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Abstract

them in segmentation accuracy.

Background: Cell imaging is becoming an indispensable tool for cell and molecular biology research. However,
most processes studied are stochastic in nature, and require the observation of many cells and events. Ideally,
extraction of information from these images ought to rely on automatic methods. Here, we propose a novel
segmentation method, MAMLE, for detecting cells within dense clusters.

Methods: MAMLE executes cell segmentation in two stages. The first relies on state of the art filtering technique,
edge detection in multi-resolution with morphological operator and threshold decomposition for adaptive
thresholding. From this result, a correction procedure is applied that exploits maximum likelihood estimate as an
objective function. Also, it acquires morphological features from the initial segmentation for constructing the
likelihood parameter, after which the final segmentation is obtained.

Conclusions: We performed an empirical evaluation that includes sample images from different imaging

modalities and diverse cell types. The new method attained very high (above 90%) cell segmentation accuracy in
all cases. Finally, its accuracy was compared to several existing methods, and in all tests, MAMLE outperformed

Background

Single cell microscopy and subsequent analysis has
gained much interest recently in areas ranging from stu-
dies of gene expression dynamics [1-3], to studies of cell
aging [4,5] to disease classification [6]. However, as most
processes in cells are stochastic in nature [7] their study
requires high-throughput measurements and analysis.
The manual extraction of the results from the raw image
data is thus prohibitive, causing a need for accurate and
robust methods of cell segmentation.

Most existing methods lack in generic applicability and
require strong assumptions on cell features i.e. cell shape,
size, etc. Additionally, their performance is highly sensitive
to cell density and signal to noise ratio. One of the pre-
sently most successful and used cell image analysis tools is
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‘Cellprofiler’ [8], an open source software platform for
automated cell segmentation from microscopy images.
Cell segmentation in Cellprofiler is performed in two
steps. First, it separates objects from image background by
thresholding. Next, the clumped objects are segmented
again by considering intensity or shape as a feature for dis-
crimination. Cellprofiler provides several alternatives for
automated threshold selection and clumped cell segmenta-
tion. The major drawback of its segmentation algorithm is
that its accuracy decreases significantly when cells are in
large, dense clumps.

Another state of the art software tool is ‘Schnitzcells’ [9].
Schnitzcells provides solutions for segmentation and
tracking of Escherichia coli cells from images by confocal
or phase contrast microscopy. The segmentation of cells
in Schnitzcells is a multi-stepped process. First, it applies
edge detection for generating initial segmentation. Next, it
splits long or clumped cells. Finally, it considers too small
objects as false positives and discards them. The major
problem is the large number of parameters that, without
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proper tuning, cause the accuracy of the segmentation to
decrease notably. Further, it has a limited scope of applica-
tion, i.e. it only handles E. coli and Bacillus subtilis cells
and often presents a significant number of false positives.

Finally, it is worth mentioning the cell segmentation
algorithm for histopathology images, whose implementa-
tion was made available in the Farsight toolkit [10]. This
method exploits graph-cuts-based segmentation for seg-
menting foreground signals from the image background.
Then, the nuclear seed points are detected by a multi-
resolution edge detection method. Aside these, other
methods for cell segmentation were proposed (see e.g.
[11,12]). In general, these split the overall segmentation
task into three steps. First, a separation of foreground
objects from image background is made. Next, a post
processing step is applied to split the under-segmented
clumped cells. Finally, false positives are discarded by
some criteria.

Here, we propose a novel cell segmentation method,
MAMLE, which maintains very high cell segmentation
accuracy in dense cell clusters with low signal to noise
ratio (SNR). Moreover, MAMLE requires very few assump-
tions on cell shape or size, thus, it can handle a wide range
of cell types in different imaging modalities. MAMLE is
novel in that i) it adopts a state of the art image denoising
technique for improving SNR in image, ii) unifies multi-
resolution edge detection and threshold decomposition to
accomplish the initial segmentation iii) corrects the over-
segmented and under-segmented cells based on likelihood
estimate, which is shown to be adaptive to varying condi-
tions. Above all, MAMLE innovates in that it learns differ-
ent shape features on the fly and exploits the learnt
parameters for cell segmentation correction. A properly
combined usage of all features is implemented to obtain
robust and accurate cell segmentation.

MAMLE is primarily targeted towards one of the most
challenging cell types for automated segmentation,
E. coli, a model organism in cell and molecular biology
research [13-15]. The high division rate, the formation
of dense colonies and the cells’ morphology make the
segmentation more challenging than for most other cell
types. We first describe the method, after which we
evaluate its cell segmentation accuracy and compare it
with state of the art cell segmentation platforms. Next,
the robustness of MAMLE is studied in its parametric
space. In the end, we present our conclusions.

Methods

MAMLE cell segmentation method comprises 7 steps: i)
image denoising, ii) foreground and background seg-
mentation, iii) multi-scale morphological edge detection,
iv) threshold decomposition and initial segmentation, v)
shape learning form the initial segmentation, vi) likeli-
hood optimization based splitting and vii) maximum
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likelihood based merging. A flow chart of the algorithm
is illustrated in Figure 1. Next, we describe each step in
detail:

i) Image denoising: fluorescent images often have low
SNR, which leads to cell detection artifacts. Hence,
denoising filters are often applied as a pre-processing
step for segmentation. MAMLE exploits a state of the art
image denoising technique known as Block-Matching
and 3D filtering (BM3D) [16]. We opted for BM3D due
to its balance between noise cancellation and edge pre-
servation capability [16]. BM3D splits a noisy 2D image
into fixed size blocks (8x8) and searches for the blocks
that match the reference block. The matching blocks are
arranged into a 3D array, known as ‘group’. On each
group, a 3D transformation is executed and thresholded.
Afterwards, BM3D inverse transforms the group and
aggregates it with weights to augment the basic estimate.
The augmented basic estimate acts as a pilot signal for
subsequent steps. Finally, a collaborative Wiener filtering
is executed on the noisy signal to obtain the noise
removed image.

ii) Foreground and background segmentation: this
step (second step in Figure 1) separates individual cell
colonies from the image background. In fluorescence
microscopy, cells are stained with fluorophores or they
express a fluorescent protein. As a result, the image back-
ground appears darker than foreground objects (i.e. cells).
Therefore, a block-wise Otsu threshold, followed by
bilinear interpolation, is applied to separate each cell col-
ony from the background [8,17]. Phase contrast images,
on the other hand, have different intensity profiles for
foreground and background. For these, we use iterative
range filtering to segment foreground objects from the
image’s background [18]. In both cases, the extracted
foreground mask is used to select the region of interest.

iii) Multi-scale morphological edge detection: this is
a key step of MAMLE (third step in Figure 1). Recent
studies showed that multi-scale edge detection has, in
general, a more robust performance than single scale
edge detection strategies [10], particularly when com-
bined with morphological operators [18,19]. We propose
a novel multi-scale morphological edge detector to gen-
erate the fuzzy edge image for cell segmentation. An
edge in a digital image (f) can be realized as a local
intensity minimum with direction. Thus, a pixel at an
edge should not be altered by the morphological erosion
operation. With this assumption, a binary edge (E,(f))
image at scale level S can be defined as in (1) and (2).

Ei(f) = UE!() (1)
d
B = o7 @
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indicates the input/output data flow from one operation to another.

Figure 1 Schematic flow chart of the proposed method. The green arrow points to the result of the respective operation and the red arrow

where EY(f)is the edge image in the direction 4 and
the symbol (o) represents the morphological erosion
operator with the respective support Bg. The direction d
is such that that it allows choosing four possible

directions, 1 to 4, corresponding to horizontal, vertical,
diagonal from left to right, and diagonal from right to
left, respectively. The support Bg, at scale level sand in
direction 4, can be defined as in (3) - (6).
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Here, 01xs—1 is a row vector of zeros of the size s — 1,

Insi1x2s+1 is the identity matrix of the size 2s + 1, Tis the
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transpose operator and is the rotational opera-

tion. The fuzzy edge image is computed as (7)

E(f) - zE ) @)

Each pixel in the fuzzy edge image (E(f)) is a real
valued integer within the range 0 to S, where S is the
maximum scaling factor. A pixel on the most certain
edges in the original gray scale images holds a value
close to S, while a pixel on the smooth region holds a
value close to zero in the fuzzy edge image.

iv) Threshold decomposition: the obtained fuzzy edge
image is treated as an initial estimate of intensity edge in
the grayscale image (forth step in Figure 1). Like more
traditional edge detection algorithms [20], MAMLE
thresholds this fuzzy edge image to obtain edges for cell
segmentation. However, even with an exhaustive search,
we were unable to obtain a rational threshold value for
selecting edges from the fuzzy edge image. Therefore, we
use instead an adaptive method for threshold selection,
namely, a ‘threshold decomposition’ technique [21], which
increases or decreases the threshold by a constant amount
within an interval for a fixed number of times. Mathemati-
cally, this procedure can be expressed as (8) [21].

i Liff =i
) - 0iff <i

The decomposition starts with the strongest threshold
(i = S) that subdivides the foreground object, based on
most certain or strongest edges. Afterwards, it lowers the
threshold gradually to a predefined bound, unless the
foreground object is already reduced to a size smaller
than a predefined value (i.e. the expected maximum size
of a cell). The threshold decomposition is recursive and
the exact number of decomposition levels is specific for
each of the detected objects. The details are listed in
‘Algorithm 1’. The segmentation result is treated as an
initial segmentation mask for the following steps. As
noted, the initial segmentation results show several over

(8)
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and under-segmentation artifacts, which should be
corrected.

Algorithm 1: Threshold Decompositon(E, f)

Input: fuzzy edge image(E), edge threshold(f), area
threshold T,

1. Initialize: S < @
2. Select the edges that are stronger than f and label
the image based on edge selection
3. ASSIGN f~ «—f—1
4. FOR EACH labelled region §;
a) IF area (S;) >T, THEN
a.1) UPDATE § « SU ThresholdDecomposi-
ton(ENS;, f7);
b) ELSE
b.1) UPDATE S < SUS;
5. Return §;

v) Learning shape parameter: First, we need to
acquire a morphological or shape feature from the initial
segmentation. As the initial results are partially correct,
they can be used to obtain different shape features.
Afterwards, they can be categorized into classes, namely
‘correct segmentation’, ‘under-segmentation’ or ‘over-
segmentation’, based on the morphological features.
However, to maintain the classifier tractable, we treat
each object as a simple polygon and consider its area,
the major axis length and the minor axis length as the
discriminant features for classification. The major (a)
and the minor (b) axes are computed according to (9)
and (10) [22].

MM — MM
d=4 0011 01Mo1 )
Al

b= 4\'/moomn — Mp1Mo1 (10)

Ay

Here, My is the centroidal moment, A is the area and
A2, Ay are two orthogonal eigenvalues of the polygon.
The ideal cell shape and shape distribution are assumed
as multivariate Gaussian distributions on the feature
space. The parameter of this distribution can be esti-
mated from the sample mean vector and the covariance
matrix in the feature space of the initial segmentation
results.

vi) Binary split: this step (sixth step in Figure 1) is the
first that re-evaluates the initial segmentation results for
correction. Binary split considers the initially segmented
cells that are larger than the average cell size as a candi-
date for the split. The splitting is done by maximizing
the likelihood function. The log-likelihood of a detected
object to be a cell is formulated as (11).
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Here, 4 and ¥ are the mean and covariance of the
multivariate Gaussian distribution, estimated from the
initial segmentation. Since the covariance matrix is
invariant with respect to the object under selection, the
log-likelihood function can be simplified as (12).

D(Xi) = Xi =)' =71 (X — ) (12)

A closer look at the objective function (D(X;)) reveals
that, given the considered metric, the minimization of the
variance of the normalized distance from the mean vector
(4) would maximize the likelihood function. This problem
is usually realized as a Gaussian mixture model problem
and is solved with the expectation maximization (EM)
algorithm [23]. However, we did not consider EM as a
solution since: i) EM needs to know the number of exist-
ing mixtures, ii) EM does not have direct control on the
shape of the distribution and, iii) since EM considers glo-
bal optimization, there is no straight forward way to con-
sider the case where a part of one cell is clumped with one
or more cells. Thus, we formulate an iterative procedure
for likelihood maximization that splits a clumped object
into two parts by maximizing the likelihood only in one of
the parts, disregarding the other.

After the split, the disregarded part is reconsidered for
split and processed recursively, unless its size is already
smaller than the average cell size. The split procedure is
not completely flawless. Occasionally, it over-segments a
single cell into multiple parts. Nevertheless, most over-
segmented cells are re-merged in the subsequent merge
procedure.

vii) Over-segmentation correction: this step (seventh
and eight steps in Figure 1) merges the over-segmented
cells based on a maximum likelihood estimate of the
shape feature vector. The maximum likelihood estimate
based merging is obtained by transforming the problem
into a binary integer programming problem [24]. Similar
approaches have been used for cell tracking [25]. The mer-
ging scheme first constructs a candidate set (C) for mer-
ging. Each member in the candidate set needs to satisfy
the logical quantifier expressed in (13).

(13)

D(X;) + D(X;) >
VCi€C36j6C< (1) (])_>

D(Xi]‘) A Ci 7—‘ Gj
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Here, ciis a cell or part of cell identified in the prior
steps and X; is the respective feature vector. Xjj repre-
sents the feature vector of the object ¢i merged with ¢j.
The first |C| rows of the hypothesis matrix H and likeli-
hood vector L are initialized as (14) and (15) respec-
tively.

o Jlifi=j
H(i j) = 0if i %] (14)
L(i) = =D (X) (15)

Subsequently, it generates all possible hypotheses of
merging two objects from the candidate list by satisfying
the merging constraint (16). Additionally, for each of
the accepted hypotheses, a single row is appended in the
hypothesis matrix according to (17) and an element in
the likelihood vector is added as (18).

VCij € Cydc;, G € C (D(Xi) + D(Xj) > D(Xij) A Ci 74@)3)

1if (k=in=j)/\Cij€C2

H(W, k) =
(1K) 0 other wise

(17)

L(h') = —D(Xj) (18)

Similarly, it generates hypothesis list (C3) for merging
three objects and adds a single row in the hypothesis
matrix and likelihood vector for each of the generated
hypotheses. This can be extended further, beyond the
third level. We did not find any evidence to justify such
expansion. Hence, we limited the hypothesis generation
process to level three. The generated hypothesis matrix
has m = |C| + |C;| + |C3| rows and n = |C| columns, while
the likelihood vector has m rows. Given this, the maxi-
mum likelihood estimate for merging can be obtained
by selecting the hypotheses that includes each of the
identified objects exactly in one hypothesis and, at the
same time, maximizes the total likelihood. This problem
can be solved by solving a standard binary integer pro-
gramming problem formulated in (19).

x* = arg m};clx(LTx) (19)

Here, x*is a column vector of ones that restricts the
inclusion of each candidate exactly in one hypothesis.
However, the stated problem belongs to the class of NP-
hard problems [24]. Thus, there is no known polynomial
time solution for solving it. We exploited a linear pro-
gramming (LP)-based branch-and-bound technique to
obtain an approximate solution [24]. Finally, the selected
hypotheses are accepted and the objects are merged to
construct the final segmentation result.
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Materials

E. coli DH50.-PRO strain containing a bacterial expres-
sion vector PROTET-K133 carrying the MS2-dimer
(MS2d) fused with green fluorescent protein (MS2d-
GFP) was used for this study [26,27]. This vector has an
inducible promoter P(LtetO-1), which is under tight reg-
ulation of anhydrotetrachycline (aTc, IBA GmbH, Got-
tingen, Germany). Constructs were generously provided
by Dr. Ido Golding, University of Illinois. Cells were
grown in LB medium, supplemented with kanamycin anti-
biotic for the selection of cell containing the Py (et0.1-
Ms2d-GFP plasmid. For full induction of gene expression,
cells were grown overnight at 37 °C with aeration to reach
an optical density of OD600 = 0.3-0.5. The cells were incu-
bated with inducer aTc (100 ng/ml) for 45 minutes to
attain full induction of MS2d-GFP. Following induction, a
few micro litres of culture were placed between a cover-
slip and a thick slab of 1% agarose containing LB. Micro-
scopy was performed at room temperature (22 °C) using a
Nikon Eclipse (TE-2000-U, Nikon, Tokyo, Japan) inverted
confocal laser-scanning microscope equipped with a 100X
magnification (1.5NA) objective. GFP fluorescence was
measured using a 488 nm laser (Radius 405 laser, Coher-
ent, Inc., Santa Clara, CA) and a 515/30 nm detection
filter (100-120 detector gain).

In case of Staphylococcus aureus, cells were grown in LB
medium. OD600 = 0.3-0.5 cells were incubated with
0.5 mg ml-1 DNA binding stain, 4’6-diamidino-2-pheny-
lindole (DAPI, Sigma) for 1 hour at 37 °C and centrifuged
at 7000 RPM for 10 min. Cell pellet was diluted 1:100
time and few micro litres of cells were placed in a micro-
scopic slide as mentioned above to perform the image
acquisition. DAPI stain expression was measured using a
406 nm laser (Radius 405 laser, Coherent, Inc., Santa
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Clara, CA) and a 450/35 nm detection filter (100-120
detector gain).

Results

We carried out an empirical evaluation of the algorithm
with several test sets. The results are categorized into four
classes: i) true positive (TP), if a cell is segmented properly;
ii) over-segmentation, if a cell is split into more than one
piece; iii) under-segmentation, if more than one cell is
recognized as a single cell; and iv) false negative (FN), if a
clearly visible cell is not detected. Apart from these, some
cells were undergoing division which, depending on the
stage, is classified as a single cell or as two independent
cells, according to the specifications of the algorithm
(these classifications are not considered in errors estima-
tion). A small fraction of detections were false positives
(less than 0.1%), and since the overall contribution of false
positives is insignificant, we discard this result from the
evaluation. The results from the fluorescent labelled E. coli
test sample are listed in the Table 1, and compared to the
manual annotation. The results in Tables 1 and 2 reveal
the high segmentation accuracy and generality of the
method. [lustrative examples from test samples are pre-
sented in Figure 2.

As a proof of concept, the efficiency of the segmenta-
tion method is evaluated against manually labelled cells
at pixel level. This is carried out for three illustrative
features: total cell intensity, cell length, and cell width.
The test comprises approximately 1100 GFP labelled
E. coli cells collected from 13 images. Figure 3 shows
the quantitative results in scatter plots with a least square
regression line. The horizontal axis represents the results
from manual labelling and the vertical axis represents
the results from the automated segmentation. A strong

Table 1 Test results on confocal images of E. coli cells expressing a fluorescent protein, MS2d-GFP

Test Case No. images No. cells TP Over -seg. (total/ %) Under -seg. (total/ %) FN (total/ %) Segmentation accuracy (%)
Dense 10 7947 7335 236/2.96 170/2.13 206/2.59 92.30
Medium 10 4014 3616 87/2.16 184/4.58 127/3.16 90.10
Sparse 10 857 817 20/2.33 16/1.86 4/0.46 9533
Total 30 12818 11768 343/2.67 370/2.88 337/2.63 91.80

TP and FN stand for true positive and false negative, respectively.

Table 2 Test results from phase contrast images of E. coli cells, from fluorescence images of S. aureus, and from

epifluorescence images of E. coli.

Test Case No. images No. cells TP Over seg. (total/ %) Under-seg. (total/ %) FN Seg.
accuracy (%)

Phase contrast - E. coli 4 381 376 3/0.787 2/0.52 0/0 98.69

S. aureus 3 768 710 18/2.34 40/5.21 0/0 9245

Epi - E coli 3 160 146 5/3.12 6/3.75 3/1.87 91.25

Total 10 1309 1232 26/1.99 48/3.67 0.23 94.12

TP and FN stand for true positive and false negative, respectively.
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g h

Figure 2 lllustrative examples from the test samples. (a) Fluorescent protein labelled E. coli cells captured with confocal microscope, (b)
Segmented result of (a), (c) Fluorescent protein labelled Staphylococcus cells in Epifluorescence microscopy image. (d) Segmented result of (c),
(e) Human HT29 Colon Cancer 1 image set (Source [8]), (f) Segmented result of (e), (g) E. coli cells captured with phase contrast microscope
(Source [11]), (h) Segmented result of (g).
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correspondence between manual and automated segmen-
tation is evident. The correlation coefficients for the listed
features were 0.98 (total cell intensity), 0.91 (cell length)
and 0.31 (cell width), respectively. The correlation of the
cell width feature is lower due to substantial inaccuracy in
the manual segmentation of this feature. The presence of
cells dividing was the other main cause for this error rate.

The cell segmentation accuracy of the algorithm is next
compared with three state-of-the-art cell image analysis
platforms, namely, Cellprofiler [8], Farsight [10], and
Schnitzcells [9]. For the comparison to be unbiased, test
samples were included from publicly available online
repositories [8-10]. A set of sample results is shown in
Figure 4. In general, we found the method proposed here
to outperform the others in segmentation accuracy.
Schnitzcells was the second best in E. coli segmentation
(Figure 5). To further compare the proposed method and
Schnitzcells we extended the evaluation. This additional
test is carried out using publicly available bench mark
images for cell counting [8]. The benchmark data con-
tains roughly 2162 human HT29 colon cancer cells in 6
images. The cells were manually labelled and scored by
two human observers and the average of the manual
score is considered the ground truth. The human label-
ling had a mean absolute deviation of 11% and the best
know result for this data set was attained by Cellprofiler,
with a mean absolute deviation of only 6.2% [8]. In this
benchmark data, our method exhibited a mean absolute
deviation of only 1.79%.

Finally, we consider the usability of the novel method.
In addition to accurate segmentation, the number of
parameters and a robust performance in the parametric
space are critical aspects of an accurate segmentation
method. Ideally, an automated method should have as
few free parameters as possible, and their tuning should
be intuitive. Also, the optimal range of parameters should
be large enough for tuning properly. Such ‘parametric
robustness’ is what enables the segmentation method to
be applicable to large scale analysis without the need for
significant effort regarding the parameter tuning.

The proposed method has only 4 free parameters for
tuning, namely, maximum cell size, scaling or resolution
level, decomposition level and threshold window size,
which affect the segmentation accuracy. The first three
are intuitive in the sense that the maximum cell size
can be estimated from knowledge of the phenotype of
the cells (or a quick observation of the test samples)
and microscope settings. The maximum scaling factor
should be smaller than the cell width and, finally, the
decomposition level should be less than the maximum
scaling factor.

The parametric robustness of MAMLE is studied in
10 sample images containing approximately 8000 cells.
It considers cell count as an objective metric for evalua-
tion. The result is shown in Figure 6. Figure 6 (top)
illustrates the effect of varying the scale level and the
decomposition level. The cell count is stable across a
wide range of the respective parameters. The results in
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Figure 4 Segmentation comparison result. Fluorescent protein labelled E. coli cells captured with confocal microscope, (b) Segmented result
of (a) by the proposed method, (c) Segmented result of (a) by Schnitzcells software, (d) Segmented result of (a) by the Farsight toolkit, (e)
Segmented result of (a) by Cellprofiler, (f) E. coli cells captured with phase contrast microscope(Source [9]), (g) Segmented result of (f) by the
proposed method, (h) Segmented result of (f) by Schnitzcells software, (i) Segmented result of (f) by the Farsight toolkit, (j) Segmented result of
(f) by Cellprofiler. Figures are labelled as follows: on the left side, from top to bottom, are figures a) to d). On the right side, from top to bottom,
are figures e) to j). This labelling is also indicated in the bottom left of the image.
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Figure 5 Comparison between the proposed method and Schnitzcells software. (a) Fluorescent protein labelled Staphylococcus cells in
Epifluorescence microscopy image, (b) Segmented result of (a) by the proposed method, (c) Segmented result of (a) by Schnitzcells software,

(d) Fluorescent protein labelled E. coli cells captured with confocal microscope (Source [9]), (€) Segmented result of (d) by the proposed method,
(f) Segmented result of (d) by Schnitzcells software, (g)) Fluorescent protein labelled E. coli cells captured with Epifluorescence microscope,

(h) Segmented result of (g) by the proposed method, (i) Segmented result of (g) by Schnitzcells software, (j) £. coli cells captured with phase
contrast microscope (Source [12]), (k) Segmented result of (j) by the proposed method, (I) Segmented result of (j) by Schnitzcells software.
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the Figure 6 (bottom) are obtained by varying the maxi- than the coefficient of variation of the input parameter
mum cell size. They indicate that this parameter affects ‘maximum cell size’ (0.32). Thus, it can be stated that the
the cell count in a linear fashion. Note that the coeffi- algorithm obtains robust cell detection results within a
cient of variation of cell count was much lower (0.057)  wide range of numerical settings of the free parameters.
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Figure 6 Parametric robustness. Top: Number of detected cells (color encoded, encoding scheme is shown on right side color bar) for
different combinations of edge detection resolution level (X-axis) and number of maximum threshold decomposition level (Y-axis). Bottom:
Number of cells detected for different values of the free parameter ‘length of the cell'
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The parameter, ‘threshold window size’ depends on the
spatial distribution of cell background and foreground
illumination levels. The largest possible window with
homogeneous illumination level is the optimum for this
parameter.

Conclusions and discussion

Automated cell segmentation with high accuracy is a
major challenge as well as a necessity towards high
throughput analysis in cell biology, whose research is
increasingly relying on in vivo single-cell studies. Here,
we presented a novel method for automatically segment-
ing cells within colonies from microscopy images. The
segmentation scheme exploits image de-noising techni-
ques in transform-domain followed by multi-resolution
edge detection and threshold decomposition for generat-
ing initial segmentation results. Then, a machine learning
procedure is carried out to learn morphological shape
parameters from the initial segmentation. Next, a likeli-
hood optimization based splitting and maximum likeli-
hood estimate based merging steps are executed to
construct the accurate segmentation result.

The method was primarily evaluated for segmenting
GEP labelled E. coli cells, but it was also tested for dif-
ferent cell types and imaging modalities. The test set
comprises both de novo data set as well as samples
from publicly available off-the-shelf benchmark data set.
The segmentation results were found highly accurate by
manual inspection, and denote high segmentation accu-
racy when compared with existing methods. The main
strength of MAMLE relies on its ability to segment
dense cell colonies as well as it robustness across a wide
range of imaging modalities of different cell types.

Relevantly, the parameter selection is limited to three
parameters, whose setting is intuitive. Either knowledge of
the cells’ morphology or a quick observation of the images,
along with knowledge on the magnification settings of the
microscope suffice to introduce parameter values that lead
to robust results. Nevertheless, the overall performance
was found robust to sub-optimal parameter settings as
well. A forth parameter, ‘threshold window size’, as dis-
cussed, should be obtained from the spatial distribution of
cell background and foreground illumination levels.

In the future, MAMLE can be extended in several
ways. One plausible improvement is to add the possibi-
lity of training the method beforehand and update the
trained knowledge base at runtime, rather than building
the entire knowledgebase at runtime. This may be of
use to research groups that focus on a specific organism
and desire close to optimal results without the need to
test the method and its parameters for each study.

Availability and additional materials
http://www.cs.tut.fi/~sanchesr/CellSegment/index.htm
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BM3D: Block-Matching and 3D filtering; FN: False Negative; GFP: Green
fluorescent protein; MAMLE: Multi-resolution Analysis and Maximum
Likelihood Estimation; NP-hard: Non-deterministic Polynomial-time hard; TP:
True positive.
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