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Abstract

Background: Predicting protein function has become increasingly demanding in the era of next generation
sequencing technology. The task to assign a curator-reviewed function to every single sequence is impracticable.
Bioinformatics tools, easy to use and able to provide automatic and reliable annotations at a genomic scale, are
necessary and urgent. In this scenario, the Gene Ontology has provided the means to standardize the annotation
classification with a structured vocabulary which can be easily exploited by computational methods.

Results: Argot2 is a web-based function prediction tool able to annotate nucleic or protein sequences from small
datasets up to entire genomes. It accepts as input a list of sequences in FASTA format, which are processed using
BLAST and HMMER searches vs UniProKB and Pfam databases respectively; these sequences are then annotated
with GO terms retrieved from the UniProtKB-GOA database and the terms are weighted using the e-values from
BLAST and HMMER. The weighted GO terms are processed according to both their semantic similarity relations
described by the Gene Ontology and their associated score. The algorithm is based on the original idea developed
in a previous tool called Argot. The entire engine has been completely rewritten to improve both accuracy and
computational efficiency, thus allowing for the annotation of complete genomes.

Conclusions: The revised algorithm has been already employed and successfully tested during in-house genome
projects of grape and apple, and has proven to have a high precision and recall in all our benchmark conditions. It
has also been successfully compared with Blast2GO, one of the methods most commonly employed for sequence
annotation. The server is freely accessible at http://www.medcomp.medicina.unipd.it/Argot2.

Background

Thanks to the advent of the Next Generation Sequen-
cing technologies, we have assisted to an exponential
increase in sequence data generation [1]. The task to
assign a curator-reviewed function to every single
sequence is unworkable, calling for efficient/effective
methods to assign automatic annotation are necessary
as a first analysis step to support working hypotheses
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and drive experimental validations of biological
functions.

Computational approaches can be rather imprecise
because functional inference is not as straightforward as
one would expect, due to the unevenness of the classical
paradigm “sequence-structure-function”. Some authors
suggest that for sequences sharing less than 30% of iden-
tity, the functional transfer may be highly inaccurate or
completely wrong [2,3]: in particular Enzyme Classifica-
tion (EC) numbers tend to be conserved only for proteins
with sequence identity above 80%. Other authors report
different figures [4,5] confirming the difficulty to agree
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on a unique view due to a certain unpredictability of bio-
logical systems.

In the category of sequence-based methods, the simple
search for homologous sequences is considered a com-
mon practice for function prediction based on annota-
tion transfer, and BLAST [6] can be considered a gold
standard. If its classical pairwise alignment engine fails,
the profile based PSI-BLAST [6] is able to identify rela-
tionship among distantly related proteins.

Another widely accepted approach relies on functional
domains assignments. HMMER [7], which is based on
Hidden Markov Models (HMM), is among the most
known tools falling in this category. HMMER is mainly
used to query the Pfam HMM models [8] and search for
functional patterns and domains in the target sequences.

Recently, the Gene Ontology (GO) consortium [9] has
revolutionized the way to access knowledge data and
has rapidly become a standard de facto. The GO is orga-
nized in a hierarchical directed acyclic graph that greatly
facilitates the mining of biological information by com-
putational algorithms.

With the advent of GO and UniProtKB-GOA database
(GOA) [10] of functionally annotated proteins, several
algorithms have been developed to improve functional
inference based on the plain use of BLAST [11]. Among
these solutions, Blast2GO [12-14] can be considered one
of the best platforms to assist the user in annotating
sequences.

In this paper, we present Argot2 (Annotation Retrieval
of Gene Ontology Terms), a tool designed for high-
throughput annotation of large sequence data sets with
high efficiency and precision. Argot2 is born for in-house
needs to annotate predicted genes from large-scale
sequencing projects; now it has a free and fully functional
web interface and its engine has been completely revis-
ited. It has been extensively tested during highly challen-
ging endeavours as grape [15] and apple [16] genome
annotations and it has been continuously refined from its
early version, Argot [17], to reach a high flexibility and
confidence in extracting fruitful knowledge from different
sources of information. The web server version is compu-
tationally efficient, highly scalable, and it is able to
address the different needs of basic and advanced users
in annotating small sets of proteins up to entire genomes.
Here we also report the assessment of Argot2 tested in
four different configurations and in comparison with
Blast2GO.

Methods

Algorithm description

Argot2 processes the GO annotations of the hits retrieved
by BLAST and HMMER searches. A weighting scheme
and a clustering approach are applied to select the most
accurate GO terms for annotating the target proteins.
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Argot2 takes a list of GO terms belonging to the GO
graph G(V,E) as input and weights them according to
the e-value score of the hits. Assuming that the set V' is
ordered, it is possible to establish a one-to-one corre-
spondence between the i GO term g; € V used for the
annotation, its weight w; and the e-value scores S; and
S;” given by BLAST and HMMER. The weights are com-
puted as follows:

w; = —log(S;) for BLAST (1)

1
w; = —log(Sy) - f (Pngi) for HMMER (2)

As pfam2go [18] provides a minimal coverage of GO
terms for each Pfam model, we extract from GOA the
GO annotations of all proteins belonging to each Pfam

1
entry to enrich these assignments. In Eq. 2 p'ls is the

frequency of the GO term g; calculated over the total
number P of proteins in the model and fix) is a logistic
curve introduced to reward highly frequent terms and
to penalize those that are sparse and likely false
positives.

All the possible paths starting from the input GO
terms and leading to the root node are reconstructed
and the GO nodes not included in any of these paths
are discarded from the analysis, obtaining the so-called
“GO-slim” (Figure 1-i).

The remaining GO terms are grouped together in sets
Gri € 5(V) according to their semantic similarity [19]:
the nodes that share a strong biological relationship
form a unique informative group, and only the most
specific and high scoring annotations are considered.

Given two generic GO terms g, g; € V, we use the
Lin’s formula [20] (Eq. 3) as a semantic similarity mea-
sure. This metric has been chosen since it gave the best
results in clustering annotations with respect to other
existing methods [17].

The Lin’s formula is defined as:

2 - sityes(8ir 8j)
IC(g) +IC(g))

In this formula, the function sim,.; : V x V —> R
defined as: Sifps(8i, §) = Maxges(s,5){IC(8)} represents
the highest Information Content /C among the subsu-
mers of the terms g; and g;. Using the notation g; » g;
to mean that a path from the term g; to the term g;
exists, the set of the subsumers can be defined through
the function S: V x V — (V) as S(g»g) = g€ Vigr
&g g

The function IC : V — R is the Information Content
of the i GO term calculated according to the Resnik
formula [21] as:

sim(gi, &) = ®)
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Figure 1 Argot2 algorithm. i) Position of the retrieved nodes in the GO graph (black circles) with their weights (W). White circles connected by
dashed lines are pruned GO terms that are not present in the final GO-slim. ii) Filtering steps based on Z-score and G-score (see the main text).
The yellow big circles are the representatives of the corresponding groups having the highest Total Score (TS) and are used for the annotation.
iii) The hexagons report the cumulative weights of the GO nodes i.e. W, is obtained by the sum of its child nodes marked as black circles (Wg
and Wc). Node 4 does not contribute to the cumulative score, as it is a reconstructed parent from node C. It inherits the weight of node C only
(Wea).

1C(g) = —10g< l{g: gi— gl ) wi(g) = " g’Z%g} Wi, that is the sum of the weight w of a
) =
(g : g € GOA}| GO term g (Eq. 1 and Eq. 2) plus the weights of its chil-

dren, and the sum of the cumulative weight of the root

where [{g:g; - g}| indicates the total number of occur- | ", (see Figure 1-iii):

rences of GO terms descending from GO term i and |{g:

g€ GOA]}| is the total number of GO terms in the GOA > w

database. InC( ) B {j: g8} B W(gl) (@)
Three scores are then introduced to filter isolated GO 8i) = > w B W (r00)

terms and to rank the remaining ones. The first one, the {j: oo &}

Group Score GrS : N — R, is the sum of the cumulative
Internal Confidence /nC of the nodes g; belonging to the
K" group Gry, being N the set of the natural numbers:

Gis(k) = Y InC(g) 2(g) = W(g)—-WwW
{j: gi€Gre} o

The second score Z: V — ‘R, called Z-score, is calcu-
lated for each extracted GO term g; as follows:

The Internal Confidence InC : V — R is a cumulative where W is the weight of the root node divided by
measure that takes into account the global cumulative the total number of the retrieved GO nodes, while o is

weight distributions W: V — R defined as the standard deviation of all the weights.
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If the Z-score and the Group Score are below a cer-
tain threshold, the corresponding GO terms are dis-
carded. These filtering steps reward those paths, up to
the root, that are statistically significant discarding the
branches of the GO graph containing nodes with low
weights (see in Figure 1-ii the discarded path and
group).

After the filtering phases, the algorithm assigns the
third score, the Total Score TS : V — R, to each culled
GO term g;, according to the following formula:

InC™(gi)

T8(80) = 1C(81) - InC™(81) * ) ey

(5)

where Inc”: V — R is the non-cumulative internal
confidence, calculated as

wi wi
InC™(g;) = oo T
(gl) ) Z }wj W(groot) (6)
- &root > &

Differently from the cumulative Internal Confidence
InC defined by (Eq. 4), it estimates the local non-cumu-
lative weight distribution, which considers only the
weight of the term under analysis.

The function GrS§" : N — R is the non-cumulative
Group Score associated to the kX group Gry. It is calcu-
lated as the sum of the non cumulative Internal Confi-
dence InC" (Eq. 6) of the nodes belonging to that
group:

Grs™(k) = > InC™(g)
{8j€Gne}

The GO terms with TS above a chosen threshold are
extracted and reported.

The score rewards those hits that are particularly sig-
nificant and specific, thanks to the contribution of the
Information Content (see yellow circles in Figure 1-ii).

The non cumulative measures InC" and GrS"“ have
been introduced to guarantee that no biases are intro-
duced due to the scores of child nodes.

Web server functionalities and features
Argot2 has been completely reengineered to speed up
and improve the annotation process. The algorithm has
undergone several adjustments to easily merge the GO
annotations retrieved from different databases. UniProt
[22] and Pfam are presently used as reference databases
and queried using BLAST and HMMER respectively.
The server can be accessed in three ways addressing
different needs from small to large scale function pre-
dictions (see Figure 2).
a) In the “interactive analysis” the user simply inputs
up to 100 DNA/protein sequences in FASTA format.
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For every sequence, a table is shown containing: pre-
dicted annotations with scores, hyperlinks to external
sources, lists of proteins contributing to the final anno-
tation, and a graphical position map of the retrieved hits
into the GO graph.

b) The “batch analysis” is addressed to researchers
interested in the annotation of entire genomes. Since
this process is highly demanding, due to the long com-
putational time required by BLAST and HMMER, we
ask users to perform BLAST and HMMER searches
locally and then upload search results into Argot2.

c) The last access option is called “consensus analysis”
as users may provide their own weighted GO terms for
each protein; these annotations can be obtained by any
other method or database, in addition or in alternative
to the “default” BLAST and HMMER searches used by
the web server. The outputs of the analyses of type b
and c are Excel or Tab Separated Values (TSV) files list-
ing the retrieved annotations along with specific metrics:
Total Score, Information Content and Internal Confi-
dence. Finally, predictions can be automatically clustered
in functional classes by using the GOClass tool (Addi-
tional file 1) and viewed as pie-charts. The Argot2 algo-
rithm steps are mainly based on the original idea
published in [17]. Important changes have been applied
to the procedure to filter potential false positive hits out
during the evaluation of the predicted terms. The raw
measure Total Score (TS) has also been redefined. The
server is freely accessible at the URL in [23].

Argot2 assessment

Argot2 has been benchmarked in four different condi-
tions to test how proteins (either kept or removed from
the databank) influence the results, and which is the
impact of domain based HMM searches. The four dif-
ferent configurations are indicated in the following as: a)
BH_with, b) B_with, ¢) BH_without, d) B_without. The
prefix “BH” means that Argot2 has been tested on
BLAST and HMMER searches, whereas “B” only on
BLAST searches. The suffix “with” means that the pro-
teins of the test set are present in the databank and
“without” means they have been eliminated. Argot2 has
been also compared with Blast2GO.

The assessment of Argot2 was based on the guidelines
of the “Critical Assessment of Function Annotations”
(CAFA) experiment [24] (see Additional file 7). We
tested over 4000 proteins with already available GO
annotations in GOA, both from Eukaryota (Euk) and
Prokaryota (Pro), randomly extracted from about 50000
sequences released for the CAFA challenge. In addition,
the well annotated yeast genome, comprising 6187
annotated proteins, has also been used as a test set. The
details and statistics of the test sets are available in
Additional files 2, 3, 4, 5 and on our web site [25].
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Figure 2 Activity diagram of the Argot2 web server. Activity diagram of the Argot2 web server showing the three types of access:
“Interactive analysis” for up to 100 sequences, “Batch analysis” for more than 100 sequences and “Consensus analysis” based on provided

The evaluation has been carried out at a protein-cen-
tric level using the following criteria. Let N be a pool of
unknown target proteins. For each given protein p, the
GO terms predicted by each method are retrieved and
ranked accordingly to the corresponding Total Score
TS, (Eq. 5).

For a given threshold ¢ applied to the Total Score TS,
the four different configurations are assessed based on
precision and recall, calculated for each protein p as:

TP TP;7

PR, = P ; RC = )
P TP, +FP, P TP, +FNj
The number of True Positives (TP,) is the size of the
intersection between the sets of benchmark (true) and
predicted GO terms with score TS, > £. The number of

False Positives (FP;)) is the size of the difference
between the sets of predicted and true GO terms. The
number of False Negatives (FNf,) is the size of the dif-

ference between the sets of true and predicted GO
terms. The denominators of (Eq. 7) and (Eq. 8) repre-
sent the total number of predicted terms and the num-
ber of true terms, respectively. If, for a given threshold
£, a protein has not any annotated term, its precision is
not calculated.

Assessment Method 1 (m1) with sliding threshold

We consider a set of threshold scores ¢ ranging from 0
to the maximum observed score £,,,,. For each t, preci-
sion and recall are averaged across the N proteins of the
pool, obtaining:
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1 N 1 N
t _ t . t _ t
PR = szl PR, ; RC'= ZPZIRCP
Each pair of values (1-PR’, RC) represents a point of
the precision/recall curve.

Assessment Method 2 (m2) with sliding threshold

We calculate precision and recall as in the case of m1
method, but all the GO terms retrieved by the different
tools (predicted terms) and those originally annotated
on the benchmark proteins (true terms) are first propa-
gated to the root. Thus, all GO terms standing in the
paths of the predicted/true terms up to the root are
considered in the assessment. The idea is that a pre-
dicted GO term, though not exact, may share some of
its parent nodes with some parent nodes of one true
GO term. This term cannot be considered completely
wrong but rather closely related and, consequently, its
shared parent nodes are included in the evaluation. See
Additional file 7 for details and extensive explanation of
assessment m1 and m2.

Results and discussion

Precision/recall curves for Molecular Function (MF) and
Biological Process (BP) have been calculated with
method m1 and m2 for yeast (Figure 3), Eukaryota, and
Prokaryota test sets (Additional file 3 and 4). The first
outcome of our benchmarking provides evidence of the
effectiveness of the combination of BLAST and
HMMER weighted hits (BH vs. B curves shown in
Figure 3) in recovering a large number of GO terms
(high recall), without significantly affecting precision,
and outperforming the use of BLAST alone.

One potential bias in the assessment of all methods is
that 84% and 99% of the proteins, in Euk and Pro test
sets respectively (Additional file 2), are annotated with-
out manual validation (Inferred from Electronic Annota-
tion, IEA) and an over-estimation of tool performance
may occur due to the use of predicted terms for func-
tional inference [26]. To investigate the influence of this
potential bias, the yeast proteome was used as bench-
mark, since a wealth of experimental data is available
for this organism (over 84% of the proteins contain at
least one non-IEA annotation. See Additional file 2).
Though this is a challenging task involving 6187
sequences, the assessment gives an idea of what Argot2
is expected to do on a genome scale, namely to obtain a
precise and thorough picture of molecular functions and
biological processes of an entire organism. The general
trends and the robustness shown in Pro and Euk test
sets are confirmed (see Additional file 3, 4, and 6 from
“a” to “h”). Nonetheless, a minor decrease in perfor-
mance can be observed in yeast. This is due to the fact
that yeast is mainly annotated with highly informative
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non-IEA GO terms, whose frequency in GOA databank
is very low and consequently their retrieval may be a
hard task. In particular it is possible to observe that the
recall worsen, whereas the precision is only marginally
affected proving that Argot2 is able to retrieve reliable
and even low-frequent GO terms (compare for example
the third column of Additional file 6 with the first two
columns of the same figure, row by row).

This trend is confirmed when target proteins are
removed from the databanks used to train Argot2 (see
curves suffixed by “with” vs. those suffixed by “without”
in Figure 3). This issue is not present in Pro and Euk
test sets, which mainly include highly frequent IEA GO
terms. As expected, results of Pro and Euk test sets get
slightly worse (see Additional file 3 and 4), but yeast is
more affected and Argot2 finds more difficulties in
extracting the right GO terms (see Figure 3, column
“m1”). Nevertheless, method m2 reveals that, in these
critical situations, Argot2 tends to be conservative rather
than inaccurate, i.e. to show a lower recall but still a
good precision (see Figure 3: “a” vs. “c”, “b” vs. “d”,
“BH_without” and “B_without”). In conclusion, the
lower performance is due to shallowness rather than
inaccuracy. This means that most of the predicted
nodes, though approximate, fall into the path of the cor-
rect annotations.

Finally, some interesting conclusions can be drawn in
the “one-to-one” comparison with Blast2GO using the
B_with Argot2 version that exploits the same BLAST
data of Blast2GO. According to benchmark “m2”, the
recall is generally higher for Argot2 whereas the precision
is comparable, to some extent, between the two tools.
However, Argot2 is more effective in retrieving the exact
original annotations, as evidenced by the use of assess-
ment method m1 (see “m1” column in Figure 3 and “m1”
rows in Additional file 6). The irregular contour trend of
Blast2GO may be due to the sliding “Annotation Cut-oft”
parameter, which does not seem to be a well discriminat-
ing score. Fine tuning may be required, even though the
default value suggested for the parameter “Annotation
Cut-off”, i.e. 55, gives the best trade-off between precision
and recall. Moreover, Argot2 is fairly more computation-
ally efficient compared to Blast2GO. Starting from
BLAST and HMMER results, which remain the limiting
steps of the process, Argot2 takes only few hours to
annotate an entire genome.

Conclusions

Argot has been revisited to increase both accuracy and
precision, thanks to an improved weighting scheme
and the introduction of Pfam models. The server auto-
matically downloads new releases of the used data-
banks UniProtKB-GOA, UniProt, Gene Ontology, and
Pfam on a monthly basis to give end users an updated
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Figure 3 Precision/recall curves of the yeast benchmark test. Precision/recall curves for Molecular Function (MF) and Biological Process (BP)
calculated with method m1 and m2 (see the main text) for yeast test set. Recall and 1-precision of the tested algorithms are reported in y-axis
and x-axis, respectively, for the two configurations “with” (keeping the benchmarked proteins in the databank) and “without” (removing them
from the databank). See the main text for the abbreviations BH_with, B_with, BH_without, and B_without.

access to the tool. Presently, in our testing conditions
Argot2 performs reasonably well in terms of both pre-
cision and recall, showing that TS score can effectively
discriminate among false and true positives. The main
rationale has been to create a tool able to favour the
precision with respect to the recall. This is critical
when annotating very large genome data sets, since
reducing the false positives rate is definitely desirable.
This can prevent biased information from impacting

negatively on post-genome studies and statistics. In
addition, we plan to associate a p-value to the raw
score TS and to add new sources of information, try-
ing to give an answer to non-trivial cases that lie in
the twilight zone beyond similarity based evidences. In
future releases we could explore other metrics, for
example to assess different semantic similarity mea-
sures and to compare their performances with Lin’s
formula currently used by Argot2 (see [27]).
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Additional material

Additional file 1: GOClass algorithm details. Details of the GOClass
algorithm used to cluster the GO terms, and more general views of the
results obtained by Argot2.

Additional file 2: Datasets statistics. Parameters used in the
benchmarks and some statistics about the datasets.

Additional file 3: Precision/Recall curves for the Eukaryota dataset.
Precision/recall curves for Molecular Function (MF), Biological Process (BP)
and Cellular Component (CC) calculated with methods m1 and m2 for
Eukaryota test set.

Additional file 4: Precision/Recall curves for the Prokaryota dataset.
Precision/recall curves for Molecular Function (MF), Biological Process (BP)
and Cellular Component (CC) calculated with methods m1 and m2 for
Prokaryota test set.

Additional file 5: Precision/Recall curves for the Yeast dataset.
Precision/recall curves for Molecular Function (MF), Biological Process (BP)
and Cellular Component (CC) calculated with methods m1 and m2 for
Yeast test set.

Additional file 6: Precision/Recall curves for the Euk, Pro and Yeast
datasets. Precision/recall curves for Molecular Function (MF) and
Biological Process (BP) calculated with methods m1 and m2 for Euk, Pro
and Yeast test sets.

Additional file 7: CAFA guidelines explanation. Document that
explains m1 and m2 methods using a simple example.

List of abbreviations used

All abbreviations in the text excluded from the following list are specific of this
paper and have been defined in the main text.

BLAST: Basic Local Alignment Search Tool; GO: Gene Ontology; GOA: Gene
Ontology Annotation; EC: Enzyme Classification; PSI-BLAST: Position-Specific
[terative Basic Local Alignment Search Tool; HMM: Hidden Markov Model;
TSV: Tab Separated Values; URL: Uniform Resource Locator; CAFA: Critical
Assessment of Function Annotations; TP: True Positive; FP: False Positive; FN:
False Negative; MF: Molecular Function; BP: Biological Process; IEA: Inferred
by Electronic Annotation.
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