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Abstract

Background: Development of computational tools that can accurately predict presence and location of B-cell
epitopes on pathogenic proteins has a valuable application to the field of vaccinology. Because of the highly
variable yet enigmatic nature of B-cell epitopes, their prediction presents a great challenge to computational

immunologists.

Methods: We propose a method, BEEPro (B-cell epitope prediction by evolutionary information and propensity
scales), which adapts a linear averaging scheme on 16 properties using a support vector machine model to predict
both linear and conformational B-cell epitopes. These 16 properties include position specific scoring matrix (PSSM),
an amino acid ratio scale, and a set of 14 physicochemical scales obtained via a feature selection process. Finally, a
three-way data split procedure is used during the validation process to prevent over-estimation of prediction
performance and avoid bias in our experiment results.

Results: In our experiment, first we use a non-redundant linear B-cell epitope dataset curated by Sollner et al. for
feature selection and parameter optimization. Evaluated by a three-way data split procedure, BEEPro achieves
significant improvement with the area under the receiver operating curve (AUC) = 0.9987, accuracy = 99.29%,
mathew’s correlation coefficient (MCC) = 0.9281, sensitivity = 0.9604, specificity = 0.9946, positive predictive value
(PPV) = 09042 for the Sollner dataset. In addition, the same parameters are used to evaluate performance on other
independent linear B-cell epitope test datasets, BEEPro attains an AUC which ranges from 0.9874 to 0.9950 and an
accuracy which ranges from 93.73% to 97.31%. Moreover, five-fold cross-validation on one benchmark
conformational B-cell epitope dataset yields an accuracy of 92.14% and AUC of 0.9066.

Conclusions: Compared with other current models, our method achieves a significant improvement with respect
to AUC, accuracy, MCGC, sensitivity, specificity, and PPV. Thus, we have shown that an appropriate combination of
evolutionary information and propensity scales with a support vector machine model can significantly enhance the
prediction performance of both linear and conformational B-cell epitopes.

Background
Introduction

of all the identification of highly immunogenic regions
within a given pathogen protein. These immunogenic

The idea of using peptide-based vaccines to replace live or
attenuated whole-pathogen vaccines has been an emerging
field, as peptide-based vaccines can offer greater safety,
potency, and elegance in drug design and delivery [1]. The
development of these peptide-based vaccines requires first
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regions, or more particularly the B-cell epitopes, are
responsible for eliciting humoral immune response by
inducing production of neutralizing antibodies.

Two types of B-cell epitopes have been defined: linear
(continuous) and conformational (discontinuous). While
the majority (~90%) of the B-cell epitopes is conforma-
tional, the difficulties in the design of such conformational
epitopes have led to an emphasis on classification of linear
B-cell epitopes [1].
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As development of vaccines is critical in our protection
against infectious diseases, effective screening methods to
identify immunogenic epitopes from the pathogenic pro-
teome will be necessary. Classical methods such as phage
display system have successfully yielded peptides that
have proceeded to clinical trials, yet these experimental
techniques are labour-intensive and may not reflect in
vivo binding conditions or the biological ability to stimu-
late antibody production [2,3]. The shortcomings of cur-
rent experimental methods call for the development of
new computational models that can more effectively pre-
dict the presence and location of immunogenic (protec-
tive) epitopes given a pathogenic protein sequence.

Previous works

Sollner et al. have studied the use of conservation in post-
translational modification and sequence variability to pre-
dict protective linear B-cell epitopes, i.e., linear B-cell
epitopes associated with biological activity. Their results
showed that focusing on conserved region and regions
lacking post-translational modification sites may be benefi-
cial [2]. Training the same dataset using a Naive Bayes
classifier, El-Manzalawy et al. also showed that position
specific scoring matrix (PSSM) offered the best perfor-
mance when compared with selected physicochemical
scales and dipeptide composition representation [3].
Together, these two studies demonstrated that protective
linear epitopes may have sequence conservations that
explain their functional role, and that focusing on protec-
tive linear epitopes may improve the performance of cur-
rent prediction models for linear B-cell epitopes [1].

In addition, Blythe and Flower have previously shown
that simple propensity scale-based methods are only mar-
ginally better than random prediction [4]. Thus, researches
since then have suggested the use of a combination of
more than one propensity scale with a machine-learning
algorithm to improve the prediction performance [5-7].

Challenges and our contributions

As the current lack of success in B-cell prediction could be
explained by inadequate or incomplete selection of appro-
priate propensity scales to reflect the complex patterns of
B-cell epitopes, our study attempts to first reconfirm the
belief that combinational approach outperforms single
propensity scale approach. Then, twenty properties,
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including amino acid ratio scale, PSSM, and 18 physico-
chemical scales selected from AAlIndex, are used to con-
struct a hybrid propensity scale model by training a
support vector machine (SVM) classifier on a protective
linear B-cell epitope dataset [2]. Parameter optimization
and feature selection are then applied to yield an optimal
set of propensity scales with the best performance. We
propose the final optimized model, BEEPro (B-cell Epitope
prediction using Evolutionary information and Propensity
scales). Six B-cell epitope datasets are used to evaluate the
performance of BEEPro, with one of the datasets consist-
ing of conformational B-cell epitopes.

Methods

Datasets

In this study, we applied seven datasets used in previous
studies to allow unbiased validation of our method and
to compare the performance of our model with others.
Table 1 summarizes these datasets, which are detailed
below and available in the supplementary material
[Additional files 1, 2, 3, 4, 5, 6, 7].

Soliner dataset

This dataset was curated by Sollner et al. and contains
57 non-redundant pathogen proteins extracted from
IEDB database [2]. Each antigen is annotated with a
number of linear B-cell epitopes that are classified as
“leading to biological activity.” This is the first dataset
that closely approximates protective linear B-cell epi-
topes [3]. The dataset is comprised of 2,317 residues
labeled as part of an epitope (5.04%) and 43,690 non-
epitope residues (94.96%). To evaluate the performance
of B-cell epitope prediction, this non-redundant dataset
is used for feature selection and parameter optimization
based on a three-way data split procedure.

AntiJen #1 and #2 datasets

These two datasets were extracted from the AntiJen data-
base [8]. AntiJen#1 is provided by Larsen et al. and con-
tains 124 protein sequences (5,529 epitope residues, 8.34%;
60,800 non-epitope residues, 91.66%) [7]. AntiJen#2 is pro-
vided by Wang et al. and contains 171 protein sequences
with 691 non-overlapping epitopes (11,249 epitope resi-
dues, 12.92%; 75,805 non-epitope residues, 87.08%) [9].
HIV dataset

This dataset was curated from the HIV Molecular
Immunology Database of the Los Alamos National

Table 1 Summary of B-cell epitope datasets used in this study.

Dataset Sollner AntiJen#1 AntiJen#2 HIV Pellequer PC Benchmark
Number of proteins 57 124 171 10 14 12 52
Epitope residue 2317 5529 11,249 1,018 858 1,852 858
Non-epitope residue 43,690 60,800 75,805 1,693 1,695 3,509 9,527
Number of residues 46,007 66,329 87,054 2,711 2,553 5,361 10,385
Epitope density 5.04% 8.34% 12.92% 37.55% 33.61% 34.55% 8.26%
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Laboratory, http://www.hiv.lanl.gov/[10]. The electronic
copy of this dataset is provided by Larsen et al. and
contains 10 HIV proteins (1,018 epitope residues,
37.55%; 1,693 non-epitope residues, 62.45%) [7].
Pellequer dataset

This dataset was first presented by Pellequer et al. [11],
and the electronic version of this dataset was recreated
by Lund et al. [7]. This dataset contains 14 proteins and
83 epitopes (858 epitope residues, 33.61%; 1,695 non-
epitope residues, 66.39%).

PC dataset

This dataset was curated by Wang et al. and contains 12
protein sequences with 98 non-overlapping epitopes
(1,852 epitope residues, 34.55%; 3,509 non-epitope resi-
dues, 65.45%) [9]. The epitopes in this dataset were experi-
mentally identified with peptide scan methodology [9].
Benchmark dataset

The original benchmark dataset contains 161 protein
chains from 144 antigen-antibody complex structures
[12]. Ansari and Raghava applied CD-HIT at 40% cutoff
value to yield a non-redundant dataset of 52 antigen
chains (858 epitope residues, 8.26%; 9,527 non-epitope
residues, 91.74%) [13,14]. Epitope residues in this data-
set are defined as antigen residues where at least one of
the atoms is distanced within 4A from any antibody
atom based on PDB structures [13].

Calculation of amino acid ratio propensity scale
The amino acid ratio (AAR) propensity scale for each of
the 20 types of amino acid «; is computed according to
the following equation, where f(o;) and f(«; ) represent
the occurrence frequencies of amino acid «; in epitope
and non-epitope peptide sequences, respectively.

fle) 2 if ()
fla ) 2if (@)

Previous studies have used a similar equation to com-
pute an amino acid dimer (or amino acid pairs, AAP) pro-
pensity scale [9,15]. In those studies, logarithm was taken
of the AAP ratios before the normalization step. We do
not, however, find significant changes in performance of
our hybrid propensity scale model when logarithm is used.
Considering that f(o;) could become zero after data-split
(for example, the Benchmark dataset contains only one
cysteine epitope residue for the entire dataset), the loga-
rithm step is neglected in this study.

To avoid dominance of any individual p(c;) values, the
following equation is used to normalize the values to the
range of [-1, 1].

plai) =

p(ai) — min{p(e;)}

plei) =2 (max{p(oti)} - min{p(ai)}) :
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To avoid bias in our results, for all the methods below
which involve amino acid ratio propensity scale, the
scale values are re-calculated for each fold of cross-vali-
dation and three-way data split using only the data of
training set.

Generation of position specific scoring matrix

PSSM is used to reflect the evolutionary information of
a peptide. Blast-2.2.26+ package are downloaded from
ftp://ftp.ncbi.nih.gov/blast/, and the psiblast program of
this package is used to generate multiple sequence align-
ment against non-redundant (nr) protein database,
which is downloaded from ftp://ftp.ncbi.nih.gov/blast/
db/. The nr database uploaded on July 9, 2012 is used
for this study. PSSM is generated using the setting: e-
value = 0.001, number of iterations = 3.

Single propensity scale method

Each peptide of running window size w for a residue at
position i is represented by a vector of size w: [X; qy-1)/2 ...»
Xi ws Xivw-1)/2], Where x; is the propensity scale value at
residue position i. w in this study ranges from 5 to 29 in
steps of 2. For the residues at the N- or C-terminus of the
peptide sequence, appropriate number of zeros is
appended to the head or the tail of the vector, respectively,
to make up a vector of the right size. In addition to the
amino acid ratio propensity scale, four more representative
physicochemical scales are also used for comparison:
Parker’s hydrophilicity [16], Karplus’ flexibility [17], Gran-
tham’s polarity [18], and Janin’s accessible area [19]. These
scales have been used by previous studies for B-cell
epitope prediction [3,5,7,13].

In the case of PSSM, each peptide of running window
size w is represented by a vector of size [20 x w] because
the amino acid at each residue position is represented by
an evolutionary information vector of 20 log-likelihood
values. As in the case of single propensity scale method,
zeros are appended at either the head or the tail of the
vector for residues at the N- or the C-terminus of the
peptide, respectively, to account for the asymmetry at the
two ends of peptide.

Hybrid propensity scale method

Other than the amino acid ratio propensity scale and
PSSM, additional 18 physicochemical scales selected
from AAlndex [20] are considered for incorporation
into a hybrid propensity scale model. These 18 scales
include antigenicity [21], hydrophilicity [16,22], hydro-
phobicity [23], accessible surface area [19], flexibility
[17,24], interactivity [25], buriability [26], composition
[18], polarity [18], volume [18], charge transfer and
donor capability [27], hydrogen-bond donor capability
[28], secondary structure (i.e., alpha helix, beta structure,
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and coil) [29]. Initially, all 20 features are used. Feature
selection is then applied to determine the most suitable
combination of features that yields optimal performance.

For each residue ¢; at position i, a peptide of running
window size w is represented by a vector of size equal to
the number of features (n) used: [aV€scare 1 AVEscate 2 -
aVgscale_n)- W in this study ranges from 5 to 29 in steps
of 2.

The average for each propensity scale is calculated by
the following formula, where i is the position index of a
residue in the running peptide window, c is the central
residue position index in the peptide window, |c - i| is the
distance in residue number between residue i and the cen-
tral residue, fis the linear weighting factor (in this study,
f=0.00, 0.02, 0.04, 0.06, 0.08, 0.10), s, is the propensity
scale value of the residue at position i. For the property of
PSSM, s; is the sum of the 20 PSSM log-likelihood values
of residue i.

(1 =fle—il)si

AV8scale = w

Training and classification

SVM is a machine learning algorithm proposed by Vapnik
based on structural risk minimization principle of statistics
learning theory [30]. It can be used to solve classification
and regression problems. As determining whether a resi-
due in a protein sequence belongs to an epitope is a binary
classification problem, SVM would be useful for our pur-
pose. In this study, LIBSVM, a well-known and powerful
SVM package developed by Chang and Lin, is used to
decipher epitope residues from non-epitope residues [31].
In the process of model development, we use radial basis
function (RBF) as the kernel function in SVM. The for-
mulation of RBF is defined in the following equation,
where x; and x; are two data vectors, and y is a training
parameter.

RBF(x;, x;) = exp (—y (B xj||2>

Each running peptide window is labeled as either +1 if
the central residue of the window belongs to an epitope
or -1 if the central residue is not part of any epitope. The
profile generated either by single or hybrid propensity
scale method is first scaled to the range of [-1, 1] using
built-in scaling program of LIBSVM.

For single propensity scale method, five-fold cross-vali-
dation is applied to the Sollner dataset with the following
parameters: -w,; = 20, -w_; = 1, -¢ = default, -g = default.
The procedure is iterated five times.

For hybrid propensity scale method, we use a more
stringent three-way data split procedure to train and eval-
uate performance of BEEPro. We first divide the Sollner
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dataset into five distinct, non-overlapping sets: three for
training (classifier learning), one for validation (parameter
optimization and feature selection), and one for testing
(performance evaluation). The procedure is iterated five
times. The steps of model optimization include (in this
order): (1) selection of optimal running window size, (2)
optimization of -c, -g, (3) optimization of -w_ ;, (4) feature
selection, (5) optimization of linear weighting factor f, (6)
re-optimization of -w, ;.

To further evaluate the performance of BEEPro, we per-
form five-fold cross-validation on each of the other data-
sets using exactly the same optimized setting obtained
during training and validation with the Sollner dataset.

Performance evaluation

The area under the receiver operating curve (AUC) is used
to assess performance during parameter selection. AUC is
one of the most appropriate measures of performance as it
is non-parametric and threshold independent. It is also
independent of the number of positive and negative test
cases. In addition, AUC is the recommended metric at a
workshop organized by the National Institute of Allergy
and Infectious Disease in 2006 [32]. AUC ranges from 0.5
to 1, with 0.5 being random predictor, and 1 being perfect
predictor.

Other metrics are also computed to allow more compre-
hensive comparison against previous studies. Sensitivity
(SEN) and specificity (SPE) measure how well the classifier
detects epitopes as epitopes and non-epitopes as non-
epitopes, respectively. Matthew’s correlation coefficient
(MCC) takes under-prediction and over-prediction into
consideration and is useful even when positive and negative
test cases differ in size. Accuracy (ACC) is the proportion
of correctly predicted residue. Positive predictive value
(PPV) is the percentage of detected epitope residues that
truly belong to an epitope. The following equations define
these statistics, where TP, TN, FP, and FN denote the num-
ber of true positives, true negatives, false positives, and false
negatives, respectively.

P
SEN =
TP + FN
TN
SPE =
TN + FP

- TP x TN — FP x FN
V(TP + FP)(TP + EN)(TN + FP)(TN + FN)

TP + TN
ACC =
TP + TN + FP + FN
TP
PPV =
TP + FP
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Results

Prediction based on single propensity scale or position
specific scoring matrix

In general, the prediction performance of single propen-
sity scale methods improves as the size of window
increases, with the exception of the accessible surface
area scale, which decreases as window size increases, and
the polarity scale, which fluctuates across different win-
dow sizes (Figure 1, Additional File 8: Supplementary
Table 1). Among the four physicochemical propensity
scales, Parker’s hydrophilicity (AUC = 0.5855 at w = 19)
and Karplus’ flexibility (AUC = 0.5859) scales have insig-
nificant difference in performance, and both outperform
Grantham’s polarity (AUC = 0.5442) and Janin’s accessi-
ble surface area scale (AUC = 0.4863). Accessible surface
area has the worst performance of the four scales, with
AUC value roughly being 0.49. The amino acid ratio pro-
pensity scale (AUC = 0.6090) outperforms the four physi-
cochemical scales regardless of window size, and this
gives us confidence to use this scale for the later hybrid
model. PSSM outperforms amino acid ratio propensity
scale and each of the four physicochemical properties,
with AUC of 0.6786 at w = 19.

Hybrid propensity scale method significantly improves
prediction performance

There is a significant improvement when PSSM is incor-
porated into the hybrid propensity scale model and a slight
improvement when amino acid ratio propensity scale is
incorporated (Figure 2, Additional File 8: Supplementary
Table 2). We also see here that the hybrid propensity scale
method (AUC = 0.7049) offers significant improvement
over the single scale methods (AUC = 6786 for PSSM). As
with single propensity scale, the performance of the model
improves as w increases. We choose w = 19 for further
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development as this is consistent with most literatures to
date and would therefore allow more direct comparison
between methods.

Feature selection allows us to determine the optimal
parameter combination: -w,; =15, -w;=1,-c=1, -g =
10, linear weighting factor = 0.08. Finally, several features
should be removed from feature list, including: Janin’s
accessible surface area, Grantham polarity, Bastolla’s inter-
activity, and Zhou’s buriability (Additional File: Supple-
mentary Table 3). After parameter selection with the
three-way data split approach, we arrived at the final per-
formance AUC = 0.9987, ACC = 0.9929, SEN = 0.9604,
SPE = 0.9946, MCC = 0.9281, PPV = 0.9042 for the Soll-
ner dataset (Table 2).

Performance comparison with existing methods

Applying exactly the same feature extraction method and
the same parameter setting as the optimized BEEPro
model, we perform five-fold cross-validation on the inde-
pendent datasets (Table 2).

For the linear epitope datasets AntiJen #1 and #2, HIV,
Pellequer, PC, the AUC is 0.9930, 0.9907, 0.9907, 0.9874,
and 0.9950, respectively. The accuracy is 0.9731, 0.9580,
0.9454, 0.9373, and 0.9550, respectively. BEEPro outper-
forms many other current linear epitope prediction
methods, including LEPS [9], BepiPred [7], ABCPred
[33], BCPred [15], and FBCPred [34] (Table 2).

Even for the conformational epitope dataset (Benchmark
dataset), we are able to obtain AUC = 0.91, ACC = 0.92,
SEN = 0.71, SPE = 0.94, MCC = 0.57, PPV = 0.52. BEEPro
outperforms other conformational epitope predictors such
as DiscoTope [35] and CEP [36] (Table 2). Although PPV
value is not as high as for linear epitope datasets, it is still
significantly higher than other current models. However,
the sensitivity of BEEPro (0.71) for this Benchmark dataset
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Figure 1 AUC for single propensity scale methods across different window sizes.
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Figure 2 AUC for hybrid propensity scale methods across different window sizes.

Table 2 Performance comparison of different methods using five-fold cross-validation for different datasets.

Dataset Method AUC ACC SEN SPE McCC PPV
Sollner BEEPro 0.9987 0.9929 0.9604 0.9946 0.9281 0.9042
AntiJen#1 BEEPro 0.9930 0.9731 0.9680 0.9735 0.8491 0.7688
AntiJen#2 BEEPro 0.9907 0.9580 0.9700 0.9562 0.8402 0.7668
LEPS NA 0.7381 0.2672 0.8448 0.1010 0.2885
BepiPred NA 0.5552 05179 05761 0.0604 0.2202
ABCPredy g NA 04470 0.6733 04040 0.0546 02183
BCPred NA 05392 0.5884 0.5487 0.0893 02334
FBCPred NA 05145 0.6031 05121 0.0673 0.2233
HIV BEEPro 0.9907 0.9454 0.9490 0.9433 0.8853 0.9098
LEPS NA 0.6345 04833 0.7484 02276 0.7144
BepiPred 0.6000 0.5672 05016 0.6085 0.0972 06122
ABCPred, 7 NA 0.5659 0.8797 0.1465 0.0564 0.5633
BCPred NA 0.6657 0.8018 0.5457 0.2980 0.6555
FBCPred NA 06713 0.7320 0.5820 0.2781 0.6556
Pellequer BEEPro 0.9874 0.9373 0.9256 0.9435 0.8621 0.8935
BepiPred 06710 NA NA NA NA NA
PC BEEPro 0.9950 0.9550 0.9708 0.9468 0.9036 0.9058
LEPS NA 06166 0.1278 0.8833 0.0365 04512
BepiPred NA 0.5533 0.4823 0.5972 0.0749 03819
ABCPredy g NA 04889 0.6546 04026 0.0513 03621
BCPred NA 05283 0.5092 0.5935 0.0443 0.3607
FBCPred NA 05220 05103 0.5255 0.0317 03526
Benchmark BEEPro 0.9100 0.9200 0.7100 0.9400 0.5700 0.5200
CBTOPE 0.8900 0.8400 0.8000 0.8500 NA 03100
DiscoTope 0.6000 0.7500 0.4200 0.7900 NA 0.1600
CEP 0.5400 0.7400 03100 0.7800 NA 0.1100
ClusPro(DOT) best model 0.6900 0.8900 04500 0.9300 NA 0.3900
Patch Dock best model 0.6600 0.8500 04300 0.8900 NA 0.2600
PSI-PRED best patch 0.6000 0.8200 0.3300 0.8600 NA 0.1900
ProMate 0.5100 0.8400 0.0900 0.9200 NA 0.1000

'LEPS, BepiPred, ABCPred, BCPred, FBCPred performances were previously compiled by Wang et al. [9]
2CBTOPE, DiscoTope, CEP, ClusPro, Patch Dock, PSI-PRED, ProMate performances were previously compiled by Ansari and Raghava [13]
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is not as high as CBTOPE (0.80), and this could be
explained by BEEPro’s significantly higher specificity.

Discussion

Hybrid method performs better than single propensity
scale method

Blythe and Flower determined in 2005 that the best sin-
gle propensity scale performs only marginally better than
random prediction [4]. Several studies have later demon-
strated that the use of a combination of propensity scales
for feature representation could have better results than
using single propensity scale [5]. Our results agree with
this statement, as we see a significant improvement in
performance between single propensity scale methods
and hybrid models. This reflects the complex nature of
epitopes, as more than one property is needed to reflect
the epitope peptide profile.

Evolutionary information is effective for B-cell epitope
identification

Evolutionary information, encoded as PSSM generated by
PSI-BLAST, has been used to improve prediction perfor-
mance of other biological prediction problems such as
RNA binding sites and protein cellular localization [37-40].
In the field of B-cell epitope prediction, El-Manzalawy
et al. have shown that PSSM outperforms selected single
physicochemical scales, a result similarly observed in this
study [3]. We extend this observation and demonstrate in
this paper that while PSSM alone may be insufficient, com-
bining PSSM with other propensity scales does improve
the hybrid propensity scale model markedly, implicating
the significance of evolutionary information and sequence
conservation as an important determining factor for a pep-
tide’s immunogenic property.

Effects of physicochemical propensity scales

We have constructed a prediction method for B-cell epi-
topes using support vector machine. The finalized feature
list is based on amino acid ratio propensity scale, PSSM,
and 14 physicochemical propensity scales that reflect
properties of antigenicity, hydrophilicity, flexibility, com-
position, volume, charge transfer and donor capability,
hydrogen bond donor capability, and secondary structure
such as alpha helical structure, beta structure, and coil
structure. We have included chemical properties such as
charge transfer and donor, and hydrogen bond donor
scales in the development of our model, which have not
been attempted in previous literatures to the best of our
knowledge. It is possible that these chemical properties
could be relevant in determining the chemical behaviors
between antigens and antibodies. We have also applied
for the first time Bastolla’s interactivity scale [25] and
Zhou'’s buriability scale [26], but these two scales fail to
improve our hybrid propensity scale model.
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Generality of BEEPro on different datasets

Sollner et al. curated their linear B-cell epitope dataset
from the IEDB database using a series of filtering steps
that allow correlation of annotated epitopes with func-
tional relevance. This Sollner dataset is used for training
and optimization of BEEPro in our study. Although we
have trained our model using a more stringent protective
linear B-cell epitope dataset, we have also shown that the
same feature representation method and parameter setting
can be extended to general linear B-cell epitopes and even
to conformational B-cell epitopes with high performance.
Compared with other current prediction systems of linear
and conformational epitopes, our method has a superior
performance in area under curve, accuracy, Matthew’s cor-
relation coefficient, positive predictive value, sensitivity,
and specificity.

The observation that BEEPro does not perform as well
in the Benchmark dataset, which consists of conforma-
tional epitopes, is not surprising as the model was ori-
ginally optimized using a linear epitope dataset.
However, BEEPro still outperforms current structure-
based prediction methods in classifying conformational
epitope positions, and this would echo previous report
that sequence-based predictor can work as a comple-
ment to current structure-based prediction methods
[13]. BEEPro can also be applied when structural infor-
mation of antibody-antigen complex is not available.

It is promising to note that PPV of BEEPro is about
0.90~0.91 for linear epitopes, and 0.52 for conformational
epitopes, as this could imply a more cost-effective
approach to screen for possible peptide vaccine candi-
dates. Also, BEEPro has been shown to excel in indepen-
dent datasets of varying epitope density (from 5.04% to
37.55%), and this would reflect applications in real world
where epitopes take up only a small portion of an antigen
sequence.

Conclusions

In this paper, we describe BEEPro, a method to predict B-
cell epitopes using evolutionary information, amino acid
ratio propensity scale, and 14 physicochemical propensity
scales, for a total of 16 features. The 14 physicochemical
propensity scales in BEEPro reflect information on antige-
nicity, hydrophilicity, flexibility, composition, volume,
charge transfer and donor capability, hydrogen bond
donor capability, and secondary structure such as alpha
helical structure, beta structure, and coil structure. The
five-fold cross-validation accuracy on six linear B-cell epi-
tope datasets ranges from 93.73% to 99.29%, with AUC
ranging from 0.9874 to 0.9987. In addition, the five-fold
cross-validation accuracy on one benchmark conforma-
tional B-cell epitope dataset is 92.14%, with AUC of
0.9066. We have shown that BEEPro outperformed other
sequence-based and structure-based prediction methods.
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