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Abstract

Background: A cancer genome is derived from the germline genome through a series of somatic mutations.
Somatic structural variants - including duplications, deletions, inversions, translocations, and other rearrangements -
result in a cancer genome that is a scrambling of intervals, or “blocks” of the germline genome sequence. We
present an efficient algorithm for reconstructing the block organization of a cancer genome from paired-end DNA
sequencing data.

Results: By aligning paired reads from a cancer genome - and a matched germline genome, if available - to the
human reference genome, we derive: (i) a partition of the reference genome into intervals; (ii) adjacencies between
these intervals in the cancer genome; (iii) an estimated copy number for each interval. We formulate the Copy
Number and Adjacency Genome Reconstruction Problem of determining the cancer genome as a sequence of the
derived intervals that is consistent with the measured adjacencies and copy numbers. We design an efficient
algorithm, called Paired-end Reconstruction of Genome Organization (PREGO), to solve this problem by reducing it
to an optimization problem on an interval-adjacency graph constructed from the data. The solution to the
optimization problem results in an Eulerian graph, containing an alternating Eulerian tour that corresponds to a
cancer genome that is consistent with the sequencing data. We apply our algorithm to five ovarian cancer
genomes that were sequenced as part of The Cancer Genome Atlas. We identify numerous rearrangements, or
structural variants, in these genomes, analyze reciprocal vs. non-reciprocal rearrangements, and identify
rearrangements consistent with known mechanisms of duplication such as tandem duplications and breakage/
fusion/bridge (B/F/B) cycles.

Conclusions: We demonstrate that PREGO efficiently identifies complex and biologically relevant rearrangements
in cancer genome sequencing data. An implementation of the PREGO algorithm is available at http://compbio.cs.
brown.edu/software/.

Introduction
A cancer genome is derived from the germline genome
through a series of somatic mutations that accumulate
during the lifetime of an individual. These range in size
from single nucleotide mutations through larger struc-
tural variants (SVs), that duplicate, delete, or rearrange
segments of DNA sequence. These structural variants
may amplify genes that promote cancer (oncogenes) or
delete genes that inhibit cancer development (tumor

suppressor genes). In addition, rearrangements such as
translocations and inversions may change gene structure
or regulation and create novel fusion genes, with or
without concomitant changes in copy number [1]. Clas-
sic examples are the BCR-ABL fusion gene in chronic
myeloid leukemia and the activation of the MYC onco-
gene in Burkitt’s lymphoma via a translocation. Identifi-
cation of other common structural aberrations is
essential for understanding the molecular basis of cancer
and for developing cancer-specific diagnostic markers or
therapeutics such as Gleevec that targets BCR-ABL [2]
or Herceptin that targets ERBB2 amplification [3].
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However, many cancer genomes are aneuploid, contain-
ing extensive duplicated sequences, and are highly rear-
ranged compared to the germline genomes from which
they were derived. The organization of amplified regions
in cancer genomes is often highly complex with many
high copy amplicons from distant parts of the reference
genome co-localized on the cancer genome [4,5]. Esti-
mating the number of copies of these amplicons is
extremely difficult. Moreover, determining whether such
extensive rearrangements occurred over many cell divi-
sions or nearly simultaneously (e.g. chromothripsis) is
difficult [6].
DNA sequencing technologies have improved dramati-

cally over the past decade, and next-generation DNA
sequencing technologies now enable the sequencing of
large cohorts of cancer genomes [7,8]. However, all pre-
sent DNA sequencing technologies are limited in the
length of DNA sequences they produce with the most
affordable technologies producing reads less than 200bp
in length. De novo assembly of human, or other mam-
malian genomes, from this data remains a difficult task
[9]. This is primarily due to the presence of repeated
sequences in these genomes. De novo assembly of cancer
genomes is an even more daunting problem due to
complications of aneuploidy and heterogeneity described
above.
Because of these challenges, somatic mutations in can-

cer genomes are now typically analyzed through a rese-
quencing approach that relies on alignment of DNA
sequence reads to the human reference genome. Paired-
end sequencing technologies that generate paired reads
from a longer DNA fragment (or insert) allow the detec-
tion of all types of somatic structural variants. Paired
end mapping [10,11], or End Sequencing Profiling
[12,13], aligns paired reads from a cancer genome to the
reference human genome. The distance between the
aligned reads is computed. If this aligned distance is
close to the length of end sequenced fragments, as
determined by the distribution of fragment lengths, the
aligned pair of reads is referred to as a concordant pair.
If the aligned distance is far from the expected fragment
length (either shorter or longer) or if the orientation of
the aligned reads has changed, then the aligned pair is
referred to as a discordant pair. Clusters of discordant
pairs reveal novel adjacencies (or breakpoints) created
by somatic structural aberrations [13]. Numerous meth-
ods have been developed in the past few years to iden-
tify structural variants by paired end mapping [14-18]
and [19] review many of the recent techniques for
accomplishing this goal. In addition, when the sequen-
cing coverage is high, the number of aligned reads [20]
or concordant pairs [21] provides an estimate of the
number of copies of segments of the cancer genome.

In this paper we address the problem of reconstruct-
ing the organization of the cancer genome(s) present in
a cancer DNA sample from the adjacencies and copy
number information revealed by the concordant and
discordant pairs from a paired-end resequencing
approach. We define the Copy Number and Adjacency
Genome Reconstruction Problem, a general formulation
of the problem which we solve as a convex optimization
problem. Our approach adapts and generalizes techni-
ques that have been employed previously in genome
assembly [22-24], ancestral genome reconstruction and
genome rearrangement analysis in the presence of dupli-
cated genes [25], and prediction of copy number var-
iants [26]. In contrast to these works, we focus on the
particular features and challenges of cancer genome
reconstruction including a broad class of rearrange-
ments, aneuploidy, heterogeneity, and the availability of
an “ancestral” reference genome. We apply our algo-
rithm, called Paired-end Reconstruction of Genome
Organization (PREGO), for solving the Copy Number
and Adjacency Genome Reconstruction Problem to
simulated cancer genome data and to real sequencing
data from 5 ovarian cancer genomes from The Cancer
Genome Atlas (TCGA). We identify numerous rearran-
gements, or structural variants, in these genomes, ana-
lyze reciprocal vs. non-reciprocal rearrangements, and
identify rearrangements consistent with known mechan-
isms of duplication such as tandem duplications and
breakage/fusion/bridge (B/F/B) cycles.

Methods
Intervals, adjacencies, and cancer genome reconstruction
Suppose the cancer genome is derived from the germ-
line genome through a series of somatic rearrange-
ments. We perform paired-end DNA sequencing on a
cancer DNA sample S. We assume that the sample S
contains a genome sequence derived from the refer-
ence genome through some series of somatic structural
rearrangements of blocks of DNA (we are not consid-
ering single nucleotide mutations). From the align-
ments of paired reads to the reference genome, we
derive three pieces of information. First, we derive a
partition of the reference genome into a sequence of
intervals I = (I1, I2, ..., In). Each interval Ij = [sj, tj] is
the DNA segment from the positive strand of the
reference genome that starts at coordinate sj and ends
at coordinate tj. Since intervals also appear in the
opposite direction in a cancer genome (e.g. due to an
inversion), we denote by I-j = [tj, sj] the inverted DNA
segment. Second, concurrently with the definition of I,
we derive a set A of novel adjacencies in the cancer
genome. Each adjacency (Ij, Ik) indicates that the end tj
of interval Ij is adjacent to the start sk of interval Ik in
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the cancer genome. Thus
A ⊆ {(Ij, Ik)|j, k ∈ {±1,±2, . . . ,±n}}. The partition I
and associated set of adjacencies A are obtained by
clustering discordant paired reads whose distance or
orientation suggest a rearrangement in the cancer gen-
ome [13]. Any existing algorithm can be used to create
such input and therefore, the decision about what data
to use (i.e. ambiguous reads, split reads, read mapping
quality, etc) are part of upstream processing. Third, we
derive a read depth vector r = (r1, ..., rn)

T, where rj is
the number of (paired) reads that align entirely within
interval Ij. The read depth vector r is obtained by
counting concordant pairs in each interval [27].
Our goal is to reconstruct the block organization of

the cancer genome(s) in the cancer DNA sample S from
the interval, adjacency, and copy number information.
The block organization corresponds to a sequence Ia(1)
Ia(2) ... Ia(M) of M intervals where each a(j) Î {± 1, ..., ±
n}. We formulate the following problem.

Copy number and adjacency genome reconstruction
problem
Given an interval vector I, a set Aof cancer adjacencies,
and a read depth vector r derived from a cancer sample
S, find the cancer genome(s) that are most consistent
with these data.
The statement of this problem does not quantify

“most consistent”. Defining such a quantitative mea-
sure requires the consideration of several complicating
factors. First, the measurements of adjacencies A and
the partition I that they determine may be incomplete
or inaccurate. Second, many cancer genomes are
aneuploid, meaning that the copy number of many
intervals is above and below the diploid number of 2,
and thus the read depth vector may not accurately
represent the actual copy number of each interval in
the cancer genome. Finally, a cancer sample S consists
of many tumor cells, and each of these may contain
different somatic mutations. However, because most
tumors are clonal originating from a single cell, a
large fraction of the important somatic mutations will
be found in all cells of the cancer sample S. In this
paper, we assume that the cancer sample S is geneti-
cally homogenous so that we need only construct the
organization of one rearranged cancer genome. Below,
we formulate a specific instance of the Copy Number
and Adjacency Genome Reconstruction Problem that
considers the case of a single cancer genome with
errors in the set A of adjacencies, sequence I of inter-
vals, and the copy numbers must be inferred from the
read depth vector r. We defer the question of hetero-
geneity to future work. We first consider the case of
perfect data.

Copy number and adjacency genome reconstruction
problem: perfect data
We begin with the case that the data is complete and
error-free: thus, all cancer adjacencies A are correctly
measured, and we have correctly estimated the copy
number of each interval from the read depth vector r.
Also, for ease of exposition, we assume that the refer-
ence and cancer genomes each contain a single chromo-
some. Specifically, we define the interval count vector c
= (c1, c2, ..., cn)

T, where cj indicates how many times the
interval Ij occurs in S. Note that in general c is not
directly measured, but rather must be inferred from the
data, and we consider this extension in the next section.
We have the following problem.

Single chromosome copy number and adjacency genome
reconstruction problem
Given an interval vector I, a set Aof cancer adjacencies,
an interval count vector c, and the set
R = {(Ij, Ij+1) : j ∈ (1, . . . ,n − 1}}of reference adjacencies,
find a cancer genome Ia(1)Ia(2) ... Ia(M) satisfying:

1. for j = 1, ..., M - 1 either (Iα(j), Iα(j+1)) ∈ Aor
(Iα(j), Iα(j+1)) ∈ R.
2. For k = 1, ..., n, the total number of indices j with
a(j) = k or a(j) = -k is equal to ck.

To solve this problem, we introduce the interval-adja-
cency graph, which is derived from the interval vector I
and cancer adjacencies A (Figure 1). The interval-adja-
cency graph G = (V, E) is an undirected graph with ver-
tices V = {s1, t1, s2, t2, ..., sn, tn} and edges
E = EI ∪ ER ∪ EA. The set EI = {eI(j) = (sj, tj): j = 1, ..., n}
of interval edges connect sj to tj for each j. The set ER of
reference edges connect the ends of adjacent intervals in
the reference genome; i.e. ER = {(tj, sj+1): j Î {1, ..., n -
1}. The set EA of variant edges connect intervals that
are adjacent in the cancer genome, but are not adjacent
in the reference genome. These adjacencies are inferred
from the set of discordant pairs. Every a ∈ A defines a
variant edge. The interval, reference, and variant edges
in the interval-adjacency graph are analogous to the
gray, green, and black edges, respectively, in the break-
point graph used in genome rearrangement analysis
[25]. The interval-adjacency graph represents the set of
possible adjacencies of intervals in the reference genome
similar to how the gene order graph used in [28] con-
tains possible gene orderings. Although, in that case the
nodes of the graph represent genes and edges are gene
adjacencies. Note that any v Î V is incident to exactly
one interval edge Ij. Thus, we define eI(v) Î EI to be the
interval edge containing vertex v, and define eI(j) Î EI to
be the interval edge corresponding to interval Ij.
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Similarly, we define eR(v) ⊆ ER to be the reference edge
containing vertex v, if such an edge exists, and
EA(v) ⊆ EA to be the set of variant edges incident to
vertex v.

Now if the data I, A, and c are generated from an
unknown cancer genome generated by a series of rear-
rangements, duplications and deletions that do not alter
the chromosome ends (telomeres) s1 and tn, then the

Figure 1 Construction of the interval-adjacency graph. Construction of the interval-adjacency graph. Paired-end sequencing data partitions a
reference genome into intervals A, B, C, and D with associated copy numbers. These intervals and the measured adjacencies are used to build
an interval-adjacency graph. Deriving the appropriate multiplicities on this graph results in an Eulerian tour which reconstructs a cancer genome
consistent with the input data. Here, a possible reconstruction is A-B C D C D where -B indicates that the block is in the inverse orientation from
the reference genome. Another possible reconstruction is A B C D C D which results from the assignment of multiplicity 0 to some variant
edges.
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block organization of this cancer genome corresponds to
an alternating path through G beginning at s1 and end-
ing at tn that alternately traverses interval edges and
non-interval edges (i.e. reference/variant edges), and
where the number of times that each interval Ij is tra-
versed (in either direction) on the path is equal to cj
(Figure 1). We require an alternating path since traversal
of an interval edge is equivalent to selection of a block
from the reference genome, and traversal of a reference/
variant edge corresponds to a transition between blocks.
Therefore, such an alternating path spells out a
sequence of blocks from the reference genome. For-
mally, if we transform the interval-adjacency graph into
a multigraph where the multiplicity of each edge equals
the number of times it is traversed, then the multigraph
has an Eulerian tour, as in the repeat graph, or deBruijn
graph, in genome assembly algorithms [22,29].
Conversely, if we are given data I, A, and c then we

would like to infer an integer multiplicity μ(e) on each
edge e such that an alternating Eulerian path from s1 to
tn exists. We refer to s1 and tn as telomeric vertices and
denote by T = {s1, tn} the set of telomeric vertices. Find-
ing such an assignment of multiplicities can be formu-
lated as an integer linear program (ILP). In particular,
the restriction that the tour alternates between interval
edges and non-interval (reference/variant edges) means
that at each non-telomeric vertex v, the multiplicity of
the interval edge eI(v) must equal the sum of the multi-
plicities of the reference edge eR(v) and variant edges
eA(v). Telomeric vertices T = {s1, tn} are excluded from
this requirement since by definition they are only inci-
dent to an interval edge, but not incident to any refer-
ence or variant edges. This constraint imposes the
following copy number balance conditions on the multi-
plicities.

μ(eI(v)) = μ(eR(v)) +
∑

a:a∈EA(v)

μ(a),

∀v ∈ V\T .

(1)

The following theorem follows directly from (1) and
Kotzig’s Theorem for alternating Eulerian paths [30]
(see also [31]).
Theorem 1. Given a connected interval-adjacency

graph G = (V, E), there exists a function μ: E ↦ N satis-
fying the copy number balance conditions (1) if and only
if there exists a multigraph Gμ = (V, Eμ) with edge multi-
plicities μ containing an alternating Eulerian Tour
beginning at s1 and ending at tn.
Finding such a function μ is the Eulerization problem

and can be solved in polynomial time [24]. Applying the
above result with the additional constraint μ(eI(j)) = cj
for j = 1, ..., n provides an interval-adjacency multigraph
that contains an alternating Eulerian tour, corresponding

to a cancer genome consistent with the data I, A, and c.
In a later section, we extend Theorem 1 to the case of
multiple chromosomes by finding a set of alternating
tours.
In the case of perfect data, there is guaranteed to be a

solution to the Eulerization problem: one such solution
is the assignment of multiplicities that correspond to
the cancer genome. However, there is no guarantee on
the uniqueness of the solution, and other solutions -
including solutions that do not use all variant edges -
are possible. Figure 1 gives an example. In the case of
perfect data we could require that all variant edges are
assigned non-zero multiplicity, thus ensuring that all
variant edges from the cancer genome are used. How-
ever, in the case of imperfect data addressed below,
such constraints are not appropriate as we expect such
data to contain missing and false adjacencies due to dif-
ficulties in inferring adjacencies (structural variants)
from paired-end sequencing data.

Copy number and adjacency genome reconstruction
problem: imperfect data
The previous section considered the case where the
intervals I and adjacencies A were derived from a cancer
genome with no errors, and where the interval count
vector c was known. Now we consider the situation that
is presented by real data, where c is unknown and the
adjacencies A may be incorrect (with missing adjacen-
cies and/or false adjacencies). Instead of c, we are given
a (paired) read depth vector r = (r1,..., rn) derived by the
alignment of concordant paired reads to the reference
genome. Each entry rj is the number of concordant
pairs of reads that when aligned to the reference gen-
ome lie entirely within the interval Ij. We use a prob-
abilistic model to derive the most likely edge
multiplicities μ in the interval-adjacency graph.
Specifically, let L1, L2, ..., Ln be the lengths of intervals

I = (I1, I2, ..., In), and let LR =
∑n

i=1 Libe the length of the
reference genome. Let N =

∑n
i=1 ri be the total number

of concordant pairs that align within these intervals. Fol-
lowing the Lander-Waterman model, we assume that
the reads are distributed uniformly on the genome, so
that the number of reads that align to each interval fol-
lows the Poisson distribution with mean lj equal to the
expected number of reads that align to an interval Ij. Of
course, the Poisson distribution is an idealized assump-
tion, and it has been shown that read depth is more
accurately fit by a over-dispersed Poisson or negative
binomial model [21,32]. Nevertheless, the Poisson
assumption has proven useful for copy number variant
detection [26], and thus we use the Poisson model here,
postponing consideration of other distributions to later
work. We assume that the length of the cancer genome
is approximately equal to the length Lr of the reference
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genome and μj = μ(eI(j)) is the integer multiplicity
assigned to the interval edge Ij. In a genome without

any rearrangements, we expect
NLj
LR

concordant paired

reads to align within interval Ij (ignoring end effects).
Since humans are diploid, we need to rescale this value
to indicate the presence of two copies of interval Ij.
Therefore, we introduce a variable τ that represents the
expected number of copies of each interval in a non-
rearranged sample. Given τ, the expected number of
reads that align to an interval Ij appearing μj times in

the genome is λj

(μj

τ

)
=
NLj
LR

× μj

τ
. In general we set τ =

2, but we defer discussion of handling multiple chromo-
somes until the next section.
We define a convex optimization problem that finds

the maximum likelihood assignment of multiplicities
μ(e) to all edges e in the interval-adjacency graph G,
subject to the copy number balance conditions discussed
in the previous section. The likelihood function is the
product over all interval edges Ij of the Poisson prob-
ability of the observed number rj of concordant pairs
that align within interval edge Ij, which after taking the
negative logarithm and removing constant terms gives
us the (negative of) the likelihood function

Lr(μ) =
∑

j λj

(μj

τ

)
− rj log

(
λj

(μj

τ

))
. Thus, we have

the following formulation.

min
μ

Lr(μ) =
n∑
j=1

λj

(μj

τ

)
− rj log

(
λj

(μj

τ

))
(2)

subject to

μ(eI(v)) − μ(eR(v)) −
∑

a:a∈EA(v)

μ(a) = 0,

∀v ∈ V\T
(3)

Setting ĉj = μj gives the most likely multiplicity for the
interval Ij in the cancer genome.
Note that [26] derives a similar formulation to predict

germline copy number variants in human genomes,
using a different construction based on bidirected
graphs. Since human genomes are diploid, [26] add an
additional source/sink vertex s and add additional con-
straints that a flow of 2 be conserved across the graph.
In contrast, most cancer genomes are aneuploid and
might suffer deletions/duplications at the ends of chro-
mosomes, this additional constraint is not applicable.
We address this issue in the following section. [26] also
show that their formulation reduces to a network flow
problem that is solvable in polynomial time. The poly-
nomial time result relies on two properties: (1) the
objective function Lr(μ) is separably convex; (2) the con-
straints are totally unimodular [33].

The interval-adjacency graph has a corresponding
bidirected graph, and assignment of edge multiplicities
in the interval-adjacency graph is equivalent to assign-
ment of flow to the corresponding edges in the bidir-
ected graph. Thus, the problem formulation in (2) above
also reduces to a network flow problem that is solvable
in polynomial time. In particular, for an interval-adja-
cency graph, we obtain a corresponding bidirected
graph by adding orientation information to both ends of
all edges in the original interval-adjacency graph. Speci-
fically, for all interval edges (sj, tj) we assign a positive
direction to the end at vertex sj and a negative direction
to the end at vertex tj. For all reference edges (tj, sj+1)
we assign a positive direction to the end at vertex tj and
a negative direction to the end at vertex sj+1. For all the
variant edges (v1,v2) we assign a positive direction for all
v Î {v1,v2} such that v is a vertex of the form sj, and a
negative direction if v is a vertex of the form tj. We
directly transfer all constraints on edge multiplicities.
The problem formulation in (2) can now be equivalently
described as a network flow problem on the correspond-
ing bidirected graph since edge multiplicity assignment
can be viewed as equivalent to flow assignment. Due to
how we orient the bidirected edges, the copy number
balance conditions from (1) are also equivalent to
requiring that the amount of flow going into each vertex
is equal to the flow exiting the vertex.
The formulation above addresses the fact that sequen-

cing data does not directly give copy numbers of inter-
vals, but rather yields read depth, which we use along
with adjacencies to estimate copy number simulta-
neously across all intervals. However, another source of
error in the data are incorrect and missing adjacencies
in the set A. Incorrect adjacencies will subdivide inter-
vals and alter the read depths in each of these intervals.
Because our likelihood function considers both read
depth and adjacencies when determining edge multipli-
cities, our algorithm is somewhat robust to the presence
of incorrect adjacencies. Incorrect adjacencies that do
not alter the estimated copy numbers of intervals are
likely not to be used (i.e. the adjacency will be assigned
multiplicity μ = 0). Missing adjacencies will also affect
the local structure of the interval-adjacency graph near
the missing variant. In particular, all interval edges inci-
dent to the missing variant will be concatenated, and
the corresponding variant edge will not be present. In
most cases, we expect that the resulting reconstruction
will simply not contain the missing adjacency. However,
in other cases the missing adjacency may lead to addi-
tional errors in the reconstruction: for example the
cases where the missing adjacency leads to large differ-
ences in the estimated copy number of the merged
interval, or where the missing adjacencies overlaps with
other variants. Our objective function (2) does not
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attempt to maximize the usage of variant edges, instead
allowing the copy number estimates to determine
whether variant edges are used are not. Defining an
appropriate objective function that includes both copy
number balance and scoring of variant edges is left for
future work.

Extensions: multiple chromosomes and telomere loss
We generalize the formulation above to handle two
additional features of real data: (1) the reference and
cancer genomes have multiple chromosomes, and (2)
ends of chromosomes (telomeres) may be deleted in the
generation of the cancer genome. First, to address the
case of multiple chromosomes, we build a multichromo-
somal interval-adjacency graph G = (V, E) where the
interval and reference edges are the union of interval
and reference edges in the unichromosomal interval-
adjacency graph, respectively. The variant edges EA are
derived from the set A of adjacencies that connect
intervals that are adjacent in the cancer genome, but
not in the reference genome. These adjacencies are
inferred from the discordant pairs, and now can include
adjacencies between different chromosomes; e.g. those
resulting from a translocation. The set T of telomeric
vertices is the union of telomeric vertices of each chro-
mosome, and consequently |T | is even. We now revise
Theorem 1 to multi-chromosomal genomes, where we
now decompose the interval-adjacency graph into a set
of alternating tours.
Theorem 2. Given an multichromosomal interval-

adjacency graph G = (V, E) with telomeric vertices T ,
there exists a function μ: E ↦ N satisfying the copy num-
ber balance condition (1) for all v ∈ V/T if and only if
there exists a multigraph Gμ = (V, Eμ) with edge multi-
plicities μ containing a set of edge-disjoint alternating
tours that each begin and end at vertices inT , and
whose union is Eμ.
A second feature of cancer genome data is that telo-

meres of the reference genome may be lost. In this case,
the set T of telomeric vertices contains vertices other
than the starts and ends of each chromosome of the
reference genome. De novo telomere loss does not pro-
duce novel adjacencies in the cancer genome, and thus
requires examining the read depth along the genome to
find changes in concordant coverage, as used in read
depth methods for copy number variant prediction [21].
Additionally, non-reciprocal translocations or breakage/
fusion/bridge cycles produce novel adjacencies in the
cancer genome and thus the drop in concordant cover-
age will be apparent over adjacent intervals in I. We use
a heuristic which determines the relative ratio of con-
cordant reads to interval length between intervals to
determine these drops in concordant coverage, and if at
least one such case is found, we add an additional vertex

s to the interval-adjacency graph and to the set T of
telomeric vertices. We also add variant edges from s to
the incident interval edge of the loss.

Results
We ran our PREGO algorithm on both simulated data
and real sequencing data. We solve the convex optimi-
zation formulation in Equation (2) with CPLEX 12.1,
using a piecewise linear approximation of the log term
in the objective function, thus transforming the problem
into an Integer Linear Program (ILP). Note, we use
CPLEX rather than the efficient network flow algorithm
discussed in a previous section as there is no good
implementation of the later for bi-directed graphs.

Ovarian sequencing data
We analyzed DNA sequencing data from 5 ovarian can-
cer genomes and matched normal samples that were
sequenced as part of The Cancer Genome Atlas
(TCGA) (Table 1 and Additional file 1). Each sample
was sequenced at 30x coverage using Illumina paired
end technology with read length of 36bp. We down-
loaded the BAM files containing aligned reads from
TCGA Data portal, and used the GASV algorithm [14]
to cluster discordant pairs from each sample and from
the matched normal using only those paired reads with
mapping quality ≥ 30 in the BAM file. We then
removed any clusters of discordant pairs that contain
paired reads from both the tumor sample and the
matched normal. In this way, we focus on somatic rear-
rangements. We also require that the discordant clusters
are: (1) at least 1Mb away from the centromeres as
annotated in the UCSC Genome Browser; (2) that they
have a minimum number (either 5 or 10 as indicated
below) of supporting discordant pairs; (3) introduce
intervals no smaller than 8Kb in the interval sequence I.
Restricting the lengths of the intervals in I allows for a
better estimation of read depth, which is obtained by
counting the number of concordant pairs within each
interval Ij. We also restricted our analysis to the 22
autosomes. Table 1 gives the results of our algorithm
when the cancer adjacencies A are restricted to those

Table 1 Ovarian dataset statistics

Dataset ID # Var Edges (Used)

OV1 TCGA-13-0890 771 (499)

OV2 TCGA-13-0723 562 (268)

OV3 TCGA-24-0980 311 (172)

OV4 TCGA-24-1103 340 (218)

OV5 TCGA-13-1411 389 (255)

Statistics of inferred interval-adjacency graphs for 5 ovarian genomes when a
minimum of 5 discordant pairs are required to add a variant edge to the
graph. A variant edge e is used if μ(e) > 0.
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with at least 5 discordant pairs supporting each adja-
cency. The possible number of variants is quite large,
and given the high rates of false positives with structural
variant prediction [19,34] many of these are not likely to
be real variants. Since we are lacking a set of validated
structural variants for these ovarian cancer genomes, we
examine in the next section features of the interval-adja-
cency graph that might help distinguish true variants.
Reciprocal vs. non-reciprocal variants
Each measured adjacency in A ∈ A represents the result
of cutting the reference genome at two locations, result-
ing in four free “ends” of two pairs Ip:Ip+1 and Iq:Iq+1 of
interval edges. Two of these ends are then pasted
together in the cancer genome. In some cases, e.g. an
inversion or a reciprocal translocation, there is a corre-
sponding partner adjacency A’ that joins together the
other two free ends of the intervals. Note that the
GASV algorithm [14] clusters discordant pairs to iden-
tify partner adjacencies, when present. Thus, we distin-
guish two types of variant edges in the interval-
adjacency graph: non-reciprocal edges, and (pairs of)
reciprocal edges. Figure 2 shows examples of both types
of edges, including reciprocal and non-reciprocal inver-
sions and translocations. Moreover, following the cyto-
genetic nomenclature, we distinguish two types of
translocations: classical translocations that preserve the
orientation of both chromosomes and Robertso-nian
translocations that switch the orientation of one
chromosome.
Thus, as a first step in evaluating the solutions pro-

duced by our algorithm, we examined the frequency
with which reciprocal edges were used in the resulting
interval-adjacency graph (i.e. the corresponding variant
edge has inferred multiplicity > 0) versus the frequency
with which non-reciprocal edges were used (Table 2).
Note that reciprocal edges may be used in the following

“trivial” way. If the inferred multiplicities on the two
variant edges are both equal (i.e. μ(A) = μ(A’) = k) and
the inferred multiplicities of each pair of interval edges
surrounding the corresponding breakpoints are also
equal (i.e. μ(Ip) = μ(Ip+1) and μ(Iq) = μ(Iq+1)) then the
objective function (2) of the ILP is unchanged if one
sets μ(A) = μ(A’) = 0 and increases the edge multiplicity
of the incident reference edges by k, thus removing the
variant edges from the graph (Figure 2). We define reci-
procal variant edges that satisfy this condition as trivial
and those that do not satisfy this condition as non-tri-
vial. Note that non-reciprocal variant edges have no
equivalent trivial definition as altering the multiplicity
assigned to a non-reciprocal variant edge would force a
corresponding change in the multiplicity assigned the
incident reference edges to maintain the copy number
balance condition at the vertices of the variant edge.
This change, however will cause the vertices at either
end of the references edges to become unbalanced.
We analyzed the output of our algorithm for recipro-

cal (non-trivial) edges and non-reciprocal variant edges.
For each type of reciprocal variant (inversions, classical
translocations and Robertsonian translocations) we
tested whether there was an association between a var-
iant edge being used vs. unused, and reciprocal vs. non-
reciprocal, using Fisher’s exact test. We find that in
most cases there is a statistically significant association,
with a larger fraction of (non-trivial) reciprocal variant
edges being used than non-reciprocal variant edges
(Table 2). We surmise that the observed significant
association between reciprocal variants and their use in
the solution obtained by our method is an indication
that it may be easier to satisfy the copy number balance
conditions for vertices associated with a reciprocal var-
iant. In particular, we may only use a non-reciprocal
variant if additionally the concordant coverage on the

Figure 2 Reciprocal and non-reciprocal variant edges. Two classes of variant edges in the interval-adjacency graph. Reciprocal variants are
pairs of variant edges incident to the same four interval edges (Ip, Ip+1, Iq, Iq+1), while non-reciprocal variants are the cases where only a single
variant edge is incident to the four interval edges defined by the variant edge. A trivial reciprocal variant has equal inferred multiplicities: μ(A) =
μ(A’), μ(Ip) = μ(Ip+1), and μ(Iq) = μ(Iq+1).
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surrounding intervals is indicative of a possible change
in copy number. In this respect, non-reciprocal variant
edges that are used may represent structural variants
whose signature is supported by both read depth and
discordant read pairs.
Reconstructed variants
In this section, we give several examples of recon-
structed variants in the OV genomes. First, we show
two cases of reciprocal translocations, one trivial and
one non-trivial, demonstrating that in some cases we
may infer possible ordering of rearrangements -for
example a translocation preceding a duplication (Figure
3).
We also find subgraphs of the interval-adjacency

graph that suggest particular mechanisms of aberrant
DNA repair in cancer genomes. In particular, Figure 4
shows part of the interval-adjacency graph of the proxi-
mal arm of chromosome 18 in sample OV2. We identify

highly amplified intervals that are incident to a loop var-
iant edge that also has high multiplicity. Loops in the
interval-adjacency graph are indication of inverted dupli-
cations, a signature of breakage/fusion/bridge cycles, a
known source of genome instability in cancer genomes
[35]. Oncogenes YES1 and TYMS appear in this ampli-
fied region, and both have been implicated in ovarian
cancer [36,37].
We also find tandem duplications on Chr2 of both

OV2 and OV3 (Figure 5). Recently, a tandem duplica-
tion signature was reported in SNP data from Ovarian
TCGA samples as well as in a pair of cell lines [38]. In
particular, the cell line data included tandem duplica-
tions on Chr2. In the interval-adjacency graph, the
location of these tandem duplications on the homologs
of Chr2 are ambiguous. For example, OV2 has two
copies of the variant edge, which may be one tandem
duplication present on both copies of Chr2 or two

Table 2 Statistical tests for variant edges

Reciproc al vs. N on Reciprocal Variant Edges

Dataset VariantType R(all) R̄ (all) R(non-triv) R̄ (non-triv) NR NR p-Val

OV1 T 179 41 75 13 9 58 < 1E-15

OV1 I 46 20 16 12 2 29 3.46E-5

OV1 TO 210 46 70 16 9 38 2.79E-12

OV2 T 77 51 41 23 12 49 5.17E-7

OV2 I 21 15 9 5 10 21 0.057

OV2 TO 96 64 46 18 15 44 2.63E-7

OV3 T 61 13 19 3 6 30 2.111E-7

OV3 I 19 13 5 5 2 13 0.075

OV3 TO 58 26 22 8 7 28 1.92E-5

OV4 T 74 16 40 6 12 35 1.54E-9

OV4 I 10 0 2 0 3 12 0.073

OV4 TO 48 22 22 10 12 26 0.0036

OV5 T 93 19 29 7 8 37 2.30E-8

OV5 I 12 8 2 0 6 13 0.13

OV5 TO 82 26 22 8 7 34 2.29E-6

Results of Fisher’s exact test showing that non-trivial reciprocal edges are more likely to be used (assigned a multiplicity μ > 0) in the interval-adjacency graph
than non-reciprocal variant edges when a minimum of 5 discordant pairs is required to add a variant edge to the graph. Variant edges are classified as Inversion
(I), Translocation (T), and Robertsonian Translocation (TO). Each variant edge is also classified as either reciprocal or not and by whether it is used (μ > 0) or not
used (μ = 0). We report the number of edges of the following types: used reciprocal edges (R(all)), non used reciprocal edges (R̄ (all), used reciprocal non-trivial
(R(non-triv)), not used reciprocal non-trivial (R̄ (non-triv)), used non-reciprocal (NR), and not used non-reciprocal (NR ).

Figure 3 Reciprocal translocations in OV5. Examples of reciprocal Chr3/Chr7 (left) and Chr1/Chr3 (right) translocations in OV5. The Chr3/Chr7
translocation has the same multiplicity on the variant edges (red stars) as well as on the corresponding pairs of incident interval edges making
it trivial. The Chr1/Chr3 translocation has different multiplicities on the variant edges (green stars) and is therefore non-trivial. In the Chr1/Chr3
translocation there is a single copy of Chr1 that does not use any variant edges, suggesting that only one copy of Chr1 is involved in the
translocation, and that duplication of one of the translocated chromosomes occurs subsequent to the translocation.
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tandem duplications present on one copy of Chr2.
OV3 has two different locations where tandem dupli-
cations occur, one of which is within 2Mb of the
duplicated region on OV2. All three of these tandem
duplications occur with 4Mb of a duplication reported
in [38] and one duplicated region in OV2 includes sev-
eral cancer associated genes including PLB1, PPP1CB,
ALK [39-41].

Simulated data
We tested our algorithm on simulated data to determine
how robust the reconstructed interval-adjacency graphs
are to various errors in the input data. Errors in the
input data arise from a number of sources, and we stu-
died the effect of two types of errors on the perfor-
mance of a simulated sequence: sample contamination
and read depth estimation error. We begin by construct-
ing a cancer genome C = Ia(1)Ia(2) ... Ia(M) consisting of
200 novel adjacencies: 100 homozygous deletions and
100 heterozygous deletions distributed over 22 auto-
somes (similar to the ovarian cancer genomes we ana-
lyzed in the previous section). The lengths of the
deletions are sampled from a normal distribution with
mean 10Kb and standard deviation 1Kb. From C we
identify the sequence of intervals I. We introduce 50
additional “false” adjacencies, where each false adjacency
simply partitions an interval in I into three subintervals
and adds a corresponding false deletion adjacency to the
set A. We then simulate 30x physical coverage of

paired-end sequencing by sampling uniformly from C
the starting positions of intervals, called read-intervals.
We sample the length of these intervals from a normal
distribution with mean 200 and standard deviation 10.
We compute the resulting read depth rj for each interval
Ij.
Tumor samples are often a mixture of cells from the

tumor itself and cells from non-cancerous cells. To
model this type of error, we sample some proportion r
of the read-intervals from the corresponding reference
genome (i.e. the sequence of intervals I1I2 ... In), and
sample (1 – r) of the read-intervals from the cancer
genome C. Additional noise in the read depth estima-
tion occurs due to experimental error (such as sequen-
cing errors and alignment errors due to repetitive
sequences in the reference genome) when estimating rj.
Thus, we add Gaussian noise to each rj drawn from
N (0,φrj). We use jrj rather than a single variance para-
meter to adjust the noise model for intervals with differ-
ent read depths.
We ran our algorithm on the simulated datasets with

error parameters r and j and counted the number of
edges in the interval-adjacency graph where the pre-
dicted multiplicity is the same as the correct multiplicity
and averaged the results over 10 trials (Figure 6). The
percent of correct edges drops by at most by 40%. Most
of the errors made as the read depth variance j
increases are that heterozygous deletions are incorrectly
called either homozygous no deletion (Figure 6).

Figure 4 BFB cycle on Chr18 in OV2. Example of a Breakage/Fusion/Bridge Cycle on Chr18 in OV2. The first two Mb of Chr18 (starting in the
upper left) is highly amplified, and this high multiplicity continues until the self-loop at Chr18:1887171 (blue star), which indicates an inverted
repeat.

Figure 5 Tandem duplications on Chr2 in OV2 and OV3. Tandem duplications found on Chr2 in OV2 and OV3. OV2 has a single site of
tandem duplication, while OV3 has two sites of tandem duplication. Note that the region duplicated in OV2 is much larger than the region
duplicated on OV3, and the duplicated region in OV2 contains several cancer associated genes including PLB1, PPP1CB, ALK [39-41].
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Discussion
The PREGO algorithm presented here combines copy
number and adjacency information from paired-end
sequencing data to infer cancer genome organization.
However, the algorithm does not consider all the issues
involved in real cancer sequencing data. In particular,
we assume that structural variants can be identified by
mapping of discordant paired reads, but this is difficult
for structural variants in repetitive regions of the human
genome [15,17]. Thus, there may be missing or incorrect
adjacencies in the data. Similarly, estimates of read
depth are difficult to obtain in repetitive regions [21].
While some of these issues may be addressed computa-
tionally, the more difficult cases will require longer
reads and/or longer fragments for paired reads.
Beyond the issues with data quality are limitations on

the inferred organization. While we derive multiplicities
on the edges using adjacency and copy number data, we
do not resolve the resulting paths through the interval-
adjacency graph, except in simple cases. In many datasets,
there will be many such paths and therefore many recon-
structions of the cancer genome that are consistent with
the data. Even the solution for the estimated edge multipli-
cities may not be unique. Resolving such longer paths
requires additional information about connections
between consecutive adjacencies, and such information is
generally not available unless the distance between conse-
cutive adjacencies is within the length of a read/fragment.
In addition, the interval-adjacency graph does not contain
allele-specific information about copy number variants, as
considered in other work [35]. Finally, we assume that a
cancer sample contains a single genome, when in fact
most cancer samples contain DNA from a mixture of
tumor cells, each with potentially different somatic muta-
tions. It is possible that some of this intratumor heteroge-
neity could be resolved computationally. Alternatively,

DNA sequencing of single cells, or smaller pools of cells,
will minimize these effects.
An additional area of investigation is to infer the tem-

poral history of rearrangements. In the case of copy-neu-
tral rearrangements, inferences can be made using
parsimony models such as Hannenhalli-Pevzner theory
[42]. This approach has previously been used in cancer
genome analysis [13]. Models have also been introduced
to infer orders of mutations in cases where there is inter-
action between duplications and rearrangements [43] and
duplications and single-nucleotide mutations [35,44].

Conclusions
We formulated the Copy Number and Adjacency Gen-
ome Reconstruction Problem of reconstructing a rear-
ranged cancer genome and developed an efficient
algorithm, called Paired-end Reconstruction of Genome
Organization (PREGO), for a particular instance of this
problem. We designed an optimization problem on the
interval-adjacency graph, which is related to the break-
point graph used in genome rearrangement studies. We
applied our algorithm to 5 ovarian cancer genomes
sequenced as part of The Cancer Genome Atlas (TCGA)
and reconstruct structural variants in these genomes. We
analyzed the patterns of reciprocal vs. non-reciprocal
rearrangements, and identified rearrangements consistent
with known mechanisms of duplication such as tandem
duplications and breakage/fusion/bridge cycles.

Additional material

Additional file 1: Figures of the interval-adjacency graph derived
for all 5 ovarian genomes analyzed when cancer adjacencies Aare
restricted to those with at least 10 discordant pairs supporting
each adjacency.

Figure 6 Simulations. Effect of sample contamination and read depth estimation errors on a simulated cancer genome. j is a scaling factor for
the variance; for example j = 400 means that the noise model has a standard deviation 20 times rj for interval Ij. We show the average percent
of interval edges (left) and reference and variant edges (middle) correctly estimated over 10 trials. (Right) At r = 0, as j increases most of the
errors result from variant edges moving from the correct multiplicity of 1 (heterozygous deletion) to a multiplicity of 2 (homozygous deletion).
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