knockout problem, we adopt a
novel adaptive linearization solution strategy to tackle
the computational complexity introduced by the inner
QP problem. Specifically, we propose to adaptively
represent the quadratic terms in the objective function
of the inner problem using a set of linear functions as
illustrated in Figure 1(A), which yields a LP approxima-
tion for the nested inner problem. With a given piece-
wise linearization of the inner problem, we can convert
our new bi-level model into a single-level problem based

Page 4 of 11

on the LP strong duality. For the linearized problem, we
can obtain the optimal solution similarly as in [13] by
solving the transformed single-level MILP problem. In
order to obtain the exact optimal solution to the original
bi-level problem with the inner QP problem, we adap-
tively create necessary pieces on the fly to approximate
the quadratic objective function until the solution
converges.

The basic idea of adaptive piecewise linearization is
illustrated in Figure 1(B-D). We denote the initial start-
ing solution by v;, which can be represented by a con-
vex combination of endpoints of piecewise segments for
a given piecewise linearization. The corresponding quad-
ratic objective function value at v, is denoted by M,
which can be approximated linearly by M]as the convex
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Figure 1 Schematic illustration of adaptive linearization solution strategy to the new bi-level programming problem under the MOMA
assumption: (A) Piecewise linearization; (B-D) Adaptive solution strategy.
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combination of the corresponding objective function
values at segment endpoints A, B, C and D. We iterate
the procedures to solve the linearized single-level MILP
problem and to adaptively add piecewise linear segments
to better approximate the inner quadratic objective func-
tion as illustrated in Figure 1(B-D) until the optimal solu-
tion of the MILP problem achieves the desired precision
with respect to the approximation of the inner QP objec-
tive function. This adaptive linearization strategy has the
guarantee that the final solution converges to the exact
optimal solution. More importantly, it is much more effi-
cient than directly solving mixed integer quadratic
constrained problem without linearization and hence it
allows us to solve for large-scale metabolic networks.

With this basic understanding of our new bi-level
model and adaptive piecewise linearization solution
strategy, we describe the detailed algorithm in the fol-
lowing sections.

Piecewise linearized inner problem

The quadratic objective function of the inner problem,
denoting the metabolic adjustment to wild-type steady-
state flux allocations (w;) in MOMA, is the key obstacle
to derive the efficient solution strategy. We propose to
use piecewise linear functions to approximate this quad-
ratic objective function. The basic idea of piecewise line-
arization is to assume that each reaction flux value v;
can be discretized into a finite number of segments,
each of which is precisely defined by its corresponding
consecutive endpoints (v, 1/]“1). Any arbitrary value v,
can then be represented by a convex combination of
these endpoints:

T
v=_ A (1)
t=1

in which ﬁf are the piecewise variables determining the
convex representation and there are 7 - 1 segments with
T endpoints between the corresponding lower and upper

bounds for flux value v;: v]”“" and V"™, These piecewise

variables f; ! satisfy the following constraints to guarantee

the satisfaction of the flux constraints u””" <y < va“x

T
doBi=1, Y (2)
t=1

Similarly, as can be seen from Figure 1, the individual
contribution from flux v; to the original quadratic objec-
tive function of the inner problem can be approximated as
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Z(U
T 2
=Z(U; -2

t=1

v —w)? ~
(4)
w; - v]t) . ﬁ; + w]-z.

With this convex approximation strategy, the inner
problem with MOMA is transformed to a linear program-
ming problem with respect to the piecewise variables ﬂjt:

> 2 -2
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ZZSUV'B] =0 Vi;
Z glc glc = Vgle upmke;

t max
—U: b > —
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t
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t

BL=0Vj t

Here, both w; and 1/ are Constants and we have
removed the constant terms w] in the original objective
function. This linear approximation of the original inner
objective function based on the MOMA criterion now
enables the solution strategy to the bi-level programming
problem by taking advantage of the LP strong duality
property [16], for which the objective function values for
the primal and dual problems of the approximated inner
LP problem must be equal to each other at optimality if
both of them are bounded. With this duality condition,
the bi-level programming problem can be solved as a sin-
gle-level MILP problem by including the dual problem
formulation and enforcing that the primal and dual pro-
blems share the same objective function value as in [13].

We first give the dual problem of the linearized inner
problem:

min max
ma E aj + Vglc_uptakeMglc + vaom Mbiom — E viGgyi+ § Vi a4y
a,b, g uzumcd 7 ;

s.t. a,+ZS,Ub

¢
Ug]y“«glc + dglc + Z Si,glcvglcbi -
i

2 . . . .
vigj +vidi < vj — 2wk V), t,j # gle, biom, chemical;
‘ : ¢
UglccglC + vglzngC = vgh. - 2w815 gICVI

t t { t r2
VhiomMbiom + Abiom + § si,biﬂmvb[gmbl — UpiomChiom + Ubiomdbiom = Vpiom

i

{ . t t
_2wbiomvbiothr Achemical + E Si,chemialll’ghemimlbi ~ Vehemical€chemical

i

+v£}wmim1d5hemiml < 0 V7 whiomass = 0, ¢; = 0, dj >0 Vj,
where 4; is the corresponding dual variable associated
with the constraints on new piecewise variables ; b; is

the dual variable for stoichiometric constraints, c; and d;
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are the dual variables for upper bound constraints and
lower bound constraints for flux values respectively, and
Hgic and fpo,, are the dual variables corresponding to
the constraints for glucose and biomass flux values. The
knockout variable y; is still in the inner dual problem
coupling two cellular objectives in the original outer and
inner problems. The products of single binary variable
and continuous variable in the fourth and the fifth
terms can be linearized using the big-M method.
Together with LP duality constraint, we have the final
single-level MILP problem as

t t
l'l'lan Z vchemlcalﬁchmmml

Z Z (U —2w; - v; ) ,3 Z dj + Vglc_uptake M glc

jij#chemical t

target

+wam Mbiom — Z ej me + vamax Z :B =1Vj;

S0 T

target . ot ..

vainmﬂbiom Z Vyiom 7 Z —viB = ="y Vi
¢

t

Lot min. o\ . b —
Z viB = vy g+ Z Sijvjbi — vigj
i

= Vglc_uptakes

+jd; < 2

i < vi" — 2wt V) t,j # glc, biom, chemical;

U ot _
ngcﬂxlc + dgic + Z Suxla"’glcbt VeicCgle + gzcdxh = glr. 2wKInglc\ﬂ

2
memlibmm + dpiom + § Slblomvbwmb wamcbmm + memdbmm = mem

i
72wbi0mui’iﬂmvt; Achemical + Z Si,r;hmnicalvéhemicalbi

i
*Vi-hemimlcchemiml + Vé;,emimldchemicul <0Vvg
—My; < e < Myj, ¢; —M(1 —yj) < e <ci+M(1 —y;) Vj;
—My; < fj < My, dj = M(1 —y)) < fj <dj+ M(1 =) Vj;
Wbiomass = 0; G = 0, d} >0 Vj7 }3][ >0 Vj, t.

This final single-level MILP problem can be solved
effectively by professional solvers, such as CPLEX [17].
We note that our new MOMA-based knockout optimi-
zation problem has a larger problem size with a larger
number of variables and constraints as multiple linear
functions are used to approximate the inner quadratic
function.

Adaptive strategy

We have shown that we can effectively solve the linear-
ized bi-level programming problem in the previous sec-
tion. However, due to the linearization of the original
quadratic MOMA objective function, the obtained result
for a given linearization scheme is an approximate solu-
tion but not exact. In addition, the closeness to the
exact optimal solution is directly determined by the
number of segments for each flux to approximate the
quadratic function vjz. In order to obtain the exact opti-
mal solution to the original bi-level programming
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problem, we adopt an adaptive strategy, in which piece-
wise linearization is implemented adaptively from the
coarse to fine levels. As the original inner problem is to
minimize the quadratic MOMA objective function,
which is convex. It is easy to prove that the approximate
optimal solution for a given linearization will have each
flux v; fall within one segment. In other words, for each
flux v;, piecewise variables ,Bt only have either one (at
endpomts) or two ad;acent non-zero values for the
approximate solution as illustrated in Figure 1.

When we have only one non-zero value within all the
piecewise variables B, we obtain the exact optimal
solution as the linearized objective function has the
exact same value at these segment endpoints. This natu-
rally leads to an adaptive solution strategy to solve the
original bi-level programming problem. We start with a
coarse linearization with a small number of segments
for each flux v; and solve the single-level MILP problem
for this given linearization. We can compute the objec-
tive function value difference for the inner problem for
the obtained solution as:

Aj= (0 —w) B+ (T —w)? B — B+t B —w)n (5)

Based on the differences and the state of vector f;
for all flux values, we adaptively add new piecewise lin-
ear segments to better approximate the corresponding
contributions from each reaction flux to the quadratic
objective function in the inner problem. By repeating
the above procedure as shown in Figure 1(B-D), we
can iteratively solve the problem by adaptively improve
the piecewise linearization from coarse to fine levels
until adding pieces does not change the objective
value. If every A; is less than a very small number ¢
and every maximum value in f; is larger than a con-
stant number & that is close to 1, we can say the algo-
rithm has converged. To speedup the algorithm, the
knockouts from previous iteration are used to get a
low bound for the MILP problem. Algorithm 1 pro-
vides the pseudo code for our adaptive linearization
solution strategy to identify optimal knockout strategy
for biochemical overproduction under the MOMA
constraint.

Algorithm 1 Adaptive bi-level MOMAKnock.

Initialize variables.

Initialize the piecewise linearization with k pieces

repeat

Solve the inner primal problem based on previous
knockouts to get a low bound objL;
Solve the MILP problem with the low bound objL;
for Each flux j do
Compute A;.
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if A; >¢ or InaXL,B]-‘ < 0O then
Add a segment point at v]'-*ﬁj’* + v]@*”ﬂj‘**l; (ﬂj’*
and ﬁj‘**l are nonzero)
end if
end for
until Added segments do not improve the objective
function

Results and discussion
Succinate production on AntCore metabolism network
First, we implement our new adaptive bi-level program-
ming method—MOMAKnock-to derive optimal knockout
strategies for a core E. coli metabolic network model pro-
posed in [18]. In this network, there are 74 chemicals and
75 reactions. All of the data are obtained from the Opt-
Knock software package [13]. In order to have a fair com-
parison with OptKnock, we take the same settings as in
OptKnock, in which succinate is set as the targeted bio-
production, the glucose uptake rate is set at a fixed value
100mmol/gDW - hr, and the minimum biomass is set as 5
mmol/gDW - hr. All of the experiments are based on the
aerobic condition for this metabolic model. As the glucose
uptake rate is fixed, the biomass and product yields are
equal to the corresponding flux rates due to the steady-
state stoichiometry constraints. The wide-type flux distri-
bution is computed by maximizing the biomass in the
FBA framework as stated in methods section. To evaluate
the actual knockout performance based on the derived
strategies, we utilize the MOMA objective to compute the
flux values for suggested knockout strains as it has been
demonstrated that the derived flux distributions under this
objective agrees well with the laboratory observations [11].
Both OptKnock and MOMAKnock are tested by setting
the knockout number K from 2 to 5. Table 1 and 2 sum-
marize the results from OptKnock and MOMAKnock,
respectively. The succinate and biomass flux values from
each knockout model (OptKnock and MOMAKnock) as
well as the corresponding MOMA flux distributions for
suggested knockout strains are listed in each table. The L,
distance from the optimal knockout flux values to wild-
type steady-state flux values is denoted by “[|v — wl[;,*.
Based on the results from OptKnock in Table 1 we can
see that the objective function values for the targeted

Page 7 of 11

succinate production are indeed high with the biomass
maximization assumption as constraints. For example,
when the knockout number K = 2, OptKnock can achieve
as high as over 72.44 percent of the theoretical maximum
succinate flux value 142.16 mmol/gDW - hr for its optimal
solution. However, when we evaluate the actual flux values
under the MOMA objective, the resulting succinate flux
value drops to as low as 18.51 percent. Similarly, for K = 3
and 5, OptKnock also derives high succinate flux values
under the biomass maximization assumption while the
actual values drop significantly in suggested knockout
strains under the MOMA objective. When K = 4, remov-
ing four reactions leads to the optimal succinate flux value
at 118.71 mmol/gDW - hr. The suggested knockout strate-
gies maintain to obtain a high value as high as 84.56
mmol/gDW - hr for succinate production in the MOMA
flux distribution. However, we notice that the correspond-
ing biomass flux values in both OptKnock and MOMA
flux distributions are at 5.00 mmol/gDW - hr, which is the
minimum biomass flux value set in our experiments to
guarantee living cells. Hence, we believe that the derived
knockout strain may not be robust, which does not lead to
practically feasible knockout strategies but causes the
death of cells. We investigate the suggested knockout reac-
tions when K = 3 and 4 as the MOMA biomass flux value
when K = 3 reaches 5.23 mmol/gDW - hr, close to the
minimum value. When K = 3, the most important Trans-
hydrogenation reaction (nadh — nadph) that produce
nadph (Nicotinamide adenine dinucleotide phosphate -
reduced) is removed. When K = 4, one Glycolysis reaction
(dhap — gap) that produces most portion of gap is
removed. Both nadph and gap are important precursors in
the biomass reaction. Removing these reactions causes the
reduction of biomass flux values.

Table 2 summarizes the results from MOMAKnock.
We first note that the MOMA flux distributions for all
the suggested knockout strategies in fact have the corre-
sponding succinate flux values that are consistently
similar to objective function values in MOMAKnock
without significant drops. Due to this, although the
derived objective function values form OptKnock are
higher, the final succinate productions for MOMA -
Knock suggested knockout strains under the MOMA

Table 1 Results for knockout strains derived by OptKnock on the core E. coli metabolic network

OptKnock MOMA Flux
K Knockouts Succi Biomass Succi Biomass ||V —wl|j,
2 kdpg— pyr + gap (or 6pg—kdpg), fadh2 + 0.502—2atp (or suc— fum + fadh2) 10298 1436 2632 1318 398.75
3 gbp — 6pg + nadph, 3pg+glu—ser+akg+nadh, nadh — nadph 121.02 7.06 2445 523 633.25
4 (g6p)—> 6pg + nadph, dhap — gap, fadh2 + 0.502—2atp (or suc—fum + fadh2), glyc — glyc  118.71 500 8456 500 482.70
ext
5 pep — pyr + atp, mal— pyr+co2 + nadph, dhap + nadh — glyc3p, glyc3p — glyc, fadh2 + 12633 1091 3873  12.75 518.65

0.502—2atp (or suc—fum + fadh2)
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Table 2 Results for knockout strains derived by MOMAKnock on the core E. coli metabolic network
MOMAKnock MOMA Flux
K Knockouts Succi Biomass Succi Biomass ||V —wl|,
2 6pg— rusp+co2+nadph, suc— fum + fadh2 (or fadh2 + 0.502—2atp) 5441 1344 4025 1265 124.86
3 6pg—>rusp+co2+nadph, fadh2+0.502 — 2atp (or suc— fum + fadh2), ser— gly + meethf 5498 1208 4571  11.80 157.67
4 pep— pyr + atp, g6p— 6pg+nadph, 6pg— kdpg (or kdpg— pyr + gap), fadh2 + 0.502—2atp 5775 1124 5273 1076 31852
(or suc— fum + fadh2)
5 pep — pyr + atp, gép — 6pg + nadph, 6pg— kdpg (or kdpg— pyr + gap), fadh2 65.25 7.90 5331 7.65 35226

+0.502—2atp (or suc— fum + fadh2), nadh — nadph

objective are consistently better than OptKnock sug-
gested knockouts except in the case K = 4, in which
OptKnock derives an impractical strategy. The optimal
succinate flux value from MOMAKnock suggested dele-
tions can improve at least 37.5 percent compared to
OptKnock in the MOMA flux distribution. In addition,
both the succinate and biomass reaction flux values
change smoothly for MOMAKnock strategies. Finally, as
expected due to the L, distance based phenotypic con-
straints in the inner level of MOMAKnock, we can see
that the optimal knock flux distributions from MOMA-
Knock is always closer to the wild-type flux distribution
compared to OptKnock suggested knockouts.

Biologically, it is interesting to note that our MOMA-
Knock indeed identifies relevant reactions as suggested
knockout reactions. For example, when the knockout
number K is 2, one of the suggested knockout reactions is
to eliminate the reaction that decompose the succinate
(suc), and another one is to remove the reactions that
involve competing byproduct metabolism for succinate
such as 6-Phospho-D-gluconate (6pg) and Ribulose
5-phosphate (ru5p). With K = 3, MOMAKnock adds one
additional knockout reaction to the previously identified
ones based on the K = 2 case, which leads to the increase
of succinate production to 32.15% of its theocratical maxi-
mum value. When K = 4, besides the reactions that con-
sume succinate and the competing reactions, the reaction
that decompose Phosphoenolpyruvate (pep) is also
detected. This increases the succinate to 37.9% of the
thearetical maximum. Finally, when K increases to 5, one
more reaction is knocked out, which lead to 53.31 mmol/
gDW - hr succinate produce rate. While as mentioned
above, this reaction can convert biomass product to bio-
mass precursor, so the deletion causes the reduction of
the biomass flux rate.

Based on these preliminary results on this core network
model, even though the OptKnock takes the maximizing
biomass production as the inner cellular objective, the
derived knockout strategies do not always achieve high
biomass production when we simulate these knockout
strategies under the MOMA objective. Sometimes, these
knockout strategies cannot even guarantee the minimum
biomass requirement. The reason for this is that the inner

optimization in the bi-level framework of OptKnock serves
as the additional constraint for the outer optimization pro-
blem. The derived optimization procedure first considers
the outer problem as the primary objective and then the
inner problem is optimized. The simulated low targeted
chemical production rates for OptKnock suggested knock-
outs in the MOMA flux distribution and the abrupt bio-
mass level changes in OptKnock illustrate that the
biomass maximization assumption to approximate cellular
objectives may not provide robust and reliable metabolic
reaction deletion strategies. On the other hand, MOMA-
Knock approximates the inner cellular objective by the
MOMA assumption which assumes that knockout strains
stay closer to the corresponding wild-type strains. If this is
guaranteed, knockout strains also can achieve appropriate
biomass flux values. In fact, as shown in Tables 1 and 2,
MOMAKnock not only achieves higher targeted succinate
flux values under the MOMA objective but also obtains
appropriate biomass flux values within the normal range
compared to OptKnock. We also notice that with the
increasing K, both the targeted succinate flux values and
biomass values change smoothly contrasting to the abrupt
changes in OptKnock, which may also serve as an evi-
dence that MOMAKnock can help derive more robust
knockout strategies with predictable performance.

By comparison with OptKnock on this core E. coli
metabolic network, it is clear that our MOMAKnock
may suggest more practical and robust knockout strate-
gies for optimal bio-productions under phenotypic
constraints.

Succinate production on iAKF1260 network

We further test MOMAKnock on a large E. coli metabolic
network model-iAF1260 [19], which has 1,658 metaboli-
cals and 2,936 reactions including the pseudo reactions
required for the computation model. As in the core net-
work model, succinate is set as the target chemical, the
glucose uptake rate is fixed at 100 mmol/gDW - hr, and
the minimum biomass is also set to 5 mmol/gDW - hr. All
of our experiments are still based on the aerobic environ-
ment and all of the data are also from the OptKnock soft-
ware package [13]. Table 3 provides the results from
MOMAknockout for K = 3, 4, 5. Figure 2 shows the



Ren et al. BMC Bioinformatics 2013, 14(Suppl 2):517
http://www.biomedcentral.com/1471-2105/14/S2/S17

Page 9 of 11

Table 3 Results for knockout strains derived by MOMAKnock on the iAF1260 E. coli metabolic network

MOMAKnock MOMA Flux
K Knockouts Succi Biomass Succi Biomass ||V —wl|,
3 g8+succ—fum+q8h2, 6pgl+h20—6pgc+h, (2)h20 + 02 + urate — alltn + co2 + h202 3930 502 2745 502 906.49
4 g8+succ—fum+q8h2, ac + atp — actp + adp, h2o+methf—10fthf+h, r5p+xu5p-D—g3p+s7p  67.08 502 63.23 5.02 40233
5 g8+succ—fum+qg8h2, glu-L+h—4abut+co2, 3pg+nad—3php+h+nadh, 3php+glu-L—akg+pser-  74.94 502 66.67 502 464.76

L, 6pgc+nadp—co2+nadph+ ru5p-D

MOMA flux distribution for the wild-type strain as well as
the MOMA flux distribution and the corresponding
knockout reactions for the derived knockout strain with
K=5.

From Figure 2 and Table 3 we can see that, similar as in
the core network model, MOMAKnock suggests knockout
reactions in this large network that mostly contain the
reactions that directly consume succinate, which include
the succinate dehydrogenase reaction (SUCDI), as well as
the competing reactions that may consume the precursors
for succinate production, such as 6-phosphogluconolacto-
nase (PGL), transketolase (TKT1) and phosphogluconate
dehydrogenase (GND). The knockouts also contain some

nonintuitive reactions as the final network dynamics is
determined globally due to highly complex interactions
among different reactions. When K = 5, the succinate pro-
duction can achieve as high as 79.73% of the theocratical
maximum rate (83.62mmol/gDW - hr), which demon-
strates that our MOMAKnock can serve as a computa-
tional tool for deriving potentially effective and robust
knockout strategies.

We notice that in Table 3 all of the biomass value is
near 5 mmol/gDW - hr, which is the minimum biomass
value set in the all of the tests. However, in this large net-
work, the theoretical maximum biomass is 9.657mmol/
gDW . hr. Experiments shows that if the the succinate
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dehydrogenase reaction (SUCDI) is recovered from
knockouts, we can get higher biomass but the succinate
can drop to as low as 10 mmol/gDW - hr. As shown in
Figure 2, the reason for this is that the SUCDi reaction is
the only direct pathway that can convert succinate back
to some biomass precursors. Due to this reason, MOMA-
Knock derives the suggested knockout strategies, which
try to find a point that can balance the succinate and bio-
mass production.

Conclusions

In this paper, we have proposed a new bi-level program-
ming optimization framework to identify optimal knock-
out strategies for maximum targeted bio-productions
under the phenotypic constraints approximated by the
MOMA assumption. A novel adaptive piecewise lineari-
zation solution strategy has been developed to efficiently
solve this new mixed integer quadratic bi-level program-
ming problem. The preliminary experiments on both
the core E. coli metabolic network model [18] and the
large-scale iAF1260 E. coli metabolic network model
[19] have demonstrated its potential in in silico meta-
bolic engineering to help derive effective genetic or
metabolic intervention strategies through genome-scale
network dynamic analysis based on the FBA framework.
To better approximate the phenotypic constraints for
knockout strains, we have take the MOMA assumption
instead of the maximal growth assumption as in Opt-
Knock to model the underlying cellular objective. Based
on the obtained results on two network models, it is
clear that MOMOKnock derives improved knockout
strategies under the MOMA objective, which are more
robust and practical.

Our new bi-level MOMAKnock model can serve as an
alternative method with slightly higher computational
complexity to OptKnock for in silico metabolic engineer-
ing. In addition to that, according to different cellular
objective assumptions, we can formulate different inner
problems as phenotypic constraints in this bi-level pro-
gramming framework to derive optimal intervention stra-
tegies under different conditions. Our future research will
focus on developing and testing such new models for
large-scale metabolic networks. For example, as ROOM
[12] suggests, constraining on the number of significantly
modified flux values can lead to better predictions for
knockout strains through long-term evolutionary pres-
sure. The corresponding mathematical formulation can
be done by replacing the L, distance objective function in
MOMA by either L, or L; norm, which will lead to dif-
ferent bi-level optimization problems. We will develop
corresponding solution strategies to solve this category of
bi-level problems for large-scale networks and compare
their performances with respect to the efficacy and
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robustness of the correspondingly derived intervention
strategies.
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