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Abstract

Background: In the last decade, a considerable amount of research has been devoted to investigating the
phylogenetic properties of organisms from a systems-level perspective. Most studies have focused on the
classification of organisms based on structural comparison and local alignment of metabolic pathways. In contrast,
global alignment of multiple metabolic networks complements sequence-based phylogenetic analyses and
provides more comprehensive information.

Results: We explored the phylogenetic relationships between microorganisms through global alignment of
multiple metabolic networks. The proposed approach integrates sequence homology data with topological
information of metabolic networks. In general, compared to recent studies, the resulting trees reflect the living
style of organisms as well as classical taxa. Moreover, for phylogenetically closely related organisms, the
classification results are consistent with specific metabolic characteristics, such as the light-harvesting systems,
fermentation types, and sources of electrons in photosynthesis.

Conclusions: We demonstrate the usefulness of global alignment of multiple metabolic networks to infer
phylogenetic relationships between species. In addition, our exhaustive analysis of microbial metabolic pathways
reveals differences in metabolic features between phylogenetically closely related organisms. With the ongoing
increase in the number of genomic sequences and metabolic annotations, the proposed approach will help
identify phenotypic variations that may not be apparent based solely on sequence-based classification.

Background
One of the major challenges in biology is to reconstruct
phyletic relationships between living organisms. Various
phylogenetic inference methods have been proposed to
unravel this critical problem by using genomic data [1];
different phylogenetic trees have been reconstructed
based on the similarity of sequences of genes encoding
16S ribosomal RNAs [2] and other marker genes [3-5].
With the increasing availability of whole-genome

sequences, proteomic data, and annotated metabolic reac-
tions, more homologous characters between different
organisms can be identified to infer phylogenetic trees. In
addition to genomic comparisons, a number of recent

studies have begun to explore phylogenetic distance
between species based on metabolic properties, either
alone or in combination with sequence features [6-17].
Conserved metabolic pathways have been used to explicitly
derive phylogenetic trees through a variety of approaches.
For example, Forst et al. measured distances between
organisms by iteratively aligning enzymes based on
sequence similarities [6]. Heymans et al. conducted a pair-
wise comparison of a single common metabolic pathway
between organisms to build phylogenetic trees; they cre-
ated a distance matrix based on topological relationships
among enzymes (reaction graph) [7]. Clemente et al. hier-
archically compared EC (Enzyme Commission) numbers of
a common metabolic pathway among multiple organisms
to measure pathway similarity [9]. All these studies, how-
ever, only compared a single metabolic pathway indepen-
dently when retrieving metabolic network information.
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Subsequently, Clemente et al. extended the EC-based
classification method to compare all the common meta-
bolic pathways between multiple species [13]. On the
other hand, Oh et al. used a machine learning approach
for computing a distance metric using an exponential
graph kernel based on nine common pathways [11].
Another way to compare a pair of metabolic pathways
between organisms is to use topological properties to
define the existence/absence of metabolic pathways
among organisms [12]; it is thus a network comparison-
based method. Mazurie et al. used descriptors of structure
and complexity of metabolic reactions to calculate phylo-
genetic distances [14]. Borenstein et al. devised a seed
approach based on essential metabolites to carry out
large-scale reconstruction of phylogenetic trees [15].
Recently, Chang et al. proposed an approach from the per-
spective of enzyme substrates and corresponding products
in which each organism is represented as a vector of sub-
strate-product pairs, and the vectors are then compared to
reconstruct a phylogenetic tree [17]. Furthermore, Mano
et al. considered the topology of pathways as chains and
used the pathway alignment method developed by Pinter
et al. [10] to classify species [16]. Although comparison
and alignment of metabolic networks have been applied to
reconstruct phyletic relationships [9,10,12-16], previous
studies only considered pairwise structural comparison of
conserved metabolic pathways in a local fashion.
Network alignment has become central to systems biol-

ogy; it can be divided into two types: local and global
alignment. Local network alignment is defined as an align-
ment of small subnetworks from one network with one or
more subnetworks in another network. Because such
alignments allow one node to have different pairings in
different subnetworks, local network alignment may gen-
erate ambiguous results. On the other hand, global net-
work alignment can provide a one-to-one mapping for all
nodes between networks. That is, the aim is to find multi-
ple independent regions of localized network similarity.
Global alignment of multiple networks provides clusters
across species that best represent conserved biological
functions. Therefore, to investigate phyletic relationships
from metabolic networks, we selected IsoRankN [18], a
global multiple-network alignment tool that simulta-
neously integrates sequence information with topological
properties to cluster functionally similar proteins across
species.

Results
We used IsoRankN to generate a biologically relevant
multipartite mapping between organisms. The clusters of
enzymes across the networks in the mapping derived by
IsoRankN represent conserved biological reactions and
functions. We adapted an entropy measure [18] as the fil-
tering criterion to remove non-consistent enzyme clusters

(see Methods). To construct a phyletic tree comprising
multiple species, we defined a pairwise distance measure
between two organisms. Data for all the metabolic net-
works and the enzyme sequences used in this study were
retrieved from the KEGG database [19]. Additional file 1
lists information for the organisms we tested.
First, we classified 26 organisms at the phylum scale

and compared our results with recent studies. Moreover,
the approach was applied to phylogenetically closely
related organisms to reconstruct phyletic relationships
concerning specific metabolic characteristics, such as the
light-harvesting systems between Prochlorococcus and
Synechococcus groups, fermentation types between Lacto-
bacillus, and sources of electrons used for photosynthesis
between green sulfur and green nonsulfur bacteria.

Phylum-scale classification
Following recent work through the pathway comparison-
based approach [12] and substrate-product relationships
[17], we chose 26 prokaryotes belonging to four cate-
gories: archaea, Gram-positive bacteria, obligate para-
sites/symbionts, and Proteobacteria (Additional file 1:
Phylum scale). Our method correctly divides the 26
organisms into the four groups (Figure 1). In general, the
classification result is similar to that derived from each of
the two recent approaches (Additional file 2). Upon
detailed comparison of tree topologies, the different rela-
tive positions can be explained as follows. To clarify the
differences between our reconstruction and that gener-
ated by the network comparison-based approach of
Zhang et al. [16], we consider the three organisms Buch-
nera aphidicola APS (buc), Campylobacter jejuni subsp.
jejuni NCTC 11168 (cje), and Helicobacter pylori 26695
(hpy). With our method, hpy and cje were appropriately
grouped together in the same subtree of the category
Proteobacteria as in the NCBI taxonomy [20] (Figure 2).
On the other hand, hpy and buc were grouped together
in the category obligate parasites/symbionts in Zhang et
al.’s reconstruction (Figure 2) [16]. Because the pathway
comparison-based method only considers the diameter of
pathways and the average length of the shortest paths
within pathways as topological features, the approach
lacks sufficient network information and therefore can-
not reveal all of the relevant metabolic properties.
The above result shows that our method can correctly
classify organisms into main categories. For the cases
shown below, we tested our method with consideration
of specific metabolic features.

Lactobacillus
We assessed 12 species of Lactobacillus, which is a genus
of Gram-positive lactic acid bacteria that have limited
biosynthetic capacity and thus are restricted to environ-
ments in which sugars are present. With reference to
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Figure 1 Phylum-scale classification. Our reconstruction of a phyletic tree consisting of 26 organisms; the tree was drawn with Dendroscope [33].

Figure 2 Differences between our tree and the tree generated by Zhang et al. (a) In our tree, cje and hpy are grouped together because they
both belong to ε-proteobacteria. (b) In the study of Zhang et al., cje and syn are clustered together, and buc and hpy are grouped into the category
obligate parasites/symbionts. cje, Campylobacter jejuni subsp. jejuni NCTC 11168; hpy, Helicobacter pylori 26695; syn, Synechocystis sp. PCC 6803;.
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known sugar fermentation patterns [21,22], our approach
could successfully divide 12 Lactobacillus species into
two broad metabolic categories: obligately homofermen-
tative and obligately heterofermentative metabolism
(Figure 3). This classification is similar to previous stu-
dies based on proteomics [23], a rRNA dataset [24,25],
and marker genes [26]. The difference between these two
categories at the enzyme level possibly comes from the
presence or absence of key cleavage enzymes in the gly-
colysis pathway and phosphoketolase pathway [22].

Prochlorococcus and Synechococcus
Next, we selected 12 organisms from Prochlorococcus and
Synechococcus. These two genera show greater than 96%
similarity in their 16S rRNA sequences; however, they
have different light-harvesting systems. Prochlorococcus
has divinyl chlorophyll a (chl a2), monovinyl and divinyl
chlorophyll b (chl b) as its major photosynthetic pig-
ments, but Synechococcus has chlorophyll a (chl a) and
phycobiliproteins that are typical of cyanobacteria [27].
In addition to these differences in light-harvesting sys-
tems, their utilization of nitrogen sources also differs
[27,28]. Compared with conventional reconstruction
methods based on 16S rRNA information, our method
could more correctly divide them into two groups and
revealed differences in their metabolic features (Figure 4).

Green sulfur and green nonsulfur bacteria
In our final experiment, we tested our method on green
sulfur and green nonsulfur bacteria from anaerobic photo-
autotrophic bacteria. These organisms use two different
sources of electrons in photosynthesis. Green sulfur bac-
teria use sulfide ion as the electron donor, whereas green

nonsulfur bacteria do not [29]. We reconstructed a phy-
letic tree for 14 species (Figure 5); our classification result
clearly reflects this metabolic characteristic. The green sul-
fur and green nonsulfur species were classified into two
different groups; phylum Chloroherpeton, Pelodictyon,
Prosthecochloris, Chlorobaculum and Chlorobium are in
green sulfur group, whereas the other nine strains in dif-
ferent phyla are classified into green nonsulfur group. The
result implies that the proposed method can identify
unique metabolic features.
Based on global alignment of multiple metabolic net-

works, our approach can classify organisms into main
categories that reflect living style and phenotypes. The
above cases clearly show that the resulting phyletic trees
reflect specific metabolic characteristics among species.
Thus, our approach can provide phyletic reconstructions
at high resolution and characterize differences in meta-
bolic features between phylogenetically closely related
organisms.

Methods
We employed IsoRankN to explore functional similarities
and differences in multiple metabolic networks. The key
idea of IsoRankN is briefly introduced (Additional file 3),
and a detailed description has been published in [18]. Iso-
RankN is a global multiple-network alignment tool based
on spectral clustering methods. Given several metabolic
networks, in which the enzymes and metabolites are
represented as nodes and the reactions catalyzed by
enzymes are represented as edges in each network, the
algorithm first computes pairwise functionally similar
scores between all the cross-species enzymes [30]. The
next step uses the concept of the star alignment approach

Figure 3 Lactobacillus. Based on different sugar fermentation patterns, 12 Lactobacillus species can be divided into two groups: obligately
homofermentative and obligately heterofermentative metabolism.
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and personalized spectral clustering. In addition, we also
used the functional consistency measure [18] to further
refine the clusters obtained by IsoRankN.
To remove non-consistent enzyme clusters, we

adapted an entropy measure SV is used as the consis-
tency measure, which represents the degree of func-
tional uniformity of enzymes in each cluster.

H(SV) = H
(
p1, p2, · · · pd0

)
= −∑d

i=1 pi log pi

where pi is the fraction of SV with KEGG group ID i.
A cluster with lower entropy implies greater within-clus-
ter consistency with respect to KEGG annotations, and

thus we select the clusters with lower entropy to extract
a greater amount of information on the phylogenetic
relationships between the test organisms.
A phyletic tree comprising multiple species is recon-

structed based on a distance measure defined by the
fraction of the identified clusters in which the constitu-
ent enzymes appear in the two organisms. The distance
between two organisms A and B is defined as follows:
|SA∩B|
|SA∪B| where |SA∩B| denotes the number of clusters that

contain enzymes in both organisms A and B, and |SA∪B|
denotes the number of clusters in which the constituent

Figure 4 Prochlorococcus and Synechococcus. Global alignment of multiple metabolic networks separates Prochlorococcus and Synechococcus
into two groups and reveals differences between light-harvesting systems.

Figure 5 Green sulfur and green nonsulfur bacteria. Anaerobic photoautotrophic bacteria can be classified into two groups: green sulfur
group and green nonsulfur group.
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enzymes are in either organism A or B. We remark that
only the clusters with lower mean entropy are consid-
ered. The mean entropy of a cluster measures its func-
tional consistency, and as noted above, lower entropy
implies greater within-cluster consistency with respect
to KEGG annotations. Thus, to obtain consistency with
respect to sequence-based KEGG annotation and topo-
logical features, we select the clusters having entropy no
larger than 0.5.
Based on the above process, a distance matrix can be

obtained. We then used PHYLIP [32] to build a phyletic
tree based on the distance matrix. The visualization tool,
Dendroscope [33], was used to display the phyletic trees.
All experiments were performed on a platform consisting
of Intel(R) Xeon(R) CPU E31230 (3.20 GHz, 16 GB mem-
ory) machines running the Linux system.

Discussion
Establishing network alignments is critical in evolutionary
and systems biology [34]. Several approaches to multiple
network alignment have been developed to infer the global
homologous characters between complete networks; these
approaches include Græmlin [35,36], NetworkBLAST-M
[37], IsoRank [30], IsoRankN [18], GRAAL [38], and Sub-
MAP [39]. Græmlin is a machine learning approach
implemented by initially using sequence features and then
incorporating local network information. However, it is
difficult to select training data for reconstructing phyletic
relationships between close organisms [35]. Network-
BLAST-M is a local network alignment tool, which cannot
reveal complete topological information. Kuchaiev et al.
developed the pairwise sequence-free global network
alignment tool, GRAAL, with which they defined a dis-
tance metric between two species by using the edge cor-
rectness ratio of pairwise metabolic network alignment
results and reconstructed phylogenetic trees [38]. Because
the tool only considers topological information of meta-
bolic networks, the sequence features that are ignored
may play important biological roles in phylogeny. The first
global network alignment algorithm, IsoRank, uses a spec-
tral graph algorithm to measure an alignment between
two networks based on both sequence similarity between
nodes and topological similarity of their neighborhoods.
Ay et al. extended the idea of the IsoRank algorithm for
pairwise network alignment to metabolic networks but did
not consider multiple network alignment [39]. Therefore,
for our purpose we selected IsoRankN, a global multiple
network alignment tool that simultaneously integrates
sequence information with topological properties to clus-
ter functionally similar proteins across species. Liao et al.
[18] demonstrated that IsoRankN outperformed existing
algorithms for global multiple network alignment of pro-
tein interaction networks with respect to coverage and
consistency.

Recall our first reconstruction result on the 26 prokar-
yotic organisms (Figure 1). Note that our phyletic classifi-
cation is quite similar to the reconstruction of Chang et
al. [17], although there are certain differences (Additional
file 2). We try to investigate the difference through a new
quantitative analysis method. Because networks that are
similar share a greater number of common enzymes, for
each KEGG pathway ID we computed the number of
constituent enzymes associated with this ID in the clus-
ters obtained from IsoRankN for a pair of organisms.
This method is used to evaluate functionally similar path-
ways between those two organisms. We applied the
method to assess phylum-scale reconstruction and com-
pared with the results of Chang et al. to find more subtle
phenotypic differences. With a detailed comparison of
tree topologies, we then consider the instance of three
organisms: Caulobacter crescentus CB15 (ccr), Mesorhi-
zobium loti (mlo) and Pseudomonas aeruginosa PAO1
(pae). pae is closer to mlo than to ccr in our tree (Figure
6a). In the reconstruction of Chang et al. [17], however,
pae is closer to ccr than to mlo (Figure 6b). According to
the statistics of the KEGG pathways for the three species
pairs, namely (mlo, pae), (ccr, mlo), and (ccr, pae), two
pathways, ko00260 and ko00860 for the pair (mlo, pae),
show more functional similarity than those for the pairs
(ccr, mlo) and (ccr, pae) (Additional file 4). The quantita-
tive analysis demonstrates that pae and mlo have stron-
ger phenotypic similarity.
As for phylogenetically closely related organisms, we

then applied the same analysis to Lactobacillus. For our
reconstruction (see Figure 3), we consider three pairs of
organisms with high 16S rRNA sequence similarity: Lacto-
bacillus gasseri (lga) versus Lactobacillus johnsonii NCC
533 (ljo), Lactobacillus fermentum IFO 3956 (lfe) versus
Lactobacillus reuteri SD2112 (lru), and finally lfe versus
lga. The former two pairs come from the same groups,
respectively, and the last pair was selected from different
groups in our reconstruction. As shown in Additional file
5, the pair (lga, ljo) in the homofermentation group shares
more enzymes than those for the pair (lfe, lga) from differ-
ent groups according to the statistics of the KEGG path-
ways (Additional file 5a); similarly, (lfe, lru) has more
common enzymes than those for (lfe, lga) (Additional file
5b). That is, Lactobacillus species in the same group in
our classification show more functional similarity than
those species from different groups. More precisely, con-
cerning the glycolysis/gluconeogenesis pathway, ko00010,
(lga, ljo) and (lfe, lru) share more constituent enzymes
than those for (lfe, lga). These results show that our recon-
struction can reveal specific metabolic features.
We also analyzed species from Prochlorococcus and

Synechococcus, which have different light-harvesting sys-
tems. For our reconstruction (see Figure 4), we consider
three pairs of organisms: Prochlorococcus marinus SS120
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(pma) versus Prochlorococcus marinus MIT 9515 (pmc),
Synechococcus sp. WH8102 (syw) versus Synechococcus sp.
WH7803 (syx), and finally pma versus syx. The former
two pairs come from the same groups, respectively, and
the last one was selected from different groups in our
reconstruction. However, there is no obvious difference
when we compare (pma, pmc) and (syw, syx) with (pma,
syx) (Additional file 6a and 6b). In such a case, the quanti-
tative analysis cannot explicitly classify the species with
high sequence similarity regarding their particular meta-
bolic features.
In contrast, our classification by using global alignment

of multiple metabolic networks can successfully determine
phenotypic similarity (Figure 4). Because our approach
incorporates topology features of metabolic networks with
sequence similarity, it affords a more in-depth analysis of
the phyletic reconstruction.

Conclusions
Most studies have focused on the classification of organ-
isms based on structural comparison and local alignment
of metabolic pathways. In contrast, global alignment of
multiple metabolic networks, which compensates
sequence-based phylogenetic analyses, may provide more
comprehensive information. Therefore, we propose a new
approach that uses the global network alignment tool,
IsoRankN, to reconstruct phyletic relationships of multiple
species. Our phyletic trees lie between conventional

genotypic construction and phenotypic reconstruction.
We demonstrated that our reconstruction has the capacity
to explore more in-depth metabolic features and subtle
phenotypic differences, such as light-harvesting sys-
tems, fermentation type, and sources of electrons for
photosynthesis.
The growing mass of systems-level data allows our

approach to find more applications to identify phenotypic
variations hidden behind sequence-based classification
[1,40]. In addition to metabolic network information,
Suthram et al. [41] showed that phylogenetic relation-
ships may be inferred from protein interaction networks.
They identified conserved species-specific complexes in
protein interaction networks and built a phylogenetic
tree based on the complexes because interactions
between proteins may imply conservation of specific
groups. Although false-positives exist in protein-protein
interaction data, comparative analysis of protein-protein
interaction networks of closely related organisms can
reveal phenotypic properties [42]. Therefore, global align-
ment of multiple protein-protein interaction networks
may provide a high-resolution look at phyletic recon-
struction. It is worthwhile to explore the phenotypic dif-
ferences between global network alignment of multiple
metabolic networks and protein interaction networks. In
the future, better quantitative and qualitative analyses of
metabolic pathways between organisms would also be of
interest.

Figure 6 Differences between our tree and the tree generated by Chang et al. (a) In our tree, pae is closer to mlo than ccr because pae
and mlo have two highly similar pathways. (b) In the study of Chang et al., pae is closer to ccr than to mlo. ccr, Caulobacter crescentus CB15;
mlo, Mesorhizobium loti MAFF303099; pae, Pseudomonas aeruginosa PAO1;.
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Additional material

Additional file 1: Organisms used in this study. Edges represent the
reactions catalyzed by enzymes in each metabolic network. All metabolic
pathways were retrieved from KEGG [19].

Additional file 2: Comparison of reconstructed phylogenic trees.
Left: Reconstruction by Chang et al. [17]. Right: Reconstruction by Zhang
et al. [12]. Reprinted under the BioMed Central Open License agreement
(BMC Bioinformatics).

Additional file 3: The IsoRankN algorithm.

Additional file 4: Statistics for KEGG pathways between three pairs
of organisms: (mlo, pae), (ccr, mlo) and (ccr, pae). The x axis
represents KEGG pathway IDs, and the y axis represents the number of
the constituent enzymes in the pathways. The two pathways ko00260
and ko00860 in the pair (mlo, pae) contain more functional orthologs
than those in the pairs (ccr, mlo) and (ccr, pae).

Additional file 5: Statistics for KEGG pathways between two pairs of
organisms in Lactobacillus: The x axis represents KEGG pathway IDs,
and the y axis represents the number of the constituent enzymes
in the pathways. (a) (lga, ljo) in obligate homofermentation, and (lfe,
lga) from different fermentation types. (b) (lfe, lru) in obligate
heterofermentation, and (lfe, lga) from different fermentation types.

Additional file 6: Statistics for KEGG pathways between two pairs of
organisms of Prochlorococcus and Synechococcus: The x axis
represents KEGG pathway IDs, and the y axis represents the
number of the constituent enzymes in the pathways. (a) (pma, pmc)
from Prochlorococcus, and (pma, syx) from Prochlorococcus and
Synechococcus, respectively. (b) (syw, syx) from Synechococcus, and (pma,
syx) from Prochlorococcus and Synechococcus, respectively.
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