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Abstract

high-throughput drug screening.

Background: Chemical shift mapping is an important technique in NMR-based drug screening for identifying the
atoms of a target protein that potentially bind to a drug molecule upon the molecule’s introduction in increasing
concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference
spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound
protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-
one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing
peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference.
Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for

Results: We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors
explicitly and performs many-to-one mapping. On the proteins: hBcly,, UbcH5B, and histone H1, it achieves an
average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as
input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment
algorithm that uses just '°N-NOESY, while avoiding TOCSY experiments and '*C-labeling, to resolve the ambiguities
for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better.

Conclusions: Our mathematical programming approach for modeling chemical shift mapping as a graph problem,
while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug
screening based on limited NMR data and homologous 3D structures.

Background

X-ray crystallography and NMR spectroscopy are the
predominant methods for experimental 3D protein
structure determination. The advantage of NMR over
any other method is that the protein sample can be stu-
died at atomic resolution in solution, and in special
cases even in living cells (in-cell NMR) [1,2]. In addition
to structure determination, NMR has been used success-
fully in protein-protein interaction studies [3], studies
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on protein dynamics [4], and in drug design and screen-
ing [5]. Among the more successful NMR methods for
drug design and screening, fragment-based methods,
such as SAR by NMR [6,7], have found their way in
pharmaceutical companies and have resulted in discov-
eries that are currently undergoing clinical trials [8]. In
SAR by NMR and other NMR studies, chemical shift
mapping is used to identify the atoms in a target protein
that experience chemical shift changes upon introduc-
tion of a ligand or upon changes in environmental
conditions.

The chemical shift, 5, of an atom is its resonance fre-
quency (in units of ppm) measured by NMR experiments.
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We consider the chemical shifts of three NMR-active iso-
topes with focus on the latter two: 3C, '°N and 'H.
Among the large variety of NMR spectra, only 2D
HSQC, 3D NOESY, and 3D TOCSY will be discussed.
Each 2D HSQC peak gives the chemical shifts of an N,
HY group, including backbone amides and side chains
with amide groups. Our focus is on the backbone amide
chemical shifts, which serves as an identifier for an
amino acid residue. Each 3D NOESY peak (NOE) con-
sists of three chemical shifts: N, HY of an amide group,
and another proton that is within a distance of about 5A
from the H". Therefore, each NOE corresponds to a HV-
H contact. Each 3D TOCSY peak consists of the chemi-
cal shifts of an amide group, and a proton within the
same amino acid as the amide. Therefore, TOCSY gives
the side chain protons. In this work, we consider only H*
and H".

Figure 1 shows a small region of an overlay of five '°N-
HSQC spectra of a protein titrated at increasing ligand
concentrations. Each “peak” can be picked manually or
with an automated peak picking tool [9]. Normally, the
assignment of peak to amino acid residue, known as the
resonance assignment, is known for the peaks of the
unbound protein. The NMR spectrum with known reso-
nance assignment shall be referred to as the reference
spectrum, while the other spectra shall be the perturbed
spectra. The perturbed spectrum of the fully saturated
protein shall be referred to as the target spectrum. In
chemical shift mapping, the goal is to trace a path from
target peaks to reference peaks, or vice versa, to obtain a
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Figure 1 A region of an overlay of five ">N-HSQC spectra at
increasing ligand concentrations. Each peak is represented by its
contours. Red peaks correspond to the unbound protein; yellow to
the protein at 1:8 saturation; green to 1:4; blue to 1:2; and magenta
to the fully saturated protein. The maxima of the red peaks are
labeled by crosshairs and residue numbers. The ligand is unlabeled,
so its peaks are not present.
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resonance assignment for the target peaks. From the
figure, we can see that residue 6 has moved, and the
mappings for 32 and 90 are ambiguous due to peak over-
lap. The “peak walking” pattern observed in the figure
applies to fast exchange systems, which is the focus of
this paper. Many experimental schemes for studying
ligand binding are for fast exchange systems [10]. After
the assignment has been determined, one can compute
binding constants and rate of change parameters, such as
by using Auto-FACE [11].

Typically, chemical shift mapping is done manually or
semi-automatically due to errors, noise, peak overlap,
and missing data. This manual work can be tedius and
time consuming if the protein is large, if there are many
spectra, or if there are many ambiguous mappings.
Moreover, results derived manually is naturally biased,
so the results can be difficult for others to reproduce.
To our knowledge, there are only a few automated
methods for this problem, and they all produce one-to-
one mappings rather than allowing for ambiguity.
Nevertheless, automated methods are necessary for
high-throughput drug screening.

FELIX-Autoscreen [12] formulates the assignment of
peaks in the reference spectrum to peaks in a perturbed
spectrum as a bipartite graph matching problem, such
that the sum of the chemical shift and peak shape differ-
ences is minimized. Their approach of optimizing the
sum of the distances is better than choosing the peak
nearest to each reference peak because the local greedy
approach disregards the mappings of other peaks
nearby, which results in errors. Dummy peaks were
used to handle missing data, and peaks were picked on
the fly during the execution of their algorithm. To han-
dle more than one set of perturbed spectra, the bipartite
matching algorithm was repeated successively, where
the current perturbed spectrum becomes the new refer-
ence spectrum once it has been mapped. They tested
their approach on a 74-residue protein domain in 8 dif-
ferent ligand concentrations, and obtained results simi-
lar to their manual efforts. The successive approach,
however, is a local greedy approach that does not con-
sider all the spectra simultaneously, so information
about potential peak movements in later perturbed spec-
tra are ignored.

NvMap [13] also used a greedy algorithm to succes-
sively match perturbed spectra. However, unlike FELIX-
Autoscreen, when matching the reference to a perturbed
spectrum, the sum of the distances was not used.
Instead, the pair of reference and perturbed peaks with
the shortest distance was chosen and removed from
consideration, and then the process was repeated for the
next shortest. They tested their method on 97 residues
of the SUMO protein on 2 different ligands, each at 6
different ligand concentrations. They obtained an
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average accuracy of 95%. The main source of error was
overlapping peaks within a spectrum, where only one of
the peaks was picked and added to the peak list. An
older method, MUNIN [14], identifies spectra similarity,
but not peak paths. By examining a specific subregion in
a mixture of different spectra, where only one had bind-
ing, it was able to identify the spectrum with binding
present.

For large proteins, ambiguous mappings are inevitable.
Rather than finding the unique mapping between peaks
in the target to peaks in the reference, we find a set of
plausible reference peaks for each target peak, where
plausibility is determined by a scoring function. If the
residue assignment for the reference is known, then the
mappings give a set of possible residues for each target
peak; e.g., ILE 3, LEU 27, LEU 78. We want this set to
be small, but yet contain the correct amino acid. In this
paper, we present a novel peak walking model that
describes the movements that peaks can make, and an
approach that generates high scoring mappings by enu-
merating high scoring paths based on this model. Unlike
previous methods, errors are modeled explicitly without
using dummy peaks. We call our method PeakWalker.
We tested PeakWalker on 3 proteins with publicly avail-
able peak lists: UbcH5B titrated with Not4 [15]; hBclyy,
with BH3I-1 [11,16]; and histone H1 at 2 different tem-
peratures [17]. At 218 residues minus a removed flexible
loop region R45 to A84, which was removed from the
DNA sequence prior to NMR, hBcly; is much larger
than the proteins tested by other automated methods.
The average accuracy on the test set was at least 96%,
with an average of less than 1.5 amino acids predicted
per target peak. We compare PeakWalker to a greedy
approach similar to that used by NvMap, but modified
to return multiple mappings. We also tested PeakWalker
by varying the number of noise peaks.

In the second half of this paper, we describe our struc-
ture-based resonance assignment method, PeakAssigner,
which takes the output of PeakWalker as input, and then
resolves the mapping ambiguities using 3D >N-NOESY
and the 3D structure of a homologous protein. In chemi-
cal shift perturbation studies, a 3D structure is often
available, such as from the Protein Data Bank (PDB) [18].
It is often the case that the bound structure of the pro-
tein is similar across different ligands that can bind to it,
so that one bound structure can be used for studying dif-
ferent ligands. Therefore, structure-based resonance
assignment methods [19-24] are ideal for disambiguating
the mappings. Currently, there are no automated back-
bone resonance assignment methods that use only a ser-
ies of ">N-HSQC spectra and ambiguous NOEs from
1>N-NOESY spectra. NOEnet [20] requires unambiguous
NOEs, such as from 4D NOESY. The Nuclear Vector
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Replacement (NVR) [21,23] approach requires a sparse
set of unambiguous NOEs from 3D NOESY, residual
dipolar couplings (RDC), and amide exchange rates. The
contact replacement (CR) [22] method can handle
ambiguous NOEs from 3D I5N-NOESY, but it also
requires 3D '’N-TOCSY, and 3D HNHA.

Our previous work on structure-based resonance
assignment [19] has requirements similar to the CR
method except that instead of HNHA, it requires a
known resonance assignment from a protein mutant,
which serves as a reference. We were able to perform a
fully automatic backbone resonance assignment from
automatically picked peaks for a small protein. However,
using 3D '"N-TOCSY and a similar resonance assign-
ment limited the practicality of the method. In large pro-
teins, the TOCSY can have many overlapped peaks or
many missing peaks if the protein is deuterated. In addi-
tion, each reference peak can have many corresponding
target peaks, so there can be many ambiguous mappings.

In this work, we no longer use TOCSY. The TOCSY
was previously used to identify possible amino acid types
for each target peak, and this was used to reduce the num-
ber of ambiguous mappings. To reduce ambiguity without
TOCSY, a series of perturbed spectra could be used. The
TOCSY was also used to obtain the chemical shifts of the
H* atoms for matching against NOESY peaks. Such H*
chemical shifts are available in the NOESY spectrum, but
in a more noisy form. We have also added a further
improvement. The constraint that each NOESY peak is
assigned to at most one contact was not enforced in our
previous algorithm. In adding this constraint, our new
algorithm not only performs resonance assignment, but
also backbone NOE assignment and H* assignment,
simultaneously. Although NOE and H” assignment is not
the main output of our algorithm, we show that by per-
forming them, there is an improvement in resonance
assignment accuracy, on average. This is demonstrated
with simulated NOESY peaks from the protein structures
[PDB:1KA5], [PDB:1EGO], [PDB:1G6]], [PDB:1SGO], and
[PDB:1YYC]. On hBcly;, UbcH5B, and histone H1, Pea-
kAssigner achieves an average accuracy of over 94%.

At the end of this paper, we briefly consider the slow-
exchange case. In slow exchange, the peaks for both the
free and bound state may appear in the spectra at the
same time, with the intensity of the peak signals propor-
tional to the concentration of each state. If the protein in
Figure 1 undergoes slow exchange, only the red and
magenta peaks would be present. In the unbound protein,
only the red peaks are present. As the ligand concentration
increases, for residues undergoing chemical exchange,
magenta peaks will appear at increasing peak intensities
relative to the corresponding red peaks, which disappear
in the fully saturated case.
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Results and discussion

This section will describe the mathematical model used
by PeakWalker and PeakAssigner, followed by the test
results. The test data is described in detail in the
Methods.

Peak walking problem

PeakWalker is based on k-dimensional maximum
matching, which is NP-Complete and APX-complete for
k > 2 [25,26]. For k = 2, the problem is maximum bipar-
tite matching, which is solvable in polynomial time [27].
Consider the peak lists in increasing ligand concentra-
tions {T; | i € [0, 1, ..., k - 1]}. T denotes the reference
peaks, and Ty ; denotes the target peaks. Each peak is
represented by a vertex. The chemical shift change or
distance is used to draw edges between vertices. The
distances used in this work include

ASn(h, ') = [8n(h) — Sn(H)I
Adpn (b h') = 18w (h) — Spn ()] (1)
Adari( W) = Adw(h, 1) +10 x Adgp(h, 1)

where 0x(h) is the function that returns the N chemi-
cal shift of /, 8y~ (h) the HY chemical shift of /, and the
10 comes from the gyromagnetic ratio of 'H and '°N.
Euclidean distance and various types of weightings can
also be used to measure chemical shift change [28]. For
peaks h € T;and ' € T;,;, an edge is drawn between
them if Adn(h, ') < ty and Adyn(h, ') < tyn, where ty
and fy~ are user-specified thresholds. For UbcH5B and
histone H1, 1.0 ppm and 0.2 ppm were used for £y and
tyn, respectively. This is comparable to the thresholds
used by FELIX-Autoscreen [12]. Smaller thresholds of
0.75 ppm and 0.125 ppm were used for hBcly; because
it has more perturbed spectra, so the chemical shift
changes are expected to be more gradual. Edges are not
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drawn between vertices within the same peak list, so the
T;s are disjoint.

Definition 1. The maximum weighted k-dimensional
matching on instance T € Ty x T1x ... x Ti_1, where the
T;’s are disjoint, is the set of paths M & T that maxi-
mizes some scoring function on M subject to the con-
straint that for any pair of paths x, y € M, x and y have
no vertices in common.

The problem is equivalent to finding the best scoring
set of vertex-independent paths from reference peaks to
target peaks. Our problem is a constrained version of
this problem, where the allowable paths are limited by
the peak movements defined by a peak walking model.
Figure 2 illustrates the model. A peak in T; can transi-
tion to nearby peaks in T;,; within 5 and. tyv These
transitions shall be referred to as consecutive transitions.
A peak can also disappear permanently, or disappear in
T;,1, but then reappear in T;,,. The former shall be
referred to as a disappearing transition, and the latter a
jump. Only jumps of length 2 are explicitly modeled.
Finally, a peak in T; may correspond to a residue with
no peaks in T}, V; <i. These shall be referred to as new
peaks. Transitions correspond to directed edges in the
graph. New peaks have no predecessor peak, and disap-
pearing peaks have no successsor. Both of these peaks
result in subpaths. Peaks that have almost identical che-
mical shifts may have only one peak present in the peak
list due to peak overlap. To handle this, we define two
peak states: ambiguous and unambiguous. A peak can
be in only one state. An ambiguous or overlapped peak
allows multiple transitions, while an unambiguous peak
allows only one in- and one out-transition. Ambiguous
peaks allow paths to share peaks subject to a penalty.
The number of in- and out-transitions for these peaks
are equal because peaks can only be created or
destroyed in the ways allowed by our model. To limit
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edges is noise

disappearing peak

1 .
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! transition

and one out-transition.

: peak overlap
H i T —
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Figure 2 Peak walking model for fast exchange. The allowable transitions include new peak, consecutive, jump, and disappearing. A peak is
either ambiguous or unambiguous. An ambiguous peak can have multiple transitions, whereas an unambiguous peak can have only one in-
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the number of possible paths, only consecutive transi-
tions are allowed for ambiguous peaks. A peak that cor-
responds to noise is modeled implicitly. Noise peaks are
those not assigned to any path. The chemical shift map-
ping problem is defined as follows.

Definition 2. The mappings for peak h; € Ty is the
set of its possible residues R(h;). If |R(h;)| > 1, or if |R
(h;)| = 1 and R(hy) n R(hy) = & for hy 2 h;, then R(h;) is
ambiguous. This set is obtained by first finding M, the
maximum weighted k-dimensional matching on the
graph defined by the above peak walking model that
allows for subpaths and vertices to be shared. Let S be
the amino acid sequence of the protein, and one-to-one
function fy : To — S be the known reference assignment.
For paths in M that end in some hj e To and h; € Ty,
add fo(h)) to R(h;).

The optimal and near optimal sets of paths are gener-
ated to obtain different mappings per peak. This is done
by modeling the problem as a binary integer linear pro-
gram (BIP) and using the one-tree algorithm [29] to
generate multiple solutions that are guaranteed to be
within a given percentage of the optimal solution. This
percentage, called the gap, is an input to the BIP solver.
We used CPLEX® as the solver.

Mathematical model for peak walking

A linear objective function is maximized subject to lin-
ear constraints and binary variables.

Binary variables

The variables indicate the transitions and peak states.

o Xy Equals to 1 if peak & € T; transitions to /' €
T;;1. This variable represents a consecutive
transition.
e X;,; Equals to 1 if h € T;is a single unambiguous
peak. Equals to O if it is an ambiguous peak. This
variable represents peak state.
o Dy; Equals to 1 if 1 € T; is missing its peaks in Tj,
Vj >i. This represents a peak that disappears and no
longer reappears.
o Juin’ Equals to 1 if & € T; is missing in T;,, but
transitions to /' € Tj,,. This represents a jump.
+ Nj; Equals to 1 if & € T; has no associated peaks in
T}, ¥; <i. This represents a new peak.
Objective function coefficients
The objective function coefficients score the transitions
and peak states, so the sum of the coefficients multiplied
by their corresponding variables gives the score of the
paths. Ideally, if a database of peak lists and chemical
shift mappings are available, these coefficients could be
obtained through training with machine learning techni-
ques, so that the manual mapping process could be
modeled. Unfortunately this database does not exist, so
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we used our best judgement to scale the scores relative
to each other.

o C(Xnin) = D(ASN (I, h), 0, t0IN) + B(ASn (I, h), 0, tolHIN),
This is the score of a consecutive transition, where
D(x, m, s) =2 x (1 - cdfix, m, s)). cdf is the cumula-
tive distribution function of a normally distributed
variable with mean m and standard deviation s. tolN
and tolHN were set to values, such that ¢ and tgw,
respectively, correspond to 2 standard deviations
from a mean value of 0. The score is a number
between 0 and 1, with small chemical shift changes
being closer to 1 (because x is positive, so cdf
returns a value of at least 0.5).

o Clm)=2x(k—i—1)x (®(*™,0,t0lN) + ®(**", 0, tolHN)).
This score penalizes ambiguous peaks by rewarding
unambiguous peaks. We require ambiguous peaks to
have at least 2 paths of compensating transitions
from i to k - 1. The reward decreases with increasing
i because there are fewer transitions available. The 2
inside @ encourages the compensating transitions to
have scores better than this.

« C(Dpi) = ®(tn, 0, toIN) + (i, 0, tol HN). This is
the score for disappearing peaks. We give such
peaks a positive score similar to a consecutive transi-
tion with a chemical shift change of £y and tpn.

o C(niw) = 0.75 x (P(ASn(H, 1), 0,1t0IN) + ®(ASy~ (K, h), 0, tolHN)),
This is the score for jumps. The 0.75 encourages
consecutive transitions over jumps of the same che-
mical shift change.

o C(Ni)=—(k—i—1) x (®(*,0,t0IN) + (>, 0, tolHN)).
This is the score for new peaks. The score is nega-
tive to ensure that there must exist compensating
transitions from i to k - 1.

« Peaks corresponding to noise have no transitions,
and they get set to unambiguous because we are
maximizing and the unambiguous score is non-
negative.

Constraints
1. For each peak (ambiguous or unambiguous), the
number of in-edges is equal to the number of out
edges. Even if a peak disappears permanently (an
out-edge), the peak must have come from a previous
transition or be a new peak, which is considered an
in-transition. From Figure 2, we can see that this
constraint is Vi € [1, k - 2], YVh € T,
ZpXiw(i-1)n + 2wl i-2)h + Npi = ZpXnie + Dpi + X Jnin.
2. Ambiguous peaks are limited to only consecutive
transitions. To get rid of jumps, define the reified
constraint Ji =1 < >, Jwi—2pn = 1, Vie [2, k- 1],
Vh € T, where Jj; is a binary variable. Then jumps
are removed with J,; < Xj,; since if Xj; = 0 (ambigu-
ous), then J;; = 0 and Y}, Jw(i—2)n = 0. Disappearing
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and new peaks are handled similarly. Reified con-
straints allow one to get the truth value of a logical
condition. Such conditions can be combined to form
logical constraints, such as AND, OR, NOT, IF
THEN, and even the absolute value of a linear
expression. Reified constraints and logical con-
straints can be expressed as linear constraints using
auxiliary binary variables and techniques from opera-
tions research [30].
3. For each unambiguous peak, the number of in-
transitions is bounded above by 1; similarly for out-
transitions. Define the reified constraints
Ii=1< Y 5 Xuii—vh + > Iwi-2n + Nui <1, and
Oni=1< Y Xniw + Dpi + Yy Jniw < 1. Then the
constraint is expressed as [j,; = X;,; and Oy; = Xj,;.
This, combined with Constraint 2, also handles, for
ambiguous peaks, the constraint that the number of
consecutive in-transitions is greater than 1 and the
number of consecutive out-transitions is greater
than 1.
4. Consecutive transitions generally do not zig-zag.
That is, peaks typically do not take a large step in
one direction and then take a large step in the
reverse direction. To enforce this, let he T, i’ € T;
1 W e T, If 05 < Adn(h, K) < ity
0.05 < Aéyn(h, 1) < tyn, 0.5 < Adn(K', B") < tn,
0.05 < Aéyn (W, W) < tyn, then consider the follow-
ing vectors: Viw = (8n(1) — 8n(h), 10(8i () — 8y (h)))
and Vi = (Sn(h") — dn(H), 10(8n (B”) — S~ (H))).
The consecutive transitions / to 4’ to h" zig-zag if
the angle between V},;» and Vi, )40, is between
105 and 180 degrees. When / transitions to /', tran-
sitions from /’ to k" that result in zig-zag are pre-
vented by adding the constraint Xj;;» < Zp 1),
where we have the reified constraint
Zp(ivy =1 < (Zh”wherIIOS,ISOI Xp(syir = 0). Thus,
if Xj;» = 1, then all consecutive transitions from #’
to K" that cause zig-zag are prevented because the
sum is forced to 0.
Number of solutions
The number of solutions generated is dependent on the
gap tolerance provided to CPLEX. Unless specified
otherwise, a gap of 1% was used. To determine the
number of solutions that should be generated, various
numbers were tested to determine their effect on the
average number of residues predicted per peak. We
observed that as the number of solutions increased, the
average number of residues plateaus, so we used the
value at the start of the plateau as the number of solu-
tions. Likely, no new mappings were generated because
paths containing these mappings caused a violation of
the gap optimality criteria.
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Greedy peak walking

For comparison purposes, we implemented the greedy
approach in NvMap, but also added no zig-zagging as
described above, and jump handling of arbitrary length
by allowing unmatched peaks in T; to be matched to
peaks in T; for any j >i. The same chemical shift thresh-
olds as those used by PeakWalker were used. None of
the existing approaches deal directly with ambiguous
mappings. To generate these without generating many
mappings per peak, we used a greedy approach. For %;
€ Ti.1, where h; is matched to #; € Ty, in increasing
order of Adnyl(hj, hp) for any hy, = h; in Ty, add fo(h))
to R(hp) until a maximum number of additional map-
pings have been added. Various values for the maximum
were tested.

Resonance assignment
Some definitions are needed before we can formally
define this problem and present our algorithm.

Definition 3. A NOESY peak p (on(p), Sy~ (p), oul(p))
induces an H* peak for HSQC peak h(3n(h), 8y~ (h)) if
Adn(p, h) < on, ASpn(p, h) < opn, and Sy(p) matches
within 3 standard deviations of the mean value of
81« (T(a)) of at least one amino acid a € R(h), where T
(@) is the amino acid type of a. The mean and standard
deviations of each amino acid type were obtained from
the Biological Magnetic Resonance Data Bank (BMRB)
[31]. on, OHN are match tolerances. We used 0.5, 0.05
ppm. Since the intensity of NOESY peaks is inversely pro-
portional to the distance of the underlying protons in
contact, and intra-residue H", H* ’s are relatively close,
we can expect the intensity of intra-residue HY-H”
NOESY peaks to be large. Among the 8 closest (by Adny
(p, h)) NOESY-induced H* peaks of HSQC peak h, we
took the 4 most intense peaks as a possible induced
8 (h).

Definition 4. A contact ¢ consists of c[0] = HY, which
is the amide proton of one amino acid denoted by a,
and c[1] = HYor H,, the amide or alpha proton of
another amino acid denoted by b. For H%, it is possible
that a = b. Let P(c) be the proton type (H"or H*) of c[1].

Definition 5. A NOESY peak match #n consists
of n[0] = (8n(5), 8y~ (s)) of HSQC peak s, n[1] = dyn(t)
or an induced Jdy«(t) of HSQC peak t,
n[2] = (6n(p), 8y~ (p), 8ui(p)) of some NOESY peak p;
where, Adn(s, p) < On, Adyn (s, p) < oy, and Ady(t, p)
< 0y. We used 0.05 ppm for 6. For H%, it is possible
that s = t. Let P(n) be the proton type of n[1].

Definition 6. Amino acid a matches HSQC peak h if a €
R(h).

Definition 7. Contact ¢ matches NOESY peak match
n ifi) a € R(s), where amino acid a € c[0] and peak s €
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n[0], ii) b € R(t), where b € c[lland t € n[1], and iii)
P(c) = P(n).

Definition 8. Let C be the set of all contacts from the
3D structure of a homologous protein, let P be the set of
all NOESY peaks, and let S be the amino acid sequence
of the protein. The resonance assignment is a one-to-one
function gy : Ty, — S, where gi(h;) € R(h;) for all h; €
Tx.1, and the NOE assignment is a one-to-one function
g P — C, such that the scoring function
(Zhen, Zenmes w1081 (1)) + (per L ec w2(pr £2(6))) is
maximized. The functions wy : Tp—1 X S — Rand w, : P
x C = R weigh each individual resonance and NOE
assignment, respectively.

The BIP from our previous work [19] was modified to
support the NOE assignment of HY-H" and HV-H*
contacts without TOCSY.

Binary variables

The variables indicate individual resonance and NOE
assignments. Note that each NOESY peak will be
assigned to at most one NOESY peak match and vice
versa. Therefore, assigning contacts to NOESY peak
matches is equivalent to assigning contacts to NOESY
peaks. If there is only one possible NOESY peak match
for a given NOESY peak, then that peak is unambigu-
ous.

+ X, Equals to 1 if amino acid a is assigned to
HSQC peak /4, where a matches /.
+ X.,, Equals to 1 if contact ¢ is assigned to NOESY
peak match #, where ¢ matches n.
Objective function coefficients
A linear objective function is maximized. The coeffi-
cients are the weights of the assignments, and they are
non-negative.

e wi (Xop) =3 x (1 — Aa”’jn‘j%f“_);’jgn‘(f”‘h’ ). This is the
score of assigning amino acid a with reference peak
fo_l(a) to target peak h. min(h) and max(h) is the
smallest and largest, respectively, Adyy among the
amino acids in R(k).
o W0 (Xen) = D(ASN(P5), 0, )+ D(A (p,5), 0, ™4 ) + B(ASu(p, 1), 0, %) + F(),
This is the score of assigning contact ¢ to NOESY
peak match #n, where HSQC peak s € n[0], HSQC
peak ¢ € n[1], and NOESY peak p € n[2]. F(c) is a
weight on the type of contact. In the absence of
missing NOESY peaks, contacts involving adjacent
amino acids should have a NOESY peak match, so it
is natural for adjacent amino acid contacts to have
higher weight than nonadjacent. ® is the same as
the one defined in the peak walking mathematical
model.

Constraints
1. Each amino acid a is assigned to at most one
HSQC peak. This is >, Xgn < 1.
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2. Each HSQC peak # is assigned to at most one
amino acid. This is >, Xsn < 1.
3. Each contact ¢ is assigned to at most one NOESY
peak match. This is ), X;n < 1.
4. Each NOESY peak p € n[2] of NOESY peak
match # is assigned to at most one contact. This is
2ol Xen = 1.
5. Each pair of HSQC peaks n[0], n[1] of NOESY
peak match # has at most one NOESY peak. This is
D enj2) Xen < 1.
6. Contact c is assigned to NOESY peak match # if
and only if amino acid ¢[0] is assigned to HSQC
peak #n[0], and ¢[1] is assigned to n[1]. This con-
straint is similar to the if and only if constraint in
our previous work.
(@) V&, Yh, 3 nenjo) Xen = Xejoln
(b) V&, Y1, 3 inenpn) Xen < Xe11h
7. Each H” proton, z, of amino acid a4, is assigned to
at most one induced H* peak, y;, of HSQC peak 4.
Let bzﬂ,yh =1« Zc,n | zeec[1],ynen|1] Xen = 1 be a reified
constraint, where b, = 1if z, is assigned to y;. The
summation is over all X_, that contain z, and yj,.
The constraint is then Yza, ), bz,yn < 1.
8. Each induced H” peak, y; of HSQC peak #, is
assigned to at most one H” proton. This constraint
is Vyn, Zza bza,yh <L
Multiple assignment possibilities
Similar to PeakWalker, multiple solutions corresponding
to different assignment possibilities were generated.
From the multiple solutions, a consensus assignment
was generated by running the above BIP with w;(X, ;)
equal to the number of times amino acid a was assigned
to peak & and wy(X,,) equal to the number of times
contact ¢ was assigned to NOESY peak match 7.

PeakWalker results

Table 1 compares the accuracy between the greedy algo-
rithm with PeakWalker. Different values for the maxi-
mum number of candidate residues were tested with
greedy. Only a select few are shown. Accuracy is defined
as the number of target peaks whose possible mappings
contain the correct residue divided by the number of
peaks with mappings predicted, including noise peaks.
Since one could predict mappings for only a few peaks
and still have high accuracy, we have also included the
number of peaks whose mappings contain the correct
residue. The numbers are averages over 10 trials, where
each trial used different noise peaks. The average num-
ber of residues predicted per peak varied by at most 0.1
in the trials (not shown). For Histone H1, the accuracy
for the ambiguous peak list case is defined as the num-
ber of target peaks whose mappings include all the pos-
sible residues divided by the number of peaks with
mappings. In general, PeakWalker has comparable or
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Table 1 Comparison between Greedy and PeakWalker
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Protein Method Num Correct Num Correct Range Acc (%) Acc Range (%) Avg Num Res/Peak
hBcly,. Greedy 1109 110-111 95.7 94-96.5 1
Greedy 111 1M1-112 90.7 89.5-91.7 1.7
Peakw 1163 116-117 96.8 95.9-97.5 14
Ubch5b Greedy 114.6 113-115 94.2 91.5-96.7 1
Greedy 1169 116-118 94.4 93.5-95.2 1.2
Greedy 1208 120-122 972 96-98.4 1.5
Peakw 1204 119-123 98.1 96.0-99.2 1.2
Histone H1Y Greedy 78.1 76-83 914 89.4-93.3 1
Greedy 83.0 83-83 955 94.3-96.5 1.5
PeakW 85.1 85-86 99.3 97.7-100 13
Histone H1* Greedy 720 72-72 828 80.9-83.7 20
Peakw 76.0 76-76 88.8 874-894 13

The numbers are averages over 10 trials. Accuracy is defined as the number of target peaks whose mappings contain the correct residue divided by the number
of peaks with mappings, including noise peaks. Avg Num Res is the average number of residues predicted per peak with a mapping. Results for the best guess
unambiguous mapping (U) and the ambiguous mapping (A) are given for Histone H1. The mappings for a peak is correct in the ambiguous case if it contains all

possible residues.

better accuracy, and comparable or more correct predic-
tions with fewer candidate residues per peak.

The peak lists of hBcly; contained the most errors
among the proteins. Out of 136 peaks in the reference,
only 114 had a complete path without any missing
peaks between the reference and target. 12 residues did
not have any peak in the reference list, but had peaks in
the other lists. There was one residue with a jump of
length 2, and 3 residues with a jump of length 3. There
were no jumps longer than 3. Despite not explicitly
modeling jumps of length 3, on average PeakWalker got
2.4 of those mappings correct. For UbcH5B, all the tar-
get peaks had corresponding peaks in the reference.
There were 2 jumps of length 2, and 4 jumps of length
3. On average, PeakWalker got 3.2 out of those 4 cor-
rect. There were no jumps in histone H1.

We also tested hBclx;, using only 6 peak lists instead
of 11 by taking every other list. This corresponds to per-
forming fewer NMR experiments. The accuracy
decreased slightly to 95.7% with 114.9 correct predic-
tions. hBcly; was also tested with no overlapped peaks
merged in the input. This corresponds to the result if all
overlapped peaks could be predicted. For this test, at a
cost of optimality, the gap was set to 4% to keep the
run time to less than 5 mins per trial on an Intel Core 2
Duo T9300 laptop with 3 GB RAM. Nevertheless, the
accuracy was 98.7% with an average number of correct
mappings of 138.0 (an increase of over 21), at an aver-
age of 1.7 residues per peak. This indicates that peak
overlap can hide many peak mappings, which can be a
problem if these residues are involved in binding. How-
ever, binding residues tend to have chemical shift
changes upon binding, so to completely hide such a
residue, every time it moves there must exist at least
another peak with similar chemical shift to overlap it. In

the case of hBcly;, peak overlap masked only the target
peak of one known binding residue with significant shift
changes, but the residue’s other peaks were not masked.

Table 2 displays the results of a noise test on hBcly;.
The results are averages over 10 trials. The number of
noise peaks added ranged from 0 to 50% of the number
of peaks prior to addition. All the tests in Table 1 had
10% noise. The accuracy at 10% is actually slightly larger
than the accuracy at 0% because by chance, some noise
peaks provided alternative paths from the target peak to
its correct reference. Accuracy depends on the location
of the noise peaks relative to non-noise peaks. In gen-
eral, the number of correct predictions and the accuracy
decreases with increasing noise, but the decrease is rela-
tively graceful for randomly distributed noise.

PeakAssigner results

To compare the combined NOE and resonance assign-
ment approach of PeakAssigner with the method in our
previous work, we ran both on data simulated from the
structures [PDB:1KA5], [PDB:1EGO], [PDB:1G6J],
[PDB:1SGO], and [PDB:1YYC], which were part of the
test set in our previous work. Rather than using the

Table 2 Results for PeakWalker on hBcly, with various
noise levels

Noise Num Num Correct Acc Acc Range

(%) Correct Range (%) (%)

0 116 116-116 96.7 96.7-96.7
10 116.3 116-117 96.8 95.9-97.5
20 115.8 115-117 95.8 95-97.5
30 1155 114-116 94.9 91.9-97.5
40 1152 114-116 95.3 934-96.6
50 1152 113-117 935 91.1-95.1

The results are averages over 10 trials.
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simulated data provided by the authors of the CR
method, which was done in our previous work, we
simulated the data ourselves so that we could trace the
results back to the data. In this test, the mappings of all
peaks contained the correct residue and the H” assign-
ments were known. NOESY peaks were simulated using
chemical shift data from the protein’s BMRB entry:
[BMRB:2030] for 1KA5, [BMRB:491] for 1EGO,
[BMRB:5387] for 1G6J, [BMRB:6052] for 1SGO, and
[BMRB:6515] for 1YYC.

The results are given in Table 3. Each PDB file con-
tained multiple 3D models. The table shows the average
result from using every pair of structures, where one
was the template structure and the other was the target.
The noise level is defined as the number of NOESY
peak matches divided by the number of contacts. With
the exception of 1G6]J, which has a low noise level, our
new method was better, especially when the noise level
increased. We also tested 1SGO with different noise
levels by using different values for the match tolerance
(data not shown). For a noise level of 4.6, the old
method was 0.5% more accurate, but for noise levels
from 5.5 to 10.3, the new method did 0.2 to 4.2% better.
Larger proteins typically have higher noise levels due to
increased peak overlap.

Table 4 shows the assignment results for hBcly;,
UbcH5B, and histone H1. The values are averages over
10 trials, where each trial is a different NOESY peak
simulation. Peak mappings were obtained from Peak-
Walker, and the unambiguous reference mapping was
used to measure the accuracy on histone H1. As
expected, the resonance assignment accuracies were
slightly less than those for the input many-to-one map-
pings. However, the number of correct assignments for
hBcly; and histone H1 was less than expected when
comparing to Table 1. This is likely due to differences
between the contacts in the template and target struc-
tures. Their superpositions were greater than that for

Table 3 Comparison between the old assignment method
in [19] and the new method

PDB ID 1KAS 1EGO 1G6)J 15GO 1YYC
Noise (X) 56 53 38 8.2 7.6
Acc New (%) 100 95.6 935 879 95.2
Range New (%) 100 89.9-100 93.1-944 81.8-993 90-994
Acc Old (%) 100 92.8 944 86.7 894
Range Old (%) 100 89.9-975 944-944 767-963 755-96.8
NOE Acc (%) 926 89.0 94.2 86.6 89.8

Range NOE (%) 91.0-940 794-947 923-962 81.8-935 84.9-942

The noise level is defined as the number of NOESY peak matches divided by
the number of contacts. The accuracy is the number of correct one-to-one
mappings divided by the number of mappings. NOE assignment accuracy is
the number of correct NOESY peak to contact assignments divided by the
number of assignments. The NOE assignment accuracy is only for the new
method because the old method does not do NOE assignment.
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Table 4 One-to-one resonance assignment results from
PeakWalker input

Protein UbcH5B  Histone H1 hBcly, hBcly, *
Num Correct 119.5 66.2 101.9 99.8
Num Correct Range 119-120 65-67 101-103 99-101
Acc (%) 98.0 947 95.6 94.5
Acc Range (%) 97.5-984 92.9-95.7 944-97.2  93.5-952
Num HY - HY Correct 157 114 116.1 1183
Acc HY - HY (%) 927 90.9 90.0 86.3
Num HY - H* Correct 168.2 104.9 1286 0
Acc HY - H* (%) 756 654 63.1 0

The input many-to-one mappings for hBcly,_ had a 96.7% accuracy with 116
correct and 1.3 residues per peak on average. The input for UbcH5B had
values of 98.3%, 120, and 1.2. The input for histone H1 had values of 98.8%,
85, and 1.3. The results are averages over 10 trials, where each trial is a
different NOESY simulation. The unambiguous reference mapping was used to
measure the accuracy for histone H1. The NOE assignment accuracy for each
contact type is defined as the percentage of the number of contacts of the
given type that is assigned to the correct NOESY peak. * The last column
gives the results of using only H"-H" contacts for hBcly.

UbcH5B, and the templates had fewer residues than the
target. When we used the target as the template struc-
ture for resonance assignment, the number of correct
assignments increased to 110.8 for hBcly; and 72.3 for
histone H1. Other types of errors, such as missing
NOESY peaks, had only a small influence on the num-
ber of correct assignments. Another factor is that our
accuracy definition did not take into account peaks that
were assigned to the wrong amino acid, but have almost
identical chemical shift to the correct target peak of that
amino acid. When this is taken into account, the num-
ber of correct assignments increased by about 2.6 for
hBclx;. There was no change for histone H1 because its
peak lists had no overlapped peaks.

Despite using ambiguous induced H* chemical shift
assignments for each HSQC peak, the accuracies of the
HN-H” assignments are over 60%, even with a 5% H“
missing rate. Nevertheless, the results for hBcly; that
used only HY-H" indicate that resonance assignment
accuracy is not necessarily impacted significantly if H*
is not used.

Table 5 shows the resonance assignment results for
hBclyx; with different many-to-one input mappings.
When the number of candidate residues per peak

Table 5 One-to-one resonance assignment results for
hBcly, with different input many-to-one mappings

Num Correct Input  111/123  111/123  111/115  111/115
Avg Num Res/Peak 23 33 2 3
Num Correct Output 92.2 86.3 95.1 943
Num Correct Range 90-95 80-93 93-97 93-96
Acc (%) 91.8 86.5 94.6 94.3
Acc Range (%) 89.1-950  792-930 921969  92.1-96.0

The results are averages over 10 trials, where each trial is a different NOESY
simulation.



Jang et al. BMC Bioinformatics 2012, 13(Suppl 3):54
http://www.biomedcentral.com/1471-2105/13/53/54

increased, the accuracy and the number of correct
assignments decreased. However, the decrease was
much more pronounced for the input with poorer accu-
racy. The decrease in the other case was minimal. Thus,
erring on producing extra possible mappings is less det-
rimental if it can be done accurately.

Once resonance assignment is performed, one can
compute the chemical shift change between each target
peak and its assigned reference peak. Residues with
large changes might indicate their involvement in bind-
ing. Figure 3 shows the chemical shift changes of the
residues of hBcly;. For this protein, residues with large
changes are involved in binding or near binding resi-
dues, but this is not always the case for all proteins
because changes can also be attributed to allosteric
changes. Except for 2 residues involved in binding, the
reference solution and PeakAssigner agree. Residue 196
was not in the input structure for assignment, and the
peak for 192 was not in the target peak list. However,
192 was correctly predicted as missing its peak by Peak-
Walker, and correctly predicted as having a large shift
change using its peaks in the other peak lists. Figure 4
shows the result of docking the Bak peptide from 1BXL
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to the homology model for hBcly; using the putative
binding residues 90, 94, 111, 112, 114, 146, 148, and 192
as constraints. The binding affinity can be determined
by computing the dissociation constant, which can be
obtained from model fitting using the peak paths and
the predicted paths according to some model of binding
[11].

Even with NOE information, a one-to-one mapping
for all residues is not always possible. Our approach,
however, facilitates an iterative semi-automated
approach. Once assignments and paths have been veri-
fied, perhaps using additional information, the variables
corresponding to those peaks and residues can be
removed from the BIPs, and then PeakWalker and Pea-
kAssigner can be rerun. Both programs can return mul-
tiple near-optimal solutions to account for ambiguity.

Conclusions

We also tested our method on the protein calmodulin
to test the slow exchange case, and to identify problems
for future work. Currently, we are not aware of any
automated methods for slow exchange. In general, peak
tracking is more difficult here because there are no

Figure 3 The chemical shift changes for the residues in hBcly,. (A) gives the known shift changes and the structure from which the NMR
data was derived. (B) gives the shift changes from resonance assignment and the input structure for assignment. Residues are labeled by their
residue number. Unassigned residues are unlabeled and colored white.
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[41] was used for structure alignment.

Figure 4 Structure alignment of hBcly, -Bak protein-protein complex with [PDB:1BXL]. The complex was obtained by docking the Bak
peptide (yellow) in [PDB:1BXL] to the homology model for hBcly, using putative binding residues 90, 94, 111, 112, 114, 146, 148, and 192 as
constraints. ClusPro [39,40] was used for protein-protein docking, where the lowest energy structure from the largest cluster was used. MM-align

intermediate peaks to track peak movements in incre-
ments, and the number of peaks in the spectra can be
almost double the number in fast exchange.

We generated peak lists using chemical shifts in
[BMRB:6541] (free form) and [BMRB:15624] (bound
form). Four peak lists with saturation levels 0:1, 1:4, 3:4,
and 1:1 were generated. Residues with backbone N and
HY chemical shifts in 6541 and 15624 within 0.5 ppm
and 0.05 ppm were assumed to have only one peak
rather than two. Peak intensities were generated based
on the saturation levels. For the case with no noise
peaks and no errors, except for 3 residues present in
6541, but not in 15624, the Greedy method performed
poorly at less than 100 residues correct out of 143 with

7.6 peaks/residue. PeakWalker performed even worst,
which is expected since both methods do not model
slow exchange. Cutoffs of 2.0 ppm for the N chemical
shifts and 0.4 ppm for HY were used.

In the Methods section, we describe a mathematical
model for slow exchange, which uses the peak intensi-
ties. Using an intensity cutoff of a 15% difference from
the expected intensity ratio, the method got 132 correct
at 5.7 peaks/residue. The 11 incorrect had chemical
shift changes outside the 2.0, 0.4 ppm cutoffs. Unfortu-
nately, calmodulin undergoes a large conformational
change upon binding its target peptide (hinge motion in
a long helix), and those 11 residues are important for
binding and conformational change. A 4.0, 0.8 ppm
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cutoff would be needed to cover the chemical shift
changes of all residues, but this will result in a prohibi-
tive number of possible peaks per residue. Preliminary
results of using an iterative approach of using both
PeakWalker and PeakAssigner was successful only for
the case with no errors, no noise, and no missing
NOESY peaks (137 correct one-to-one mappings). Here,
we used contact information from the free form struc-
ture [PDB:1EXR], we fixed residue-peak assignments
supported by NOESY peaks and paths that occurred fre-
quently, and we increased the cutoffs in increments. For
the case with errors, which is the norm, additional NMR
data, such as NOESY data for the contacts between the
protein and ligand, will likely be needed to reduce
ambiguity.

It would be ideal to automate 3D structure determina-
tion of the bound protein for proteins that can undergo
conformational change upon binding under either fast
or slow exchange using limited NMR data, and a 3D
structure of the free form or a homologous structure of
the bound form. Currently this is a very challenging
computational problem that involves protein folding and
flexible protein-ligand docking, while satisfying con-
straints derived from limited experimental data.

Drug screening is expensive in terms of both time and
money. Although much progress remains to be made,
our mathematical modeling approaches for automating
chemical shift mapping using limited data are steps
towards high-throughput NMR studies.

Availability
The Java source code is available by request to the cor-
responding author.

Methods

PeakWalker and PeakAssigner were tested on hBclxy,
UbcHS5B, and histone H1. This section describes the test
data and the errors that were introduced. The mathema-
tical model for the slow exchange case is also given.

Peak lists

The hBcly; data set consisted of 11 peak lists. The
reference peak list contained 148 peaks, while the target
contained 142. UbcH5B consisted of 5 peak lists. The
reference contained 127 peaks, while the target also con-
tained 127. Histone H1 consisted of 2 peak lists. The
reference contained 97 peaks, while the target contained
86. Unlike the other proteins, the assignment for His-
tone H1 was unknown, so we performed the chemical
shift mapping manually to obtain a reference solution.
Due to ambiguities inherent with chemical shift map-
ping, especially using only 2 peak lists, we produced
both an ambiguous mapping, and for testing purposes,
our best guess unambiguous mapping.
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The peak lists of hBcly;, UbcH5B, and histone H1 were
edited to introduce errors. To obtain errors due to over-
lapped peaks, peaks within the same peak list that have
Adn < 0.1 ppm and Adyy < 0.01 ppm were merged into
a single peak. Such peaks would likely appear as a single
peak when viewing the spectra. Multiple peaks could be
merged into a single peak. Such merges in the target list
will result in at most only one of the peaks being
mapped. In hBcly;, 5 residues had identical chemical
shifts in the target list. After merging, hBclyx; had 136
peaks in the reference list and 122 in the target. UbcH5B
had 127 in the reference and 123 in the target. There
were no changes to the Histone H1 lists. To simulate
noise peaks, in each peak list, we introduced noise peaks
in the range of the N and H" chemical shifts, 99-133
ppm and 6.25-10.75 ppm, respectively. Unless stated
otherwise, the number of noise peaks added to each peak
list is equal to 10% of its size prior to the addition.

NOESY peak simulation

NOESY peaks were simulated using the contacts in the
3D structure (within 4.5A), N and H" chemical shift
values from the target peak list, and H* chemical shift
values from either ShiftX predictions [32] or from the
BMRB. For hBcly;, we used the protein threading server
LOMETS [33], to obtain a 3D structure. The structure
chosen among the possibilities returned by LOMETS
was the one that used [PDB:1LXL] as the threading tem-
plate. It consisted of 178 residues after the flexible loop
region was removed. ShiftX was used to obtain the H*
chemical shift values. For Ubch5b, we used the structure
named “ubch5b-not4_1.pdb” that was provided with the
peak lists, and ShiftX for the H* chemical shifts. The
structure consisted of 147 residues. For histone H1, we
used [PDB:1UST] for the structure and [BMRB:6161]
for the H” chemical shifts. It consisted of 92 residues.

A global offset to calibrate the N, HY chemical shifts
of the NOESY against the same shifts in the target
HSQC is assumed to have already been obtained from a
calibration step, so we simulated only local calibration
errors. Local calibration noise, randomly distributed
between 0 and 0.15 ppm for N, 0 and 0.015 ppm for
HY, were introduced to NOESY peaks. Compared to
resonance assignment, global calibration can be per-
formed manually relatively quickly. Similar to our pre-
vious work, missing inter-residue contacts were
introduced with the following probabilities (0, 0.05, 0.21,
0.41, 0.51) for contacts within the following distances
(1.0, 2.0, 3.0, 4.0, 4.5)A, respectively. Missing intra-resi-
due HY-H* contacts were introduced with probability
0.05. With size 10% of the number of NOESY peaks,
NOESY peaks corresponding to noise were added in the
range 99-133 ppm for N, 6.25-10.75 ppm for H", and 2-
6 ppm for H”.
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Protein 3D structures

The 3D structure for NOESY peak simulation shall be
referred to as the target structure. This structure corre-
sponds to the NMR data and is unknown to the assign-
ment algorithm. The homologous structure used as input
to the assignment algorithm shall be referred to as the
template structure. The homology-modeling server
SWISS-MODEL [34-36] was used to obtain the templates.
Reduce [37] was used to add the coordinates of hydrogen
atoms to the templates. As input to SWISS-MODEL, the
template used for hBcly; was [PDB:3FDL)]. It consisted of
154 residues. Residues 27 to 82 were not present in the
file. The 3D superposition between the target and template
is 13.6A. However, if only residues 85-194 are considered,
the structure alignment is 2.3A according to the program
CE [38]. The template for Ubch5b was [PDB:2ESK], which
consisted of 147 residues. The superposition is 2.4A,
where all residues are aligned. The template for histone
H1 was [PDB:1YQA], which consisted of 85 residues. The
superposition is 4.9A, but the structure alignment is 2.0A,
using residues 9-82.

Mathematical model for slow exchange peak tracking
Similar to the fast exchange case, we model slow
exchange as a k-dimensional matching problem. The
difference is that we allow vertices in the graph to
represent two peaks in addition to one; and in the scor-
ing function, we consider for a pair of peaks their inten-
sities relative to the concentration ratio of the protein
and ligand.

We define 3 types of vertices based on 3 different
peak/residue states. A free vertex represents a peak cor-
responding to a residue potentially in the free form. A
freebound vertex represents a pair of peaks correspond-
ing to the same residue in both the free and bound
forms. A bound vertex represents a peak corresponding
to a residue in the bound form only. Figure 5 illustrates
the possible transitions from each state. From the free
state, a residue can transition to any of the 3 states.
From the freebound state, a residue can remain in this
state or transition to the bound state. A residue in the
freebound state cannot transition back to the free state.
Once in the bound state, a residue must remain there.
Initially, all peaks in the first peak list are in the free
state. In the final peak list, we assume the protein is
fully saturated with the ligand, so no residues are in the
freebound state. We also allow a residue to transition to
a missing state, where its peaks disappear in all subse-
quent peak lists. A missing transition from the free-
bound state means that both peaks are missing.

Similar to the fast exchange case, a linear objective
function is maximized subject to linear constraints and
binary variables.
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Binary variables

The variables represent the transitions/edges between
vertices, where each vertex represents a peak or a pair
of peaks in some state and from some peak list.

o Xpisns Equals to 1 if peak & € T; in state s , where
s € {free, freebound, bound} or a pair of peaks #4,, &,
for s = split, transitions to peak #’ € Tj,; in state s’
or a pair of peaks h, hj for s’ = split, where s’ €
{free, freebound, bound, missing}. For s’ = missing,
i is empty.

Objective function coefficients

The scores of the transitions depends on the states.

o C(Xhniffreelivfree]) = P(ASn(H, h),0,0.25) + (Ady~(H, h),0,0.025),
where @ is the same as the one defined in the math-

ematical model for fast exchange.
CXnteelirareebound]) = D(Adu(lt, ), 0,8.25) + ®(Asn (K, h), 0,0.025) +

(1,45 — Ril, 0,0.15) ’
where 1(-) gives the intensity of the given peak, R; is

the expected intensity ratio based on the concentra-
tion ratio of ligand to protein, and h) is closer to &
than hj is to /1 based on Adnyy.

. C(Xhi[free]h’[freebound]) = 0.001. Since the chemical
shift of /I’ can be very different from / for a given

residue, we set this score to be a small constant.
C( X,y |freebound]ir,y|freebound]) = P(ASN (), ha), 0,0.25)+D( A8y~ (hy, hy), 0,0.025)+

¢(A6N(h;,hh),0,0.25)+<1>(A5Hw(h;,,hn).0,0.025)+<1>(|m,,'()’1;(’m
/s ! :
where I is closer to A, than to /.
o C(Xnhyffrecboundirybound]) = P(Adn (I}, hy),0,0.25) + P(ASy~ (h, 1), 0,0.025)) where
hy, is closer to A, than to A,
@ C(Xi[bound]i,[bound]) = P(ASN (y, hp), 0,0.25) + @(A8yw (hy, hy), 0,0.025)

i —Ry],0,0.15) ’

Constraints
« Define the following auxiliary variables for each
vertex. Opis = Y ;¢ Xnisi's,» which represents the sum
of the variables corresponding to the out-edges from
vertices that contain peak 4 € T; in state s.
Inis = > e Xpli-1)vhs Which represents the sum of
the variables corresponding to the in-edges into ver-
tices that contain peak % € T, in state s.
+ The number of in-edges, and the number of out-
edges is bounded by one to prevent path overlap.
This is I < 1 and Oy, < 1, respectively.
+ Analogous to the fast-exchange case, we have the
number of in-edges equal to the number of out-
edges. This is Op;s = s
+ Define the following auxiliary variables for each
peak. O = >_ 4o Xnisirs, which represents the sum of
the variables corresponding to the out-edges from
vertices that contain peak # € T; in any state.
Ini = Y gs Xwli-1]shs which represents the sum of
the variables corresponding to the in-edges into ver-
tices that contain peak /# € T; in any state.
« Since a vertex can contain more than one peak, to
ensure that each peak gets assigned to at most one
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Peak Listi

Peak List i+1

Bound

subsequent peak lists.

Figure 5 Peak tracking model for slow exchange. The free state corresponds to a residue in the free form. The freebound state corresponds
to a residue exchanging between the free and bound forms, and the bound state corresponds to a residue in the bound form only. The arrows
describe the possible transitions from each state. A transition with no arrow at the end corresponds to a residue missing its peaks in all

state and path, we have [;; < 1, Oy; < 1, and Oy; =
1.
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