Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

BMC
Bioinformatics

RESEARCH Open Access

GIDL: a rule based expert system for GenBank
Intelligent Data Loading into the Molecular
Biodiversity database

Paolo Pannarale®, Domenico Catalano?, Giorgio De Caro', Giorgio Grillo', Pietro Leo®, Graziano Pappada’,
Francesco Rubino®, Gaetano Scioscia®, Flavio Licciulli'

From Eighth Annual Meeting of the Italian Society of Bioinformatics (BITS)
Pisa, Italy. 20-22 June 2011

Abstract

Background: In the scientific biodiversity community, it is increasingly perceived the need to build a bridge
between molecular and traditional biodiversity studies. We believe that the information technology could have a
preeminent role in integrating the information generated by these studies with the large amount of molecular
data we can find in bioinformatics public databases. This work is primarily aimed at building a bioinformatic
infrastructure for the integration of public and private biodiversity data through the development of GIDL, an
Intelligent Data Loader coupled with the Molecular Biodiversity Database. The system presented here organizes in
an ontological way and locally stores the sequence and annotation data contained in the GenBank primary
database.

Methods: The GIDL architecture consists of a relational database and of an intelligent data loader software. The
relational database schema is designed to manage biodiversity information (Molecular Biodiversity Database) and it
is organized in four areas: MolecularData, Experiment, Collection and Taxonomy. The MolecularData area is inspired
to an established standard in Generic Model Organism Databases, the Chado relational schema. The peculiarity of
Chado, and also its strength, is the adoption of an ontological schema which makes use of the Sequence
Ontology.

The Intelligent Data Loader (IDL) component of GIDL is an Extract, Transform and Load software able to parse data,
to discover hidden information in the GenBank entries and to populate the Molecular Biodiversity Database. The
IDL is composed by three main modules: the Parser, able to parse GenBank flat files; the Reasoner, which
automatically builds CLIPS facts mapping the biological knowledge expressed by the Sequence Ontology; the
DBFiller, which translates the CLIPS facts into ordered SQL statements used to populate the database. In GIDL
Semantic Web technologies have been adopted due to their advantages in data representation, integration and
processing.

Results and conclusions: Entries coming from Virus (814,122), Plant (1,365,360) and Invertebrate (959,065) divisions
of GenBank rel.180 have been loaded in the Molecular Biodiversity Database by GIDL. Our system, combining the
Sequence Ontology and the Chado schema, allows a more powerful query expressiveness compared with the
most commonly used sequence retrieval systems like Entrez or SRS.

* Correspondence: flavio licciulli@ba.itb.cnr.it

TInstitute for Biomedical Technologies (ITB), National Research Council (CNR),
Bari, 70100, ltaly

Full list of author information is available at the end of the article

- © 2012 Pannarale et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
(B.oMed Central Commons Attribution License (http/creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:flavio.licciulli@ba.itb.cnr.it
http://creativecommons.org/licenses/by/2.0

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

Background

We are living an historical moment characterized by deep
changes in the life sciences due to the widespread use of
new technologies. The huge production of molecular
data obtained by high-throughput technologies are mov-
ing the research groups from “reductionist approach” to
“holistic approach” studies.

For example, in the biodiversity domain, several
researchers analyze molecular data obtained by high-
throughput DNA sequencing technology and compare
them with morphological and geographical data obtained
by classical methods [1,2].

So new challenges arise in biology and the need for
transforming large volumes of raw data into usable
knowledge about our world and its inhabitants emerges.
This transformation poses significant challenges that
necessitate the assistance of automated methods. The
organization of biological information from an array of
resources into consolidated knowledge bases for subse-
quent archival and research purposes is a significant
informatics task. Recent advances in information technol-
ogy are creating a revolution in the way the biology data
are organized, stored, integrated and distributed towards
the development of testable hypotheses [3,4]. Several
informatics efforts have been made to integrate molecu-
lar data stored in the National Center for Biotechnology
Information (NCBI) [5] with other molecular public data-
bases, or with public biodiversity data resources, as in the
case of Global Biodiversity Information Facility (GBIF)
[6], where the primary biodiversity data are correlated to
the metadata and other information.

The centralization of heterogeneous data into a single
resource is one of the possible solution as it can enable
a range of comparative studies, can help the integration
of locally produced data with bioinformatics public data-
bases and can facilitate the computation of millions of
data records carried out by modern bioinformatic
software.

In the bioinformatics community, centralized systems
like the Entrez system [7] at NCBI or SRS [8] at EBI pro-
vide access to biomedical information across many
resources. Anyway, when researchers need a large
amount of molecular data for their studies, public pri-
mary databases are an endless source of information,
though difficult to harvest in case of large sets of
sequences or entries. In fact, querying over the “net” has
the disadvantage that large queries may take a long time
to complete or may not return any results due to server
or network resource restrictions.

To overcome this issue we have built an intelligent
loading system (GIDL) that allows to extract, transform
and store data in a target database schema, implementing
a knowledge base constituted by public NCBI GenBank
[9] entries including all entries from the International

Page 2 of 14

Nucleotide Sequence Database Collaboration-INSCD
(DNA Data Bank of Japan-DDBJ [10], NCBI-GenBank
and the European Molecular Biology Laboratory-EMBL
[11] databases). Moreover, using Semantic Web technol-
ogies, the software is able to discover hidden information
in the sequence entries. The combined use of semantics,
ontology and information extracted from GenBank
allows to perform more powerful query expressiveness in
order to run advanced computational analyses.

Other similar applications are available in the bioinfor-
matics community, like Biospida [12] or various data
integration tools based on a data-warehouse approach,
like Atlas [13] and BioWarehouse [14]. The advantage
of our system is the use of a semantic approach not
only to represent data extracted from the entries but
also to infer and store new information useful to facili-
tate and increase the data retrieval capabilities.

The system described in this paper addresses some of
the aims of the Molecular Biodiversity Laboratory
(MBLab) project [15], a private-public initiative funded
by the Italian MIUR (Ministry of Education, University
and Research). Briefly, the project goal is the integration
of biodiversity data coming from private collections or
research activities with molecular data available in pri-
mary databases like GenBank.

Methods

The overall GIDL architecture is composed by the Target
Database Schema, dedicated to store ontology-driven
information extracted from GenBank, and by the Intelli-
gent Data Loader (IDL), the core component which
parses, adds semantics and populates the database. Most
of the software implementation has been done in JAVA
language, whereas we used Relational Database Manage-
ment System (DBMS) to implement the Target Database
Schema.

Target database schema

A relational data model is used to represent all the infor-
mation extracted from GIDL. The schema is designed
considering all the biological entities involved in the
molecular biodiversity domain. In this paper we refer to
the Target Database Schema as Molecular Biodiversity
Database schema. It encompasses four main areas: Mole-
cularData, Experiment, Collection, Taxonomy. This
schema is a part of a more extensive logical schema built
by our group, in the MBLab project, to store and inte-
grate public and private biodiversity data.

As depicted in Figure 1, the core entity of the schema
is the “Individual”, a material living entity. It is consid-
ered as a central element, linking all information and
representing a biological entity characterized by several
information (experiments, sequences, observations, etc.).
The Individual is an entity that can be collected and

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

Page 3 of 14

Taxonomy

Individual

Collection

Experiments

ME)
2 A%

Collection and Taxonomy.

Figure 1 High-level view of the database schema. The relational schema is logically composed by four sections: MolecularData, Experiments,

g Molecular data A

b Sequence Ontology 4

N —_——-

stored in physical collections (e.g., a specimen in a
museal collection, an accession of the seed in a gene-
bank or a strain in a culture collection), where each
instance of the Individual is labelled according to an
official taxonomy. For example, an individual can be the
source material for an experiment that can lead to mor-
pho-phenotypic data, computational data, fragment pro-
files, chemical essays and sequencing data. A detailed
representation of the relational schema is available at
the MBLab project site [15].

The Molecular Biodiversity Database schema design is
inspired by international standards used in the molecular
biodiversity domain. The BOLD Barcode of Life Data
System (BOLD) [16] schema has been used to represent
taxonomic and collection data, while the MolecularData
area is inspired to an established standard in Generic
Model Organism Databases (GMOD) [17], the Chado
[18] relational schema. The peculiarity of the Chado
schema, and also its strength, is the use of an ontological
schema. As ontological schema we mean a simple rela-
tional design in which entities and relationships have
common relations. Individuals and entities, each one
with different attributes and relationships, like genes,
promoters, or repeated regions, are stored in the same
table and labelled by the corresponding ontological
terms. Also the relationships are stored in a common
table, whereas attributes are stored in a separate table
and linked to the entity table. The choice of this design is
motivated by the nature of the biological domain, in
which entities, attributes and relationships are really
fickle, and such a rate of updates to the schema may be
unsustainable or not convenient; but this comes at a
price, the incapability to define constraints and to ensure
consistency. These constrains are defined in the ontology,
the formal representation of the knowledge domain, but
implementing them in the relational environment goes

beyond relational standard means. In fact, in a usual rela-
tional schema, each entity and relationship (e.g., gene,
CDS, promoter and gene/CDS relationship) have a dedi-
cated table. This design does not allow the definition of a
promoter as part of a CDS, due to the constraints
imposed by the schema. In our system, the schema-by
itself-may allow the definition of a biologically incorrect
relationship (e.g. CDS as part of a promoter), but GIDL,
that populates the database instance, ensures data consis-
tency granting only the relationships defined by the
ontology.

In order to represent the semantic information related
to biological sequences, Chado makes use of the
Sequence Ontology (SO) [19], an accurate and continu-
ous enrichment ontology belonging to the Open Biome-
dical Ontologies (OBO) consortium [20]. The SO was
begun in 2003 as a means to provide terms and relation-
ships to describe biological sequences; its main purpose
is the unification of the vocabulary used in genomic
annotations. SO provides a common set of terms and
definitions that facilitate the exchange, analysis and man-
agement of genomic data. Because SO treats part-whole
relationships rigorously, it can be used as a substrate for
automated reasoning and instances of sequence features
described by the SO can be subjected to a group of logi-
cal operations known as extensional mereology operators
(EM) [21]. The SO was initially divided into aspects to
describe the features of biological sequence and the attri-
butes of these features. A sequence feature is a region or
a boundary of a sequence that can be located through the
coordinates on the biological sequence.

The proposed Molecular Biodiversity Database
schema, according to Chado concepts, uses the same
table for all different types of features, and uses the SO
as a typing system, that is, it stores sequence features
replaced by the corresponding SO terms. Sequence

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

features info, SO terms and sequence features/SO terms
mapping are stored in three different tables; the use of
the latter guarantees that any future mapping change
will not impact the sequence features and SO terms
tables. Other sequence annotations (attributes) are
stored in another table and mapped to SO too. In the
schema implementation, each SO term is represented as
a record in the OntologyTerm table. Another important
table is the SequenceFeature table: its identifier constitu-
tes a foreign key for tables storing feature annotations,
feature evidences and relationships between annotations
and evidences.

SO, through the part_of relationship, uses a subsump-
tion hierarchy to describe the feature types and a mer-
onomy (a type of hierarchy which deals with part-whole
relationships) to describe their part-whole structures
[19,21]. Features are related by their genomic position,
e.g., polypeptides and transcripts are described by their
genomic context.

The ontological organization of the data is made per-
sistent in the CVPath table, that is part of the CHADO
schema. It implements a transitive closure (pre-com-
puted at setup time by an OWL reasoner) of the is_a
relationship, thus allowing to retrieve items by a sub-
sumption inference (e.g., when asking the database for
all the features labelled as “genes”, we will also retrieve
the ones labelled as “mitochondrial genes”).

The relational approach behind the design of the
schema allows the use of any relational Database Man-
agement System (DBMS). In our prototype the Molecu-
lar Biodiversity Database schema is implemented in the
IBM DB2 DBMS. So the query system performance of
the prototype takes advantages of the DB2 performances
due to the advanced indexing and storage capabilities.

Intelligent data loader

GenBank sequence and feature data are populated in the
Molecular Biodiversity Database by an Extract, Transfor-
mation and Loading (ETL) software we designed and
implemented named Intelligent Data Loader (IDL). It is
able to parse and add semantic information to the Gen-
Bank entries. IDL is composed by three main modules:
the Parser, the Reasoner and the DBFiller.

Architecture

IDL architecture, as shown in Figure 2, is composed by
three different applications: the data loader, the job ser-
ver and a relational DBMS.

The job server indexes a local copy of the flat files to
be loaded and draws up a list of entries, each one with
an associated state: ready, pending, loaded. It performs
the following operations: creates the list of jobs, returns
a job to be executed, marks a job as completed, writes
the list of completed jobs, re-adds jobs dispatched but
not completed to the “to-do” list.

Page 4 of 14

The creation of the job list consists of a set of records
(jobs or entries) each one keeping the information about
the seek position of the entry first line in the flat file
(each flat file contains many entries), the seek position
of the first nucleotide of the sequence and the current
GenBank GI number of the entry.

When the client asks for a new job, some pieces of
data are sent to it via socket communication and the
job is set in the pending state. When the DBThread
component finishes to process the entry, it sends a
“completed” message to the server and the job can be
set in the completed state. The DBFiller, once in a while
sends a message to the server to write in a persistent
way the status of the jobs in the list. If a job runs up
against an exception during its processing, remaining in
the pending condition, it can be processed again after a
reset of the pending jobs list. By means of the job ser-
ver, IDL handles faults and exceptions and implements
the upgrading procedure necessary to load new entries
available in a new GenBank release.

The IDL, through an OWL reasoner, automatically
builds CLIPS [22] facts reflecting biological knowledge
expressed in the Sequence Ontology at setup time.
These facts are afterwards used by the DBFiller module,
that translates them into ordered SQL statements which
are used to populate the schema.

The IDL, the job server and the DBMS can be scat-
tered on different machines in order to distribute the
computational load, as we discuss in the following.
Parser
Currently, several parser libraries for the GenBank flat-
files have been developed, such as BioJava [23], BioPy-
thon [24], BioPerl [25], the AJAX library in the EMBOSS
package [26] and the C library GBParsy [27]. All of these
are general purpose libraries that populate in-memory
data structures, reflecting the parsed flat file. This type of
generality comes at the price of reduced performance.
The BioJava package was initially employed in GIDL; but,
after having noticed it being a substantial bottleneck, a
mixed regular expression and content-specified functions
based parser was developed in-house. The parser was
designed following the specifications of the DDBJ/EMBL/
GenBank Feature Table definition FTv8 [28].

Initially, four portions of the entry are localized within
the GenBank flat-file: the header, the references, the fea-
tures and the sequence section. The nucleotide sequences
are not translated into a clips fact in order not to over-
load the reasoner. Some regular expressions are applied
to extract the information contained in the header string,
then the header is translated into a single clips header
fact. The references string is split into several single
reference strings, the regular expressions are applied and
each reference is translated into a reference fact with one
or more reference location, i.e. the features a reference is

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

Page 5 of 14

Mf-ﬂf ¢

ﬂ Rules Facilties
Control-value
Tables Facilities
(Ontology+...)

Taxonomic
Facilities
“coL |"nNcer
wrapper wrapper

_ g ol
Joﬁienl {P “'H

DBFiller

DBThread

‘? DBThread
Statement
Builder

-

Connection
Pooling

Flatfiles

Rules Fadilities

Flatfiles

for the CLIPS component.
(.

Figure 2 Component Model of the GenBank data loader. This process involves a number of components implementing a parallelized
distributed system for a fast loading. We chose a Rule system that allows complex, scalable, maintainable conversion from the GenBank Feature
Table Format to a Sequence Ontology based relational schema. The ontology allows, by an OWL reasoner, the automatic generation of the facts

the evidence of. The features are initially indexed to
locate each feature string within the file; those indexes
are then passed to a method that builds a feature object.
Each feature object owns one or more locations and qua-
lifier objects, extracted by means of regular expressions.
Finally each feature object is serialized into a key fact in
relationship with several location and qualifier facts.
Reasoner

IDL makes use of two different reasoners: an OWL Rea-
soner (Fact++) and a CLIPS Reasoner.

The OWL [29] reasoner acts at a preliminary stage,
una tantum, in the setup phase of the IDL execution. It
is used to make all the admissible relationships among
features explicit and to consequently build CLIPS facts
representing the knowledge in the Sequence Ontology.

In this phase a Java program, given an SO term and
an SO object property, creates an OWLODbjectProperty-
SomeRestriction [30] proposition and asks the OWL
reasoner for all the descendant classes that match the

restriction. The process is repeated for all the Class-
Object property combinations and the resulting triples
are added to the Clips knowledge base as initial facts.
The procedure is executed only once at setup time or
each time the sequence ontology changes, so the IDL
loading performances are not affected by this reasoner.

On the other hand, the CLIPS reasoner is the compo-
nent dedicated to the ETL rules execution. This reason-
ing environment is based on CLIPS, one of the most
popular software tools for building expert systems
(further details in [22]). It makes use in turn of facts
automatically generated by the previous OWL reasoning.
These facts are used, at runtime, by the encoded CLIPS
rules to find the relationships between features, using
criteria based on qualifier values. Only the admissible
relationships survive to the evaluations of the reasoner
and are inserted in the database. A working example of
the GIDL execution pipeline is provided in the Addi-
tional File 1.

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

In our implementation, a representation based on one
header and one sequence, and one or more key, portion,
reference and reference_portion templates are trans-
formed into an ordered set of statements in the form of
insert and select templates. The entry-templates have all
the slots required by the DDBJ/EMBL/GenBank FTv8.

The insert template includes a “tableName” slot to
identify the involved table and two multislots, “column-
Name” and “columnValue”, to identify respectively the
columns and the values. Two more multislots have been
conceived to manage the cross-reference of foreign keys
that refer to automatically generated keys. Each state-
ment is identified by a “count” slot; this identifier is used
in the “foreignCount” multislot of a different insert to
refer to the first one. This value will be substituted in
run-time with the real value assigned by the DBMS. As
an example, in Figure 3, in the 49th statement, the value
of the column “identificationId” will be substituted in
run-time by the value assigned by the DBMS to the pri-
mary key of the record generated by the insert 48.

During the transformation process each feature key
type was mapped to an SO term using the correspon-
dence given in the feature table SO mapping file [31],
made publically available and updated by the Sequence
Ontology authors. Some keys in the mapping were miss-
ing but the corresponding concepts were found in the
SO and mapped in the rules, whereas for some sequence
or feature attributes that were not present in the SO,

Page 6 of 14

either the GenBank qualifier or the header field name
were used.

Since bibliographic references in the FTv8 are
assigned to specific sequence locations, a relationship
between the feature and its bibliographic evidence was
assigned basing it on location coherence.

The Rule Facility also produces rules for the transla-
tion of qualifiers into SQL statements for those quali-
fiers that didn’t need to be loaded into the Collection
portion of the schema. These rules are not the result of
an OWL reasoning. Instead, biodiversity specific quali-
fiers, including experimental, taxonomic and sampling
details, were managed through rules coded with the
help of a domain expert, and stored in specific tables of
the database (e.g. the Collection area). Generally speak-
ing, whenever any qualifier had to be elaborated and
stored in dedicated tables other than the Chado schema
tables, a specific rule had to be coded. The other pieces
of information are managed by the nédive rules generated
by the Rule Facility.

Finally, the member_of, part_of and derives_from rela-
tionships among features of an entry were reconstructed.
The subsumption and transitive closure entailments were
used to compute all the biologically possible relationships
among types of features. This information was derived by
the SO, and the corresponding knowledge was made
available in CLIPS by the Rule Facility, as previously
described. Feature-specific relationships were assessed on

(deffacts initialfacts

(sequence (parserId "1") (nucleotides "?"))
({header (parserId 2) (locus "EU401794") (length "1779") ...)
(reference (parserId "3") (referenceNumber 2) (authors "NHaeem,K...) ...)

(referencePortion ...)

(key (parserId “6") (type source) (organism ...) o at)
(portion (parserId "7") (begin 1) (end 1779) ...)

; J_7|7

(reascner_results

(insert
(count 49) (tablellame indiwvidual)
(columnlame) (colummValue)
(foreignColumnName identificationId) (foreignCount 48)
)

(insert (count 50) (tablelName experiment) ...)

(insert (count 51) (tablelame sequence) ...)

(insert
(count 52) (tablellame sequenceAttribute)
(columnlame termId) (columnValue "SO:0000987")

)

Figure 3 Flat file and statement templates. CLIPS templates define the form that facts can take. Every time a fact of this type is created, it
contains the slots specified in its definition, each of which can contain a value and can be accessed by name. We use the header, sequence,
key, portion, reference and reference_portion templates for flat files and insert and select templates for statements. The rule engine performs the
conversion.

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

the bases of the feature types and of the qualifier and
location consistency. The qualifiers used were locus_tag,
gene, product and protein_id. The latter is an example of
implicit information that can be easily extracted from the
GenBank entries, coding appropriate rules.

DBFiller

The DBFiller component asks the job client for a set of
ready-state entries and assigns each one to a DBThread (an
extension of ours for a Java Thread). The threads can be
run with a configurable degree of parallelism to maximize
loading performances. Each DBThread performs three
steps: parsing, reasoning and statement building. The par-
ser transforms a flat file in a set of CLIPS facts, that is, the
initial facts. The reasoning component performs a call to
the CLIPS engine through a Java Native Interface. The
initial facts combined with the rules, partially encoded by a
human expert and partially derived from the ontology, give
rise to the reasoner results, i.e., a set of statement-like facts.
The DBThread extracts the statement facts and builds real
SQL statements that can therefore be submitted to the
DBMS. After the execution of a configurable set of jobs,
the DBFiller commits the job handling results to the Job
Server, that is the main controller class in the IDL architec-
ture. The pipeline is summarized in Figure 4.

Connections to the DBMS are managed by means of a
connection pooling that allows a considerable time saving:
the connections don’t need to be opened and closed by
each thread, but they are shared-in turn-among threads.

System deployment topologies

The modular solution conceived for the IDL allows the
system to be deployed in different topologies, involving a
different number of servers. The Figure 5 just shows
some possible deployment topologies. In this figure the

Page 7 of 14

case (a) is the most compact solution, where all compo-
nents are deployed in a single box (all-in-one). Such a
solution could be suitable for small installations, where
the number of entries to be loaded is quite small (less
than a million), and refers to short sequences with rela-
tively few annotations (not entire genomes!): in this case
neither the DBMS nor the IDL will require too many
resources in terms of CPU and RAM. A typical topology,
suggested for most of the cases, is that shown in Figure 5
(b), where the DBMS has been decoupled by the applica-
tion components (Job Server and IDL). This solution pro-
poses the best balance between the two resource-
expensive components: the DBMS and the IDL instance.
Figure 5(c) is just a showcase for a completely scattered
configuration, where the three components are distribu-
ted on three separate boxes. It is not useful for practical
cases, since the Job Server Process is quite inexpensive,
from the CPU point of view, and is characterized by a
very small memory footprint (less than 1 GB). Finally,
Figure 5(d) depicts the most aggressive case, suitable for
loading procedures that involve a large number of entries
(several millions) with huge sequences (entire genomes)
annotated with a lot of features. In this case, when two
(or more) IDL instances work in parallel on different
boxes, a fast network connection among the servers is
desirable (in order to rapidly satisfy the large number of
queries the IDLs will send against the DBMS), as well as
a lot of RAM (8 GB or more) both on the IDL boxes and
on the DBMS server.

Results

GIDL was used to parse and load in the Molecular Bio-
diversity Database the entries extracted from four Gen-
Bank divisions (rel.180): VRL, INV, PNL and EST. VRL

flat file

Parser

sequence and annotations properties

GenBank]|

| Reasoner for
Ordered Sql

INSERT INTO SEQUENCE

INSERT INTO REFERENCE...

ordered
sql statements

INSERT INTO SEQUENCE FEATURE

INSERT INTO REFERENCE PORTION

Statement
builder

Figure 4 Loading tasks. In order to load the GenBank data in our relational sequence ontology based schema, we perform a complex
conversion. This process starts by parsing the GenBank entry and transforming it into a set of facts understandable by a rule system based on
the CLIPS rule engine. A set of rules, encoded in the reasoner, transforms the parser facts into statement facts, that correspond to an ordered list
of insert and select statements addressed to a relational DBMS instance.

equence: nucleotides = "gtatggg..tictaga®...;
eader: locus = "HSUS50398"; length = "1191%,...;
ference: authors = “Erzurum....”, title = *..",...;

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

Page 8 of 14

Loader components are deployed on two or more servers.

Figure 5 Data Loader deployment topologies. Some of the different topologies that the modular architecture of the Data Loader system
allows. Case (a) refers to the simplest deployment, with all components in a box; cases (b), () and (d) refer to configurations in which the Data

is the set of entries of the complete Viral division
(814,122 entries); INV refers to the set of entries of the
complete Invertebrate division (959,065 entries); PLN
concerns the entries of the complete Plant division
(1,365,360 entries); finally, we denote with EST a sub-set
of 1,035,087 entries of the GenBank division of
Expressed Sequence Tag belonging to organisms of the
family Asteraceae. The GIDL tool arranged the entries
in 50,758,000 sequence feature annotations and asso-
ciated 13,298,000 instances to 1,342 Sequence Ontology
terms.

We used GIDL to support a set of bioinformatics
applications developed in the Molecular Biodiversity
Laboratory (MBLab) [15]. Firstly, the GenBank data
extracted and organized by GIDL was integrated with
private biodiversity collections to help the MBLab
researchers to exploit new knowledge in the molecular
biodiversity domain. Other MBLab applications, like
“Barcode Primers Discovery & Retrieval” [15] and
“miRNA Target Comparison Tool” [15] have benefited
from the GIDL implementation.

Performance analysis

Loading performances are crucial in a data loading sys-
tem that manages huge volumes of data as those involved
in the bioinformatics domains. In order to evaluate the
GIDL performances, this component has been armed
with a logging sub-module that traces relevant loading

parameters in an appropriate table of the database
instance it works on. Our loading test has been per-
formed with the four sets of entries previously described.
Some of the most relevant observable parameters traced
by the logging sub-module of GIDL are synthesized, in a
synoptic view in Table 1, where rows refer to eight para-
meters for each entry-set, while columns show respec-
tively, minimum, maximum, average and standard
deviation values for each parameter observable within the
corresponding set. As we can infer from the last column,
the four sets are roughly equivalent in terms of cardinal-
ity (number of contained entries). For each set, the first
four rows contain data for observables strictly depending
on the set itself, such as the length of the DNA sequence
(SequenceLength) in base pairs; the length of the feature
table of the GenBank entries (FatureTableLength), mea-
sured in bytes; the number of features in the entries
(# Features); and the number of SQL INSERT statements
(# Statements) produced by the IDL, in order to insert
each entry in the relational database in terms of the data-
base schema discussed above. All these parameters
depend on the sets, and neither on the computational
capabilities of the server used nor on the topology chosen
in the deployment phase.

On the other hand, the following four rows for each data
set refer to measured times that are, in principle, depen-
dent on the computational setup. They refer, respectively,
to the time spent to parse the entry (ParsingTime,

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54 Page 9 of 14
http://www.biomedcentral.com/1471-2105/13/54/54
Table 1 Synoptic report of the loading procedure
DIVISION MIN MAX AVERAGE Standard Deviation # ENTRIES
VRL SequencelLength (bp) 9 1181404 1097 4206 814122
FeatureTableLength (byte) 716 887303 2504 3556
Features 2 2894 45 8.8
Statements 22 27367 521 94.5
ParsingTime (ms) 1 1925 6.5 10.0
ReasoningTime (ms) 72 173912 956 2353
InsertTime (ms) 361 531333 759.3 6472.2
TotalTime (ms) 446 531467 861.5 6491.5
INV Sequencelength (bp) 7 3291871 1536 17715 959065
FeatureTableLength (byte) 710 1536275 2222 6264
Features 2 4033 45 220
Statements 24 42815 519 1979
ParsingTime (ms) 1 11044 6.1 244
ReasoningTime (ms) 67 391901 101.6 1020.6
InsertTime (ms) 503 1702407 670.2 4689.0
TotalTime (ms) 573 2098246 778.0 5406.3
PLN Sequencelength (bp) 2 3439086 2378 16960 1365360
FeatureTableLength (byte) 821 1844292 2397 7106
Features 2 4113 4.6 17.5
Statements 23 33032 514 185.8
ParsingTime (ms) 1 5546 6.3 174
ReasoningTime (ms) 73 5803323 107.5 5633.7
InsertTime (ms) 423 401933 559.0 1518.5
TotalTime (ms) 501 6206793 6728 63156
EST Sequencelength (bp) 7 1770 659 193 1035087
FeatureTableLength (byte) 1358 4798 2563 351
Features 2 2 2 0
Statements 25 34 30.1 1.1
ParsingTime (ms) 3 233 6.1 28
ReasoningTime (ms) 73 1089 833 10.9
InsertTime (ms) 372 38746 499 959.1
TotalTime (ms) 454 38859 5884 950.6

This table shows, in a synoptic view, the main parameters of the loading procedure to populate the Molecular Biodiversity Database. These numbers refer to
entries coming from four GenBank divisions (VRL, INV, PLN and EST). For each of these sets, the first four rows describe some aspects of the GenBank entries,
while the other four ones refer to parameters measured during the loading procedure. The VRL and INV sets were loaded by using the topology shown in Figure
5(a), while the other sets were loaded by using the topology shown in Figure 5(b). See text for a complete discussion of this topic.

measured in milliseconds), the elaboration time taken by
the Reasoner (ReasoningTime), the time needed by the
DBFiller to send all the composed SQL INSERT state-
ments against the database (InsertTime). Finally, the total
time to elaborate each entry is reported (TotalTime = Par-
singTime + ReasoningTime + InsertTime).

In order to evaluate the influence that different topol-
ogies can imply in the loading performances, we carried
out the loading of VRL and INV sets with a configura-
tion as that depicted in Figure 5(a), while we used the
Figure 5(b) topology to load PLN and EST sets. All
boxes are servers 2 x Genuine Intel XEON quad core
2.66 GHz, 8 GB RAM, 20 GB swap disk connected in
an internal network at 1 Gbps, equipped with Red Hat
Enterprise Linux 5.1. Note that swap space is especially

important for the IDL processes when large entries
(with thousand of features) are elaborated: in these cases
each IDL thread can use up to 10 GB or more of RAM/
swap memory. In our tests the IDL was configured to
run with two parallel threads, that is two threads run-
ning in a single Java Virtual Machine (JVM).

We can gather one of the most interesting aspects of
the influence of the different topologies by focusing on
the two sets INV and PLN. They are structurally very
similar, since the average number of features per entry is
4.5 and 4.6 respectively, and the average number of pro-
duced statements per entry is 51.9 and 51.4. In this case,
switching from topology (a) to topology (b) leads to an
improvement of about 15% in the TotalTime (672.8 ms
instead of 778 ms), and this is principally due to the

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

improved InsertTime (559 ms against 670.2 ms, i.e. ~
+20%). This means that in the “INSERT phase”, when
IDL sends INSERT statements and the DBMS executes
them, a configuration with these two components on dif-
ferent boxes is preferable. The gain due to more
resources for computation is higher than the loss due to
network latency. This and other considerations, however,
indicate topology (b) as the preferable configuration with
respect to any others.

Testing procedure

A scrupulous testing procedure was needed to verify the
correctness of the CLIPS rules and the correct insertion
of the GenBank entries into the MBLab Database. In
order to accomplish this task, a “controlled dataset”, i.e.
a relatively small dataset containing entries with pre-
established characteristics, was prepared.

We selected five GenBank divisions (BCT, INV, PLN,
VRL, VRT) and we scanned all the entries for each divi-
sion to find and extract a subsample containing at least
two entries for each of the 60 GenBank feature keys.
Thus we obtained 492 entries, instead of the expected
600 (5 division x 60 feature keys x 2 sample entries)
due to the lack of the selected feature key in some
entries (a feature key may or may not be present in a
particular division). Following the same procedure for
the 96 available GenBank qualifiers, we extracted 824
entries, instead of the expected 930 (as for the feature
keys, some qualifiers are not applicable to certain Gen-
Bank divisions). So the resulting controlled dataset
included a total of 1316 entries. Using the IDL those
entries were loaded in a Target Database instance dedi-
cated to the test.

The entries were parcelled out and delivered to a
panel of 20 bioinformatics researchers with knowledge
of the GenBank entry structure. The researchers
received the entries to be checked in flat file format, a
spreadsheet file, and the access to a minimal web inter-
face of the database (Figure 6). For each assigned entry
the testers had to mark, in the spreadsheet file, errors or
discrepancies between the content of the entry in the
flat file and the entry information loaded in the data-
base. In order to check the reliability of the tests, some
entries were assigned contemporarily to two or more
testers.

After the reports were gathered and the detected bugs
corrected, a second test session was performed using
the same dataset. In this session 5 entries per person,
different from those assigned before, were assigned to
be checked with the same procedure for both header
and feature key sections. This final session of tests
ensured that the code debugging was carried out exten-
sively and correctly.

Page 10 of 14

Query system prototype

By means of a JDBC SQL client access it is possible to
query and retrieve data stored in the Molecular Biodi-
versity Database, populated by the Intelligent Data
Loader. As a demonstration of GIDL capabilities we
have built a graphical web interface querying prototype
on top of the Molecular Biodiversity Database. The
interface was used by trained bioinformatic researchers
to test the correctness of IDL (illustrated in the Testing
Procedure). The web interface prototype implements the
use case of structured consultation of a GenBank entry.
Entry information (sequence visualization, sequence
info, environmental sampling info, experiment info and
features info) are shown in separate dynamic boxes and
are exploitable on request; so using this web interface
the entry consultation is more concise than the Gen-
Bank website visualization.

Information about the features are further structured
and for each of them it is possible to explore portions,
nucleotides, annotations, evidences and relationships
(according to the SO) with other features (see Figure 6).

Thanks to the ontology-driven schema implemented
in GIDL, it is possible to query the Molecular Biodiver-
sity Database taking advantage of logic relationships
among features implied in GenBank entries and struc-
tured by the SO. To test this functionality the first ver-
sion of the query system prototype has been enhanced
with the ability to execute ontological queries.

As an example, the user can make a query asking for
regulatory regions (Sequence Ontology term: ‘regulator-
y_region’) of genes having a coding sequence (Sequence
Ontology term: ‘CDS’) with a particular defined annota-
tion. In our query system prototype, it is possible to for-
mulate this query by means of a tree view (see Figure 7):

regulatory region member Of (gene has Member
(CDS has Annonation < annotationType > < annotationValue >))

where < annotationType >is a GenBank feature quali-
fier belonging to the CDS feature key, and < annotation-
Value >is the value for the CDS feature qualifier
annotation.

Query results will consist of all entries satisfying this
criterion. In this way it is possible to retrieve features
(regulatory regions as in the above example) defining a
criterion not only on that particular feature, but also on
features related to it. Moreover query results will pro-
vide not only the features mapped to the SO term ‘regu-
latory_region’ but also the features mapped as
‘regulatory_region’ descendants (i.e., polyA_signal_se-
quence, TF binding site, terminator, ...) according to the
‘is_a’ SO relations.

We want to point out that the web interface is just a
prototype, with reduced functionality which does not

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

Page 11 of 14

MBLab - Molecular Biodiversity LABoratory

Main | Chat | Email
Menu
Home Accession selection
Main accession Samilar accession
AL274439 GL9858040

Taxon name
Taxon rank

DB
External 1D

Taxonomic info
Infectious bronchitis virus
no rank
Taxon reference
Taxonomy
11120

Sequence visualization

Sequence info

Sequence features info

SO term ID
GBQuatgene

Evidences

&

Relationships

SO label
GBQuakgene

Regions Annotations

Subject sequence feature

2537642

Figure 6 GenBank entry consultation. After selecting one or more accessions, it is possible to visualize the entries. The taxonomic data are
immediately available. Other entry information are structured in different boxes, so a user can view these info only if a specific requests is made.
We point out to a feature box: a distinctive view is implemented in the relationship tab; thanks to GIDL it is possible to see entry features

related to a given feature.

Evsdences

Relation SO term
part_of

Object sequence feature
2537643

allow currently to explore all the features of the Mole-
cular Biodiversity Database. Further developments are in
progress and out of the scope of this paper.

Discussion

Frequently, in the molecular biodiversity domain in
order to accomplish properly their analyses, the
researchers need to retrieve large quantity of data (typi-
cally sequences and annotations) from remote public
databases, store them locally and integrate these infor-
mation with data contained in private databases and col-
lections. To carry out this task, researchers may usually
spend about 80% of their time in retrieving, assembling
and preparing data for analysis (e.g. manipulating data,

extracting subsets of data from external files, reformat-
ting data, moving data, etc.) [32].

Our aim was to develop an intelligent solution to
parse, retrieve and load the entire GenBank database
locally. In fact, giving scientists access to a system in a
high-bandwidth local network enhances large queries
response and the data could be easily retrieved with
lower latency than attempting to retrieve the same data
over the Internet, like “net” solution (e.g. bioinformatic
web-services, NCBI-Entrez and EBI-SRS sequence retrie-
val systems, etc.) [33].

Furthermore, we believe that GIDL, by means of the
semantic web approach, has at least two advantages
comparing it with other similar tools. First of all, it

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/S4

Page 12 of 14

MBLab - Molecular Biodiversity LABoratory

Main | Chat | Email

Menu -
Home | Query p B Query results

[EEEETEN memberor (| FED) vasuemver LTG0 hasmember ([0

hasAnnotawon |- l=8| VP35))

f——
gera_mamber_raglon
C repulatery_repica
13

PRE~-~ROC0GC

- - -] x > H (4]

Figure 7 Ontological query composition. Using a tree view it is possible to build a query defining the relationships across the SO terms by
memberOf (ancestors) or hasMember (descendants) relationships. To complete the query, the user has to define a particular annotation for the
last SO term, selecting the annotation type (GenBank feature qualifier) and the correspondent annotation value. This figure shows the retrieval of
all regulatory regions belonging to a gene, including the mRNA region which contains the CDS with VP35’ as annotation of the product value.

provides the users with an innovative way to query
molecular data annotations. The integration of the SO
knowledge base in GIDL allows to execute complex bio-
logical queries in a single step (as in the example illu-
strated in Figure 7). The same results are obtained by
SRS and Entrez in several steps using multiple queries.
Hence, the use of GIDL increases end-users productivity
decreasing the number of steps in query building and
execution.

Using all of the relationships in SO allows us to auto-
matically draw logical conclusions about data that have
been labelled with SO terms, and thereby provides use-
ful insights into the underlying annotations [21]. GIDL
is able to extract non explicit biological information
from flat file entries and to add this new knowledge to
the Target Database Schema. In many cases, a specific
information which is critical for a given research is
available but hidden (not explicit) in the GenBank flat
files. For example, the feature key intron is not present
in all entries, but GIDL allows to compute and store in
the database, where conceptually feasible, the introns
locations and sequences. In GIDL, just adding a simple
new “biological” rule to the GIDL knowledge-base can
give an off-the-shelf solution to data needs.

Despite loading and managing large primary biological
databases (such as GenBank) in local DBMS is computa-
tional intensive, GIDL overcomes these obstacles satisfy-
ing the following requirements:

- flexibility: the user can easily re-define the extrac-
tion procedure logics and adapt it to his needs. The
system would be able to adapt to changes in the
knowledge of the biological domain. Actually, com-
pared to traditional programming techniques,
expert-system approaches provide more flexibility
(and hence an easier modifiability) modelling rules
as data rather than as code. The flexibility of the
rule based approach also allows to easily manage the
changes of the database schema or of the ontology.
Although a rule based system can be perceived as
more complex than an object-oriented system, and
the object structure as more useful than the rule
modularization and documentation, an initial steeper
learning curve can give an effort ease later on;

- speed: the IDL application parses and transforms
millions of GenBank entries and generates and exe-
cutes tens of millions of SQL statements in a reason-
able time;

- knowledge representation: the relationships
between the entities of the entry and the attributes
of those entities, give rise to implicit knowledge that
has to be made explicit according to knowledge of
the domain, as discussed before;

- updatability: the loader is able to manage frequent
updates of new GenBank release;

- robustness: the modular design conceived for the
IDL system (see Figure 2) makes it very reliable and

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

flexible. In fact, as discussed before, the process
named Job Server is the solely responsible for the
management of the loading procedure. By an appro-
priate usage of an internal loading index, cached on
a persistent support (file system), it is able to guar-
antee data integrity and fault tolerance. This means
that if either the Job Server or any IDL instance
failed, the entire loading procedure would not be
compromised as a whole, since it would be sufficient
to restart the failed process from the point of failure;
- scalability: another interesting feature of this data
loading system is its (horizontal) scalability. In the
“System deployment topologies” section we thor-
oughly discussed the numerous possibilities of
deployment topologies its architecture makes possi-
ble. These solutions can cover scenarios ranging
from the loading of small data sets up to very large
databases in a reasonable time.

Conclusions

In this work we have presented the concepts, the design
and the implementation of the GIDL system, a toolkit
consisting of a relational DB schema (based on the
Molecular Biodiversity Database) and of an Intelligent
Data Loader software that parse GenBank public entries,
add semantics and load these information into an ontol-
ogy-driven schema. The toolkit can be downloaded on
request and installed by users who want to use a local
instance of GIDL. Future developments for GIDL
include the development of software modules to provide
programmatic accesses via Application Programming
Interface (API) in order to perform useful automatized
operations on biological data.

Additional material

Additional file 1: PDF file containing a working example of the
GIDL execution pipeline.

List of abbreviations used

BCT: Bacterial GenBank division; DB: Database; DBMS: Database Management
System; GIDL: GenBank Intelligent Data Loader; EST: Expressed Sequence Tag
GenBank division; ETL: Extraction, Transformation, Loading; FTv8: DDBJ/
GenBank/EMBL Feature Table definition ver.; IDL: Intelligent Data Loader;
NCBI: National Center for Biotechnology Information; PLN: Plant GenBank
division; SO: Sequence Ontology; VRL: Viral GenBank division; VRT: Vertebrate
GenBank division.

Acknowledgements

This work was supported by DM19410-Bioinformatics Molecular Biodiversity
LABoratory-MBLab (http://www.mblabproject.it).

We would like to thank Domenica D'Elia and Saverio Vicario for their
contribution in the Molecular Biodiversity schema design.

This article has been published as part of BMC Bioinformatics Volume 13
Supplement 4, 2012: Italian Society of Bioinformatics (BITS): Annual Meeting
2011. The full contents of the supplement are available online at http://
www.biomedcentral.com/1471-2105/13/54.

Page 13 of 14

Author details

'Institute for Biomedical Technologies (ITB), National Research Council (CNR),
Bari, 70100, Italy. 2Institute of Plant Genetics (IGV), National Research Council
(CNR), Bari, 70100, Italy. 3IBM GBS BAO Advanced Analytics Services and
MBLab, Bari, 70100, Italy. *Exhicon srl, Trani, 70059, Italy.

Authors’ contributions

PP designed and developed the Molecular Biodiversity Database schema,
the CLIPS rules and drafted the manuscript; DC participated to the schema
design and drafted the manuscript; FR implemented the feature table to SO
term mapping; GDC developed the query prototype interface and
participated to the schema development: GG participated to the feature
table to SO term mapping implementation and participated to the schema
development; PL participated to the architectural design of the system and
coordinated the IBM team; GP carried out the testing procedure and
participated to the development of the parser for the GenBank entries; GS
conceived the study, designed the system architecture, participated to the
schema design and drafted the manuscript; FL conceived of the study,
participated to the schema design, drafted the manuscript and coordinated
the work. All authors read and approved the manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 28 March 2012

References

1. Chavan VS, Ingwersen P: Towards a data publishing framework for
primary biodiversity data: challenges and potentials for the biodiversity
informatics community. BMC Bioinformatics 2009, 10(Suppl 14):S2.

2. Sarkar IN: Biodiversity informatics: organising and linking across the
spectrum of life. Brief Bioinform 2007, 8:347-357.

3. Yesson C, Brewer PW, Sutton T, Caithness N, Pahwa JS, Burgess M, Gray WA,
White RJ, Jones AC, Bisby FA, Culham A: How global is the global
biodiversity information facility? PLoS One 2007, 2(11):.e1124.

4. Page RD: TBMap: a taxonomic perspective on the phylogenetic database
TreeBASE. BMC Bioinformatics 2007, 8:158.

5. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K,
Chetvernin V, Church DM, DiCuccio M, Federhen S, Feolo M, Fingerman IM,
Geer LY, Helmberg W, Kapustin Y, Landsman D, Lipman DJ, Lu Z,

Madden TL, Madej T, Maglott DR, Marchler-Bauer A, Miller V, Mizrachi |,
Ostell J, Panchenko A, Phan L, Pruitt KD, Schuler GD, Sequeira E, et al:
Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res 2011, 39(Database):D38-51.

6. Global Biodiversity Information Facility. [http://www.gbif.org/].

7. Gibney G, Baxevanis AD: Searching NCBI databases using Entrez. Curr
Protoc Bioinformatics 2011, Chapter 1:Unit 1.3.

8. Zdobnov EM, Lopez R, Apweiler R, Etzold T: The EBI SRS server-new
features. Bioinformatics 2002, 18(8):1149-1150.

9. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW: GenBank.
Nucleic Acids Res 2011, 39(Database):.D32-37.

10. Kaminuma E, Kosuge T, Kodama Y, Aono H, Mashima J, Gojobori T,
Sugawara H, Ogasawara O, Takagi T, Okubo K, Nakamura Y: DDBJ progress
report. Nucleic Acids Res 2011, 39(Database).D22-27.

11. Cochrane G, Karsch-Mizrachi |, Nakamura Y: The International Nucleotide
Sequence Database Collaboration. Nucleic Acids Res 2011, 39(Database):
D15-18.

12. Hagen MS, Lee EK: BIOSPIDA: A Relational Database Translator for NCBI.
AMIA Annual Symposium Proceedings 2010, 2010:422-426.

13. Shah SP, Huang Y, Xu T, Yuen MM, Ling J, Ouellette BF: Atlas-a data
warehouse for integrative bioinformatics. BMC Bioinformatics 2005, 6:34.

14. Lee TJ, Pouliot Y, Wagner V, Gupta P, Stringer-Calvert DW, Tenenbaum JD,
Karp PD: BioWarehouse: a bioinformatics database warehouse toolkit.
BMC Bioinformatics 2006, 7:170.

15. Molecular Biodiversity Laboratory. [http://www.mblabproject.it/].

16. Ratnasingham S, Hebert PDN: BOLD: The Barcode of Life Data System
([http://www.barcodinglife.orgl). Molecular Ecology Notes 2007, 7:355-364.

17. Generic Model Organism Database. [http://www.gmod.org/].

18. Mungall CJ, Emmert DB, The FlyBase Consortium: A Chado case study: an
ontology-based modular schema for representing genome-associated
biological information. Bioinformatics 2007, 23(13):i337-i346.

http://www.biomedcentral.com/content/supplementary/1471-2105-13-S4-S4-S1.pdf
http://www.mblabproject.it
http://www.biomedcentral.com/1471-2105/13/S4
http://www.biomedcentral.com/1471-2105/13/S4
http://www.ncbi.nlm.nih.gov/pubmed/19900298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19900298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19900298?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17704120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17704120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17987112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17987112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17511869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17511869?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21097890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21097890?dopt=Abstract
http://www.gbif.org/
http://www.ncbi.nlm.nih.gov/pubmed/21633942?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12176845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12176845?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21071399?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21062814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21062814?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21106499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21106499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21347013?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16556315?dopt=Abstract
http://www.mblabproject.it/
http://www.ncbi.nlm.nih.gov/pubmed/18784790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18784790?dopt=Abstract
http://www.gmod.org/
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17646315?dopt=Abstract

Pannarale et al. BMC Bioinformatics 2012, 13(Suppl 4):54
http://www.biomedcentral.com/1471-2105/13/54/54

20.

21.

22.

23.
24.
25.
26.
27.

28.
29.
30.
31

32.

33.

Mungall CJ, Batchelor C, Eilbeck K: Evolution of the Sequence Ontology
terms and relationships. J Biomed Inform 2011, 44(1):87-93.

Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ,
Eilbeck K, Ireland A, Mungall CJ, OBl Consortium, Leontis N, Rocca-Serra P,
Ruttenberg A, Sansone SA, Scheuermann RH, Shah N, Whetzel PL, Lewis S:
The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nat Biotechnol 2007, 25(11):1251-1255.
Eilbeck K, Lewis SE, Mungall CJ, Yandell M, Stein L, Durbin R, Ashburner M:
The Sequence Ontology: a tool for the unification of genome
annotations. Genome Biology 2005, 6:R44.

Giarratano JC, Riley G: Expert Systems: principles and programming Boston:
PWS Publishing Company; 1998.

BioJava. [http://biojava.org/].

BioPython. [http://www.biopython.org/].

BioPerl. [http://www.bioperl.org/].

EMBOSS. [http.//emboss.sourceforge.net/].

Lee TH, Kim YK, Nahm BH: GBParsy: a GenBank flatfile parser library with
high speed. BMC Bioinformatics 2008, 9:321.

DDBJ/EMBL/GenBank Feature Table definition. [ftp:/ftp.ncbi.nih.gov/
genbank/docs/].

OWL Web Ontology Language. [http://www.w3.0rg/TR/owl-features/].
The OWL API. [http://owlapisourceforge.net/].

Mapping of the feature table terms and qualifiers to SO. [http://www.
sequenceontology.org/resources/mapping/FT_SO.html].

Rifaieh R, Unwin R, Carver J, Miller MA: SWAMI: Integrating Biological
Databases and Analysis Tools Within User Friendly Environment. In
Proceedings of Data Integration in the Life Sciences, 4 conf, DILS 2007: 27-29
June 2007, Philadelphia, USA. Val Tannen: Springer;Sarah Cohen-Boulakia
2007:48-58.

Shah SP, Huang Y, Xu T, Yuen MM, Ling J, Ouellette BF: Atlas-a data
warehouse for integrative bioinformatics. BMC Bioinformatics 2005, 6:34.

doi:10.1186/1471-2105-13-54-S4

Cite this article as: Pannarale et al: GIDL: a rule based expert system for
GenBank Intelligent Data Loading into the Molecular Biodiversity
database. BMC Bioinformatics 2012 13(Suppl 4):54.

Page 14 of 14

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

(BioMed Central

http://www.ncbi.nlm.nih.gov/pubmed/20226267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20226267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17989687?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15892872?dopt=Abstract
http://biojava.org/
http://www.biopython.org/
http://www.bioperl.org/
http://emboss.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/18652706?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18652706?dopt=Abstract
ftp://ftp.ncbi.nih.gov/genbank/docs/
ftp://ftp.ncbi.nih.gov/genbank/docs/
http://www.w3.org/TR/owl-features/
http://owlapi.sourceforge.net/
http://www.sequenceontology.org/resources/mapping/FT_SO.html
http://www.sequenceontology.org/resources/mapping/FT_SO.html
http://www.ncbi.nlm.nih.gov/pubmed/15723693?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15723693?dopt=Abstract

	Abstract
	Background
	Methods
	Results and conclusions

	Background
	Methods
	Target database schema
	Intelligent data loader
	Architecture
	Parser
	Reasoner
	DBFiller

	System deployment topologies

	Results
	Performance analysis
	Testing procedure
	Query system prototype

	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

