
RESEARCH Open Access

Assessing the impact of human genome annotation
choice on RNA-seq expression estimates
Po-Yen Wu1, John H Phan2, May D Wang2*

From The Second Workshop on Data Mining of Next-Generation Sequencing in conjunction with the 2012
IEEE International Conference on Bioinformatics and Biomedicine
Philadelphia, PA, USA. 4-7 October 2012

Abstract

Background: Genome annotation is a crucial component of RNA-seq data analysis. Much effort has been devoted
to producing an accurate and rational annotation of the human genome. An annotated genome provides a
comprehensive catalogue of genomic functional elements. Currently, at least six human genome annotations are
publicly available, including AceView Genes, Ensembl Genes, H-InvDB Genes, RefSeq Genes, UCSC Known Genes,
and Vega Genes. Characteristics of these annotations differ because of variations in annotation strategies and
information sources. When performing RNA-seq data analysis, researchers need to choose a genome annotation.
However, the effect of genome annotation choice on downstream RNA-seq expression estimates is still unclear.
This study (1) investigates the effect of different genome annotations on RNA-seq quantification and (2) provides
guidelines for choosing a genome annotation based on research focus.

Results: We define the complexity of human genome annotations in terms of the number of genes, isoforms, and
exons. This definition facilitates an investigation of potential relationships between complexity and variations in
RNA-seq quantification. We apply several evaluation metrics to demonstrate the impact of genome annotation
choice on RNA-seq expression estimates. In the mapping stage, the least complex genome annotation, RefSeq
Genes, appears to have the highest percentage of uniquely mapped short sequence reads. In the quantification
stage, RefSeq Genes results in the most stable expression estimates in terms of the average coefficient of variation
over all genes. Stable expression estimates in the quantification stage translate to accurate statistics for detecting
differentially expressed genes. We observe that RefSeq Genes produces the most accurate fold-change measures
with respect to a ground truth of RT-qPCR gene expression estimates.

Conclusions: Based on the observed variations in the mapping, quantification, and differential expression calling
stages, we demonstrate that the selection of human genome annotation results in different gene expression
estimates. When conducting research that emphasizes reproducible and robust gene expression estimates, a less
complex genome annotation may be preferred. However, simpler genome annotations may limit opportunities for
identifying or characterizing novel transcriptional or regulatory mechanisms. When conducting research that aims
to be more exploratory, a more complex genome annotation may be preferred.

Background
Next-generation sequencing (NGS) technology is a
powerful tool for extracting and interpreting genetic
information from a broad range of biological systems, e.

g., miRNA regulatory networks [1], genome-wide associa-
tion between single nucleotide polymorphisms (SNPs)
and phenotypes [2], DNA-protein interactions [3,4], and
differentially expressed genes between treated and control
samples [5,6]. NGS is preferable over first-generation
Sanger sequencing because of its high sequencing
throughput and low cost per base pair. With NGS,
sequencing an entire human genome becomes feasible,
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which enables a larger cohort of samples in genome-scale
comparative studies. RNA-seq is a major branch of NGS
technology that is useful for studying transcriptomes [7].
One aspect of transcriptome research is quantification of
expression levels for various genomic elements, e.g.,
genes, transcripts, and non-coding RNAs [8]. Acquiring
transcriptome expression profiles requires that genomic
elements be defined in the context of the genome. Multi-
ple human genome annotations exist, including the Ace-
View database [9] and the RefSeq database [10]. Thus, it
is necessary to study the impact of genome annotation
choice on transcriptome quantification.
Genome annotation is a dynamic process that defines

coordinates for each genomic element with respect to the
genome sequence. Such a process bridges the gap
between DNA or RNA sequences and biological func-
tions [11]. Integration of a genome annotation with map-
ping information from RNA-seq short sequence reads
enables quantification of genomic elements such as genes
and transcripts. Each genome annotation project uses dif-
ferent annotation strategies and information sources.
Thus, high variation exists among multiple available
annotations in terms of the comprehensiveness of anno-
tated genomic elements. Some annotation strategies rely
on computer-based prediction, resulting in more complex
gene models that contain more predictive or exploratory
genomic elements. Other annotation strategies rely on
evidence-based methods, i.e., methods that require more
manual curation, leading to simpler gene models with
fewer genes and isoforms (i.e., splice variants of a gene).
We compare six human genome annotations from var-

ious databases, including the AceView database [9], the
Ensembl database [12], the H-InvDB database [13], the
RefSeq database [10], the UCSC Known Genes database
[14], and the Vega database [15]. The key characteristics
of each genome annotation are summarized in Table 1,
in which annotations are ordered by decreasing

complexity from left to right. The term “complexity”
describes the primary differentiating characteristic among
the genome annotations. We define the complexity of a
human genome annotation to be proportional to the
number of genes, isoforms, and exons. This definition
enables us to investigate the relationship between down-
stream RNA-seq analyses (i.e., short sequence read map-
ping, gene expression quantification, and detection of
differentially expressed genes) and the observed genome
annotation complexity. We hypothesize that a more com-
plex genome annotation is more difficult for RNA-seq
mapping and quantification because of the difficulties of
determining a best possible mapping from multiple can-
didate mappings and assigning unresolved ambiguous
mappings to their correct genomic elements.
Any relationship between genome annotation com-

plexity and gene expression quantification could be
helpful in guiding the selection of a genome annotation
for various expression studies using RNA-seq data. Cur-
rently no guidelines for selecting a genome annotation
for RNA-seq are available, and the effect of genome
annotation choice on downstream data analysis is still
unclear. The focus of this study is to acquire some
insights into the impact of human genome annotation
choice on RNA-seq expression estimates.

Results and discussion
Complexity of human genome annotations
Table 1 summarizes several important statistics for each
genome annotation. We rank the genome annotations
based on the number of genes, isoforms, and exons.
Ranking the set of human genome annotations (i.e.,
AceView, H-InvDB, Ensembl, Vega, UCSC, and RefSeq)
by decreasing number of genes results in ranks of (1, 4,
2, 3, 5, 6). In other words, AceView is ranked at 1
because it has the largest number of genes while
H-InvDB is ranked at 4. Similarly, ranking the set of

Table 1 Properties of various human genome annotations.

Genome Annotations

AceView Genes H-InvDB Genes Ensembl Genes VegaGenes UCSCKnown Genes RefSeqGenes

Version 2010 8.0 67 48 - -

Database Downloaded Date Nov. 12, 2011 Apr. 20, 2012 May 1, 2012 June 26, 2012 Dec. 21, 2011 July 23, 2012

# of Genes 72,376 43,893 48,817 44,880 28,423 23,731

# of Isoforms 259,426 236,861 177,858 158,835 75,725 41,099

# of Exons 678,503 542,099 534,400 493,509 273,711 227,710

Average # of Isoforms per Gene 3.58 5.40 3.64 3.54 2.66 1.73

Maximum # of Isoforms per Gene
(with HGNC Gene Name)

119
(TRAV37)

885
(EEF1A1)

82
(GPR56)

77
(NDRG2)

129
(UTY)

77
(UTY)

Annotated Percentage (%) Gene 52.93 45.09 49.61 48.29 44.28 40.17

Exon 5.70 3.72 3.63 3.53 2.70 2.27

Coding Sequence 1.71 1.43 1.14 1.05 1.13 1.07

The annotated percentage is the total length of all genomic elements (gene, exon, or coding sequence) over the entire length of the human genome
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human genome annotations by decreasing number of iso-
forms and exons results in identical ranks of (1, 2, 3, 4, 5,
6) and (1, 2, 3, 4, 5, 6), respectively. We then define the
complexity rank of the genome annotation to be propor-
tional to the average of these three ranks. The average
ranks of these genome annotations are (1, 2.67, 2.67,
3.67, 5, 6). We use the mode of ranks to break ties (e.g.,
the H-InvDB and Ensembl annotations both have average
ranks of 2.67). Thus, the human genome annotations are
ordered by decreasing complexity as AceView, H-InvDB,
Ensembl, Vega, UCSC, and RefSeq. The annotated per-
centage of each genome annotation generally follows the
trend of complexity as demonstrated in Figure 1. For the
average number of isoforms per gene and the maximum
number of isoforms per gene, annotations generally have
the same trend as the complexity measure. However, the
H-InvDB annotation deviates from this trend, containing
on average 50% more isoforms per gene compared to the
most complex AceView annotation.

Effect of human genome annotation complexity on
mapping
We propose two metrics to assess the effect of genome
annotation complexity on sequence mapping. We first
examine read mapping information and classify them
into three categories for single-end sequencing samples
or into five categories for paired-end sequencing samples.
We use OSA alignment outputs as an example to
demonstrate the impact of genome annotation choice on
read mapping. For both the shorter read length single-
end sequencing sample (1 × 36 bp; SRA: SRP000727) and
the longer read length paired-end sequencing sample
(2 × 100 bp; SRA: SRP008482), we observe similar results
(Figure 2). The RefSeq annotation consistently has the
highest percentage of uniquely mapped reads and
uniquely paired reads in the single-end case and paired-
end case, respectively. Note that the percentage of
unmapped reads is similar for all annotations. The per-
centage of non-uniquely mapped reads or read pairs
increases as genome annotation becomes more complex.
Outlying cases exist (e.g., the Vega annotation has the
lowest percentage of uniquely paired reads in paired-end
sequencing samples), but the observed trend still follows
the complexity measure. From Table 1, more complex
annotations generally annotate more genes and isoforms
and thus, increase the possibility of ambiguous mappings.
These ambiguous mappings are more difficult to resolve
for identifying the best mapping, which directly translates
to the increase in percentage of non-uniquely mapped
reads when using more complex annotations.
We then examine the percentage of reads that map to

the annotated and un-annotated genomic sequences.
More reads mapping to the annotated genomic sequences
implies that more sequence information will be available

for the quantification step. Reads mapping to the
un-annotated regions are not useful for quantifying
predefined genomic elements. From Figure 3, we observe
that the AceView annotation results in the highest per-
centage of reads that map to annotated sequences. In
contrast, the UCSC and RefSeq annotations have lower
percentages of reads that map to annotated sequences,
with UCSC being the lowest. Other than this outlying
case, this evaluation metric follows the annotation com-
plexity measure.

Effect of human genome annotation complexity on
quantification
We propose two metrics to assess the impact of genome
annotation complexity on RNA-seq quantification. The
first metric is to evaluate the stability of gene and isoform
expression estimates. Figure 4 demonstrates the variation
of average coefficient of variation (CV) due to the choice
of annotation and the selection of gene or isoform sub-
groups. We focus on four subgroups: all genes of each
annotation, common genes (13,613 genes from the OSA
pipeline and 13,810 genes from the TopHat/Cufflinks
pipeline) that are defined in all annotations, genes not
common to all annotations (i.e., uncommon genes), and
all isoforms. The smaller variance between replicate
expression estimates leads to the lower average CV.
Trends for all genes and uncommon genes are similar.
The AceView annotation has the highest average CV, fol-
lowed by the Vega annotation, the Ensembl annotation,
the H-InvDB annotation, the UCSC annotation, and the
RefSeq annotation. In the case of all isoforms, sometimes
the H-InvDB annotation results in the highest average CV.
For common genes, the difference in average CV between
various annotations is not large. The RefSeq annotation
always results in the lowest average CV, whereas the H-
InvDB or AceView annotations have the highest average
CV. The variation between annotations becomes larger for
the cases of all genes, uncommon genes, and all isoforms
since more annotation-specific elements are being consid-
ered. More complex annotations are more challenging for
quantification because a larger number of ambiguous
mappings occur. Note that Ensembl and Vega deviate
from the trend of the annotation complexity measure. A
possible rationale for this observation is that the Ensembl
and Vega annotations tend to include more small RNAs
compared to the other annotations. Since the sequencing
data we are analyzing follows the poly-A enrichment
library preparation protocol, ideally, only mRNA is
retained in the final sequencing samples. Thus, the major-
ity of small RNAs should have zero or very low expression.
We define these zero expressing elements as absent geno-
mic elements. The inclusion of additional low expressing
genomic elements in the Ensembl or Vega annotation
results in larger average CV.

Wu et al. BMC Bioinformatics 2013, 14(Suppl 11):S8
http://www.biomedcentral.com/1471-2105/14/S11/S8

Page 3 of 13



Figure 5 demonstrates that the percentage of present
genomic elements depends on the annotation. We define
a ‘present’ genomic element to be an element that has
nonzero expression for at least one technical replicate.
For common genes, all annotations have a similar percen-
tage of present genes. For uncommon genes, all genes,
and all isoforms, the relation among the AceView, H-

InvDB, Ensembl, and Vega annotations is more uncertain
compared to other evaluation metrics. In most cases, the
H-InvDB annotation has a higher percentage of present
genes/isoforms than the AceView annotation. The RefSeq
annotation always has the highest percentage of present
genes/isoforms, followed by the UCSC annotation. As we
explained earlier, more small RNAs are included in the

Figure 1 Annotated percentage per chromosome of each genome annotation. For each genome annotation, the annotated percentage of
each chromosome is demonstrated on (a) the gene level, (b) the exon level, and (c) the coding sequence level. The AceView annotation usually
has the highest annotated percentage for all chromosomes and all levels of comparison.

Wu et al. BMC Bioinformatics 2013, 14(Suppl 11):S8
http://www.biomedcentral.com/1471-2105/14/S11/S8

Page 4 of 13



Ensembl and Vega annotations. Because of the poly-A
enrichment library preparation, most of these small
RNAs have zero expression and are identified as absent,
which correspondingly decreases the percentage of pre-
sent genes or present isoforms.

Effect of annotation complexity on differential expression
calling
For thrombin study samples (SRA: SRP008482), we use
OSA alignment with htseq-count quantification to pre-
pare input read count data for the edgeR package. Most

of the top 20 differentially expressed genes are detected
in at least two of the six annotations, while several
others are unique and annotation-specific [16]. Even
though the functions of these annotation-specific genes
are unclear, more complex annotations are still prefer-
able since they provide an opportunity to identify novel
genomic elements that may be functionally important.
Three genes were validated by RT-qPCR technology for

the thrombin study samples (SRA: SRP008482). We exam-
ine the difference between RNA-seq-based fold-changes
and RT-qPCR-based fold-changes and summarize the

Figure 2 Distribution of read mapping categories. (a) MAQC samples (SRA: SRP000727) contain single-end reads, thus, there are three read
mapping categories: uniquely mapped reads, non-uniquely mapped reads, and unmapped reads (b) Thrombin study samples (SRA: SRP008482)
contain paired-end reads, thus, five read mapping categories can possibly occur. Cases of uniquely paired reads and non-uniquely paired reads
occur when both ends of a read pair are mappable to the genome. Situations of uniquely mapped singletons and non-uniquely mapped
singletons occur when only one end of a read pair is mappable to the genome. The RefSeq annotation has the highest percentage of uniquely
mapped reads and the lowest non-uniquely mapped reads for both samples.

Wu et al. BMC Bioinformatics 2013, 14(Suppl 11):S8
http://www.biomedcentral.com/1471-2105/14/S11/S8

Page 5 of 13



results in Table 2. From Table 2, we observe that the
UCSC annotation always outperforms RefSeq annotation
in terms of the lowest average absolute deviation from the
RT-qPCR fold-change estimates. However, the difference
between them is not large. In contrast, AceView and H-
InvDB annotations have relatively higher average absolute
deviations. We can infer from this observation that more
complex annotations increase the difficulty of estimating
gene expression accurately. Higher variations in gene
expression estimates propagate to fold-change estimates
and other differential expression test-statistics.
The RT-qPCR data for MAQC samples is publicly

available in the GEO database. We use three statistics to
assess variations due to genome annotation choice. As
shown in Figure 6, less complex genome annotations, e.
g., the RefSeq annotation, results in lower average abso-
lute deviation, lower root mean squared error (RMSE),
and higher correlation coefficient when comparing
RNA-seq fold-change estimates to RT-qPCR fold-change
estimates. The variation between annotations is larger
when using FPKM expression estimates from the

TopHat/Cufflinks pipeline. Some outlying cases exist (e.
g., the Ensembl annotation has the highest RMSE when
using FPKM expression estimates), but the general
trend of this evaluation metric still follows the annota-
tion complexity measure.

Conclusions
The genome annotation is a necessary component of
RNA-seq expression analysis. Multiple genome annota-
tions are publicly available; however, it is not clear how
different choices of genome annotation will affect down-
stream RNA-seq expression estimates. We defined the
complexity of human genome annotation, and assessed
the relationship between genome annotation complexity
and several RNA-seq performance metrics. Based on
our complexity measure, we ordered existing human
genome annotations from most to least complex as fol-
lows: AceView, H-InvDB, Ensembl, Vega, UCSC, and
RefSeq. In more complex annotations, a higher percen-
tage of the entire genome is annotated. For RNA-seq
sequence mapping, less complex annotations result in a

Figure 3 The percentage of reads or read pairs that map to the annotated and un-annotated genomic sequences. Sub-figures (a)-(d)
represent different combinations of samples (top: MAQC samples with SRA accession number SRP000727; bottom: thrombin study samples with
SRA accession number SRP008482) and spliced mappers (left: OSA; right: TopHat). The UCSC annotation usually has the lowest percentage of
reads that mapped to the annotated genomic sequences, while the AceView annotation usually has the highest percentage. The same
observation is applicable to all four combinations of samples and spliced mappers.
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higher percentage of uniquely mapped reads and
uniquely mapped pairs for both single-end and paired-
end sequencing samples. However, at the same time, the
number of RNA-seq reads that map to annotated geno-
mic sequences is smaller for less complex annotations.
Genome annotation complexity also affects RNA-seq
expression estimates. More complex annotations result
in more ambiguous mappings, which increase the diffi-
culty of RNA-seq quantification and thus, cause higher
expression variation between RNA-seq technical repli-
cates. Furthermore, more complex annotations lead to a
lower percentage of present (i.e., detected) genes or iso-
forms, which suggests that the predictive or hypothetical
genomic elements in these annotations tend to belong
to non-expressors or low expressors. For RNA-seq dif-
ferentially expressed gene detection, the concordance is
high among the six annotations. More complex annota-
tions are capable of identifying annotation-specific genes
that may be functionally important. Deviations in RNA-
seq expression estimates due to differences in genome
annotation complexity can propagate to fold-change sta-
tistics and, subsequently, differential expression

detection. Thus, when comparing RNA-seq fold-change
statistics to ground truth RT-qPCR fold-change statis-
tics, more complex annotations tend to have larger
deviation and smaller correlation. In summary, the
impact of genome annotation choice on RNA-seq
expression estimates is significant, and the choice of
annotation should depend on the study. Less complex
genome annotations are preferable for studies that
require more stable RNA-seq expression estimates.
However, to discover and explain unknown biological
mechanisms, more comprehensive and complex genome
annotations are necessary.

Methods
Study overview
This paper aims to provide insights into the effect of
different choices of human genome annotation on the
variation in RNA-seq expression estimates. We propose
a complexity measure (refer to the Background section)
to relate observations in downstream RNA-seq analyses
to the trend of genome annotation characteristics. The
typical pipeline for RNA-seq expression analysis

Figure 4 The average coefficient of variation varies with different annotations and gene or isoform subgroups. Sub-figures (a)-(d)
represent different combinations of samples (top: MAQC samples with SRA accession number SRP000727; bottom: thrombin study samples with
SRA accession number SRP008482) and expression estimates (left: TPM estimates from OSA package; right: FPKM estimates from TopHat
alignment with Cufflinks quantification). The RefSeq annotation always has the smallest average coefficient of variation, while the AceView
annotation has the highest average coefficient of variation for most of the cases. The variation is small when focusing on only common genes.
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includes mapping, quantification, normalization, and
calling differentially expressed genes. As shown in
Figure 7, in this study, we use two publicly available
RNA-seq datasets that provide differentially expressed
genes and RT-qPCR validation information. We align

short sequence reads to the human genome with two
spliced aligners, OSA [17] and TopHat [18]. Alignment
outputs of both tools are quantified by htseq-count [19]
to acquire gene expression estimates in terms of the
read counts. Since OSA has embedded quantification

Figure 5 The percentage of present genomic elements varies with different annotations and gene or isoform subgroups. Sub-figures
(a)-(d) represent different combinations of samples (top: MAQC samples with SRA accession number SRP000727; bottom: thrombin study
samples with SRA accession number SRP008482) and expression estimates (left: TPM estimates from OSA package; right: FPKM estimates from
TopHat alignment with Cufflinks quantification). The RefSeq annotation usually has the highest percentage of present genomic elements, while
the Ensembl or Vega annotation generally has the lowest percentage of present genomic elements. The variation is small when focusing on
only common genes.

Table 2 Fold-changes between thrombin-treated samples and control samples (SRA: SRP008482).

RNA-seq data with TPM Expression Estimates (OSA Pipeline)

Gene RT-qPCR AceView H-InvDB Ensembl Vega UCSC RefSeq

TRAF1 2.862 3.029 3.034 3.025 2.998 2.934 2.922

FANCD2 -1.050 -0.782 -0.687 -0.888 -0.856 -0.840 -0.840

CELF1 -0.202 -0.138 -0.202 -0.098 -0.098 -0.239 -0.275

Average Absolute Deviation from RT-qPCR 0.166 0.178 0.143 0.145 0.106 0.114

RNA-seq data with FPKM Expression Estimates (TopHat/Cufflinks Pipeline)

Gene RT-qPCR AceView H-InvDB Ensembl Vega UCSC RefSeq

TRAF1 2.862 3.874 3.845 3.797 3.719 3.677 3.674

FANCD2 -1.050 0.057 0.057 -0.345 -0.322 -0.202 -0.151

CELF1 -0.202 0.642 0.516 0.595 0.585 0.390 0.356

Average Absolute Deviation from RT-qPCR 0.987 0.936 0.812 0.791 0.751 0.756
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and TPM normalization [20] in its package, we use
Cufflinks [21] to quantify TopHat alignment outputs only
and then obtain gene/isoform expressions in terms of
FPKM-normalized values [8]. Given the read counts data
from htseq-count, we apply the edgeR package in R [22]
to call differentially expressed genes between treatment
and control samples. For TPM or FPKM expression esti-
mates, we calculate fold-change between treatment and
control samples and then compare these numbers to
external RT-qPCR validation results provided by the ori-
ginal studies. We propose several evaluation metrics for
each analysis step to demonstrate performance variation
induced by annotation complexity.

Human genome annotation
Several organizations or institutions have spent more
than a decade working on annotating the human gen-
ome. Various annotating techniques have been developed

and a variety of information sources have been utilized
to provide the most informative and correct human
genome annotation [23,24]. We use six well-known
annotations, including AceView Genes, Ensembl Genes,
H-InvDB Genes, RefSeq Genes, UCSC Known Genes,
and Vega Genes. Since each annotation emphasizes
slightly different categories of genomic elements (e.g.,
some report more functionally important small RNAs),
we need to manually examine these annotations and
prepare them to be comparable with each other. We
choose to use AceView annotation as a standard to
determine which genomic elements need to be filtered
out in other annotations. We also decided to use anno-
tations that only fall into main chromosome contigs,
unplaced contigs, and unlocalized contigs in the UCSC
HG19 assembly.
The information sources and annotating strategies of

each human genome annotation are summarized in [16].

Figure 6 Statistics for comparing RNA-seq-based fold-changes and RT-qPCR-based fold-changes vary with different annotations. The
comparison of fold-change estimates between RNA-seq and RT-qPCR using two RNA-seq expression estimates and three statistics. (a) TPM
estimates are produced by the OSA package. (b) FPKM estimates are generated by Cufflinks with TopHat alignment. The RefSeq annotation
always has the lowest (1) average absolute deviation and (2) root mean square error, and the highest correlation coefficient when treating RT-
qPCR estimates as the ground truth.
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The procedures for improving cross-annotation compar-
ability are briefly described below:
AceView Genes [9] - The AceView annotation was

downloaded from its website. We choose this annotation
as the standard definition for genomic element cate-
gories. To match genomic contigs for the sequence
mapping stage, we remove the mitochondrial annotation
from the original annotation file.
Ensembl Genes [12] - The Ensembl annotation was

downloaded from its FTP site. It includes annotations
that fall outside of the preselected genomic contigs as
well as a considerable amount of small RNAs (e.g., tRNA,
miscRNA scRNA, snRNA). These genomic elements are
removed in the preparation process. Meanwhile, the
chromosome names in this annotation are translated to
the chromosome names in HG19 convention.
H-InvDB Genes [13] - The H-InvDB annotation was

downloaded from its website. To prepare this annota-
tion, we remove annotations located on haplotype and
mitochondrial contigs. We also map the chromosome
names in H-InvDB annotation to the chromosome
names in HG19 convention.
RefSeq Genes [10] - The RefSeq annotation was down-

loaded from the UCSC Table Browser. We prepare the
RefSeq annotation by removing haplotype annotations.
UCSC Known Genes [14] - The UCSC Known Genes

annotation was downloaded from the UCSC Table
Browser. To prepare this annotation, we remove annota-
tions located on the haplotype and mitochondrial con-
tigs. We also remove other small RNAs such as tRNA,
miscRNA, and snRNA.

Vega Genes [15] - The Vega annotation was down-
loaded from its website. The preparation steps are simi-
lar to that of the Ensembl annotation. Genomic
elements that fall outside of the preselected genomic
contigs are removed. The chromosome names in Vega
annotation are also translated to the chromosome
names in HG19 convention.

RNA-seq datasets
We download two publicly available RNA-seq datasets
from the NCBI Sequence Read Archive (SRA) repository.
The first dataset (accession number: SRP008482) investi-
gates how thrombin treatment affects endothelial function
in terms of gene expression profiles. Generally, thrombin
can stimulate endothelial cells and regulate the expression,
release and activation of a number of biological mediators
[25]. The targeted biological samples are “human pulmon-
ary microvascular endothelial cells (HMVEC-L)” with two
conditions: either control (two technical replicates) or
treated with thrombin for six hours (three technical repli-
cates). The sequencing platform was Illumina HiScanSQ
with sequencing depth around 50 million read pairs for
each technical replicate, and read lengths of 2 × 101 base
pairs. The study also validated the expression fold-change
of three genes (CELF1, FANCD2, and TRAF1) between
treated and control samples using RT-qPCR technology.
Such RT-qPCR information is considered the ground
truth and is useful for validating and evaluating RNA-seq
expression estimates.
The second dataset (accession number: SRP000727)

studies alternative isoform regulation in human tissue

Figure 7 Workflow of RNA-seq data analysis pipeline. The five dashed boxes correspond to five steps in the RNA-seq data analysis pipeline.
We applied two alignment tools and two quantification tools to estimate gene/isoform expression with normalization methods of count, TPM,
or FPKM. The fold-change method and the edgeR tool are used to infer differentially expressed genes. At each analysis step, we assess the
variations resulting from genome annotation choice.
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transcriptomes [26]. It profiled 16 tissue transcriptomes,
and two MAQC (MicroArray Quality Control) samples
were included in the study. The two MAQC samples
are Ambion Human Brain Reference RNA (HBRR) and
Stratagene Universal Human Reference RNA (UHRR).
The study includes four technical replicates for the
HBRR sample and 3 technical replicates for the UHRR
sample. This is an older sequencing dataset which used
Illumina Genome Analyzer to generate single-end reads
with read length of 36 base pairs. Each technical repli-
cate has only 2.5 million reads. The merit of this dataset
is that the RT-qPCR results are publicly available
through the MAQC study. Fold-changes of 1,044 genes
from the TaqMan RT-qPCR assay again provide an
external ground truth for evaluating RNA-seq expres-
sion estimates.

Short sequence read mapping methods and evaluation
metrics
We use two spliced alignment tools, TopHat and OSA,
to map short sequencing reads to the human genome
with the guidance of various genome annotations. The
spliced alignment tools enable RNA-seq reads to
directly map to the genome (the typical pipeline for
spliced alignment is shown in Figure 8). TopHat is a
spliced alignment tool that is widely used for mapping
RNA-seq data to the genome or transcriptome [18]. It
aligns short sequence reads to the human transcrip-
tome first, and then attempts to remap the unmapped
reads from the previous stage to the human genome.

The alignment outputs from the two stages are merged
into the final output. We use TopHat version 2.0.5
with no novel junction detection and the “-G” option,
which allows us to provide a genome annotation GTF
file (the standard genome annotation reporting format)
and to force TopHat to use the mapping strategy
described in Figure 8. OSA (Omicsoft Sequence
Aligner) is a new spliced alignment tool that “improves
mapping speed 4-10-fold with better sensitivity and
less false positives” compared to the TopHat, SoapS-
plice, and RUM pipelines [17]. It implements a similar
mapping strategy as TopHat. We use OSA version
1.8.2 with the default settings.
We use the UCSC HG19 human genome assembly as

a reference genome for spliced alignment. We include
only 24 main chromosome contigs, 20 unplaced contigs,
and 39 unlocalized contigs. The rest of the contigs, e.g.,
mitochondria and haplotypes, are excluded.
We define two evaluation metrics for the mapping

stage. The first metric is based on the categorization of
read mapping outcomes. For paired-end sequencing,
the categories include uniquely paired reads, uniquely
mapped singletons, non-uniquely paired reads, non-
uniquely mapped singletons, and unmapped reads. For
single-end sequencing, the categories are simpler,
including only uniquely mapped reads, non-uniquely
mapped reads, and unmapped reads. The second
metric is the percentage of the number of reads that
map to the annotated and un-annotated genomic
sequences.

Figure 8 Workflow of typical RNA-seq spliced alignment pipeline. A spliced mapper aligns RNA-seq data to a genome with the help of a
genome annotation. Different genome annotations define various sets of exon junction information which affect the output of spliced mappers.
The mapped reads can then be used to quantify gene/isoform expressions.
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Gene/isoform expression quantification, normalization
methods, and evaluation metrics
We use the htseq-count script from the HTSeq package
to count the number of reads (or fragments in the
paired-end sequencing case) that map to each gene as
the gene expression estimate. For each mapped read or
fragment, htseq-count determines the genes to which
these reads or fragments associate. If a read or a frag-
ment overlaps more than one gene, it provides three sce-
narios to resolve this ambiguous situation. We use the
HTSeq package version 0.5.3p9 with “intersection-none-
mpty” overlapping resolution [19]. All the other options
were kept in the default setting. Read counts from htseq-
count are used as the input for packages that detect
differentially expressed genes. The OSA package includes
functionality for quantifying and normalizing gene/
isoform expressions. We choose to report gene/isoform
expression estimates in terms of Transcripts Per Million
(TPM) normalized values [20]. For TopHat alignment
outputs, we use Cufflinks to quantify gene and isoform
expressions in terms of Fragments Per Kilobase exon
model per Million mapped reads (FPKM) estimates. We
use Cufflinks version 2.0.2, keeping most parameters in
the default setting except enabling sequencing bias cor-
rection and multi-mapped reads correction [21].
At the quantification and normalization stage, we pro-

pose two evaluation metrics to observe the impact of
genome annotation complexity on RNA-seq expression
estimates. We use the stability of normalized TPM or
FPKM expression between technical replicates as the first
evaluation metric. With the help of unique HGNC gene
identifier for each gene, we identify 13,613 common
genes from OSA alignment with TPM quantification and
13,810 common genes from TopHat alignment with Cuf-
flinks FPKM quantification across six genome annota-
tions. The number of common genes between the two
pipelines is different since Cufflinks tend to collapse or
not report certain low-expressing genes. For each genome
annotation, we remove genes that are absent for all repli-
cates and then compute the coefficient of variation (CV),
averaged across all targeted genes or isoforms, as defined
in equation (1), where Si is the sample standard deviation
of expression estimates across replicates with the same
biological condition, x̄i is the mean of expression esti-
mates across replicates with the same biological condi-
tion, and n is the number of targeted genes or isoforms.
We apply the same technique to the set of common
genes, uncommon genes, and to all isoforms.

Average CV =

[
1
n

(
n∑
i=1

Si
/̄
xi

∣∣∣∣∣
condition 1

)
+
1
n

(
n∑
i=1

Si
/̄
xi

∣∣∣∣∣
condition 2

) ]/
2 (1)

The second evaluation metric is the percentage of pre-
sent genes or isoforms that have nonzero expression in

at least one replicate. Since some annotations (e.g., the
AceView annotation) possess considerably more genes
or isoforms compared to other annotations, through this
metric, we aim to examine the practicability of this addi-
tional information for transcriptome profiling studies
(assuming sequencing libraries are prepared by poly-A
enrichment).

Differentially expressed gene calling methods and
evaluation metrics
The edgeR package in R is applied to identify differen-
tially expressed genes [22]. It takes the raw read count
as the input instead of the normalized expression esti-
mates. For each gene, edgeR assumes that the raw read
count across several replicates follows a negative bino-
mial distribution. The Fisher’s exact test is chosen to
determine the significance level of each differentially
expressed gene (DEG). To examine the repeatability of
DEGs, we observe the concordance of the 20 most sig-
nificant DEGs from each annotation.
The TPM and FPKM expression estimates are used for

fold-change evaluation. For thrombin study samples
(SRA: SRP008482), three genes were selected for RT-
qPCR validation with fold-changes provided in the origi-
nal study. For each of the six annotations, we consider
the RT-qPCR result as a ground truth for estimating the
error of RNA-seq-based fold-changes from RT-qPCR-
based fold-changes. We use the average absolute devia-
tion to measure the error as defined in equation (2),
where FC stands for Fold-Change and n is the number of
fold-changes being compared. We use Log2 transforma-
tion for the fold-change estimates for both technologies.

Average Absolute Deviation =

∑
n

∣∣FCRNA−seq − FCRT−qPCR
∣∣

n
(2)

For MAQC samples (SRA: SRP000727), we use the
publicly available MAQC-I dataset that used a TaqMan
RT-qPCR assay to profile 1,044 genes for both the
Human Brain Reference RNA (HBRR) and Universal
Human Reference RNA (UHRR) samples [27] (GEO
accession number: GSE5350). There are four technical
replicates for the HBRR sample and four technical repli-
cates for the UHRR sample. We select 830 TaqMan
genes that have present calls for all replicates of HBRR
and UHRR samples, and then calculate (1) average abso-
lute deviation, (2) root mean squared error, and (3) cor-
relation coefficient between RNA-seq-based fold-
changes and RT-qPCR-based fold-changes. We use Log2
transformation for the fold-change estimates for both
technologies.
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