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Abstract

Background: Early evolution of animals led to profound changes in body plan organization, symmetry and the rise
of tissue complexity including formation of muscular and nervous systems. This process was associated with
massive restructuring of animal genomes as well as deletion, acquisition and rapid differentiation of genes from a
common metazoan ancestor. Here, we present a simple but efficient workflow for elucidation of gene gain and
gene loss within major branches of the animal kingdom.

Methods: We have designed a pipeline of sequence comparison, clustering and functional annotation using 12
major phyla as illustrative examples. Specifically, for the input we used sets of ab initio predicted gene models
from the genomes of six bilaterians, three basal metazoans (Cnidaria, Placozoa, Porifera), two unicellular eukaryotes
(Monosiga and Capsospora) and the green plant Arabidopsis as an out-group. Due to the large amounts of data the
software required a high-performance Linux cluster. The final results can be imported into standard spreadsheet
analysis software and queried for the numbers and specific sets of genes absent in specific genomes, uniquely
present or shared among different taxons.

Results and conclusions: The developed software is open source and available free of charge on Open Source
principles. It allows the user to address a number of specific questions regarding gene gain and gene loss in
particular genomes, and user-defined groups of genomes can be formulated in a type of logical expression. For
example, our analysis of 12 sequenced genomes indicated that these genomes possess at least 90,000 unique
genes and gene families, suggesting enormous diversity of the genome repertoire in the animal kingdom.
Approximately 9% of these gene families are shared universally (homologous) among all genomes, 53% are unique
to specific taxa, and the rest are shared between two or more distantly related genomes.

Introduction
In the past, a number of alternative approaches have
been developed to determine evolutionary relationships
between genomes and taxons. Clustering orthologous
groups (COGs) on the basis of protein similarity [1-4]
addresses the challenge of reconstructing the evolution-
ary tree from a set of related genes that behave in a
semi-independent way, i.e. experience duplication, differ-
entiation and extinction within both the same genome
(paralogous) and differentiating genomes (orthologous)

lineages. Some recently developed approaches like Evol-
Map [5], CAFE [6] or BadiRate [7] combine similarity
scoring with pre-existing tree structure, which allows
introduction of traditional morphology-based classifica-
tion. These advanced methods are remarkably precise
and effective in reconstruction of ancestral gene families
and estimation of time since branching events in gen-
ome evolution.
However, the volume of data and high diversity in the

gene composition present computational and interpreta-
tional challenges. A fast analysis of gene gain and loss in
overall composition of genomes is particularly effective
for resolving relations between distant taxons. Genes
found both in a more basally branching lineage and a
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more derived lineage but having no homolog in an
intermediately derived taxon may be lost there either
through deletion or profound diversification. The chal-
lenge is to efficiently catalog all genes present in all,
some or just one of the representative genomes. Here,
we propose a workflow model for analysis of gain and
loss of genes in distantly related genomes that can han-
dle large data sets and produce reasonable results even
beginning from rough draft genomes. To demonstrate
applicability of the developed workflow we estimate the
degree of gene gain and gene loss across 12 genomes
representing key transitions in the evolution of multicel-
lularity and rise of animal organization. Since more
diverse invertebrate genomes are scheduled for sequen-
cing in the near future, the pipeline is open to addition
of any number of new genomes. As a result, these data
would be important to elucidate the major events in
genome organization linked to both genome-wide and
more targeted molecular innovations within specific tax-
onomical groups.

Methods
Input data
For our study we have selected sequenced genomes of sev-
eral representative animal phyla from basal Metazoans and
some bilaterians: Nematostella (Cnidaria); Trichoplax (Pla-
cozoa); Amphimedon (Porifera), two protostomes such as
Daphnia (Arthropoda) and Lottia (Mollusca); and four
Deuterostomes such as Strongylocentrotus (Echinoder-
mata), Saccoglossus (Hemochordata), Homo and Bran-
chiostoma (Chordata). We have also selected single-cell
eukaryotic genomes of Monosiga and Capsaspora repre-
senting potential sister taxa and a plant genome of Arabi-
dopsis thaliana as an out-group. The sources and sizes of
data are outlined in Table 1.

The analysis workflow is applicable to sets of genomes
with different degrees of completion so long as a suffi-
cient number of predicted gene models representing the
exome can be derived. For the case study we have also
selected rough draft genomes generated by short-read
high-throughput technology. In these genomes gene
models predicted ab initio are often short, fragmented
and contaminated by translated non-protein coding
fragments. To make the data more consistent we used
all unfiltered gene models for all genomes, even in cases
of finished genomes for which refined sets of protein-
coding genes are available.

Computational pipeline
Gene gain and gene loss in a group of distantly related
genomes has been estimated by the workflow outlined
in Figure 1. The initial input of our analysis pipeline
consists of predicted protein models for a group of 12
selected genomes.
Each of the starting sets of gene models has been com-

pared to itself using reciprocal BLAST[8]. All hits have
been filtered to remove shorter sequences with high simi-
larity (estimated by e-value equal to or lower than
0.0001). BLAST is faster than Smith-Waterman [8,9]
used in other large-scale orthology delineation projects
[10], yet still sufficiently sensitive to detect orthologous
genes in large-scale analysis of distant genomes [11].
Resulting non-redundant sets of gene models have been
compared to each other using reciprocal BLAST with the
same similarity threshold. From the algorithmic point of
view the result of this stage is transformation from the
set of objects (gene models) to an adjacency graph con-
necting related gene models, while edges with similarity
below a certain threshold are cut. Then pairs of similar
sequences have been extracted from the tabulated

Table 1 Initial data for the analysis of gain and loss of genes in distant phyla of the animal kingdom.

Species Source URL Number of
models

Input data size
(MB)

Arabidopsis thaliana ftp://ftp.arabidopsis.org/home/tair/home/tair/ 27416 14.72

Amphimedon
queenslandica

http://getentry.ddbj.nig.ac.jp/top-e.html?ACUQ00000000 30060 11.87

Branchiostoma floridae http://genome.jgi-psf.org/Brafl1/Brafl1.home.html 50817 24.34

Capsaspora owczarzaki http://www.broadinstitute.org/annotation/genome/multicellularity_project/
GenomeDescriptions.html

8792 6.2

Daphnia pulex http://wfleabase.org/genome/Daphnia_pulex/ 30810 10.94

Homo sapiens http://www.gencodegenes.org/ 87069 42.55

Lottia gigantea http://genome.jgi-psf.org/Lotgi1/Lotgi1.home.html 23851 9.72

Monosiga brevicollis http://genome.jgi-psf.org/Monbr1/Monbr1.home.html 9171 5.77

Nematostella vectensis http://genome.jgi-psf.org/Nemve1/Nemve1.home.html 27273 9.76

Saccoglossus kowalevskii ftp://ftp.hgsc.bcm.tmc.edu/pub/data/Skowalevskii/fasta 13149 8.14

Trichoplax adhaerens http://genome.jgi-psf.org/Triad1/Triad1.home.html 27416 14.72

Strongylocentrotus
purpuratus

http://www.spbase.org/SpBase/download/ 42420 22.07
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BLAST output and clustered using greedy algorithm
implemented in C. The algorithm iterates through the
list of matching pairs marking connected objects as
belonging to one cluster until no new objects are con-
nected in a complete cycle.
The computationally selected broad collections of genes

are mapped back on the original sets of gene models in
the steps outlined in Figure 1. Here, we use the term “Ani-
mal Metagenome” to define the broadest formal category
that refers to all recognized genes on a high taxonomic
level of the animal kingdom. The results of our workflow
are sets of names under which particular genes or gene
families from the combined metagenome are found in
individual genomes, and a table showing absence/presence
of a particular gene in a given taxon. In our formal work-
flow any gene sets were added in alphabetic order, thus
each gene homolog is tagged by the name under which it
first appears. As a result, a single name can represent
either a unique instance of a gene or a family of gene
instances joined by clustering (see Figure 1.). The table of
a given gene occurrence is a tab-delimited text file that
can be imported in Excel or a similar spreadsheet applica-
tion (see Table 2). The full table resulting from the model
12 genomes is given in supplementary materials (Addi-
tional File 1).
Any combination of genes present or absent in a given

animal lineage can be imported in Excel and queried for
genes uniquely shared among two or more genomes or
absent in a particular genome, etc. For example, genes
that occur in Bilateria are retrieved by expression OR
(Homo, Saccoglossus, Branchiostoma, Strongylocentrotus,

Daphnia, Lottia) where names correspond to Excel col-
umns. Filtered subsets of any predicted gene gain-/loss
combination from the “Animal Metagenome” can be
exported and used for Pathway Analysis and Functional
Annotation. Alternatively, the same subsets can also be
saved as a list in a text file and then used to extract the
original gene models from specific genomes for addi-
tional annotation ( e.g. homologs search in GenBank, var-
ious Pathway Analysis and Functional Annotation tools).
We have also implemented a set of programs assisting
these operations and used DAVID http://david.abcc.
ncifcrf.gov/ for analysis of Gene Ontology, Protein Motif
and KEGG pathway enrichment in selected sets of pre-
dicted gene gain or gene loss occurrences.

Implementation and availability
The pipeline has been developed using a combination of
existing software and new code in C. The open source
software is available free of charge from the Whitney
Laboratory website http://www.whitney.ufl.edu/PtitsynLab
or from the authors by request. This work is licensed
under a Creative Commons Attribution 3.0 Unported
License: http://creativecommons.org/licenses/by/3.0/

Results and discussion
The combined dataset of even a relatively small fraction of
the sequenced genomes revealed unprecedented diversity
of gene families reflecting the extensive parallel evolution
within the animal kingdom. For example, the overall num-
ber of distinct genes from the given 12 genome set is esti-
mated to be over 92,000, of which roughly 9% are shared

Figure 1 Overview of the gene-gain and gene-loss analysis pipeline. Steps 3, 4, 5 and 7 required new code development. Step 6 requires a
Microsoft Excel spreadsheet or similar software.
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among all genomes used in our study. The chart outlining
the ratio of common, unique or taxon-/lineage- specific
genes is given on Figure 2.
Our study estimates that the branch of the evolution-

ary tree leading to the chordate/human lineage has
gained more than 10,000 genes from a common
metazoan ancestor. Unlike the refinement proposed by
Clamp et al. [12], our estimate does not exclude any
ORFs with potentially non-coding or incomplete protein
sequences and the set of genes found only in this
branch maps to a smaller number of refined protein-

coding genes. However, the estimated number of gained
genes adequately reflects the degree of dissimilarity
from the rough drafts of other distantly related genomes
in this study. The chordate lineage represented by the
human genome yields the highest number of unique
genes, followed by Daphnia (12,647) also reflecting an
enormous expansion of the gene complement within
this rapidly evolving arthropod lineage. Of course, genes
unique to a particular genome such as Daphnia or Sac-
coglossus might share a common ancestry with some
other genes, but have deviated beyond recognition (i.e.

Table 2 Example of the final output (fragment) table imported in Excel spreadsheet.

gene am ar br ca da ho lo mo ne sa tr ur sum Bilateria Basal

Aqu1.205579 1 1 1 0 0 0 0 1 1 0 1 0 7 TRUE TRUE

Aqu1.208671 1 0 1 1 0 0 0 0 1 1 0 1 7 TRUE TRUE

Aqu1.213232 1 1 1 0 0 1 0 0 0 1 1 1 8 TRUE TRUE

Aqu1.219112 1 0 1 0 0 0 0 0 0 0 0 1 4 TRUE TRUE

Aqu1.201795 1 0 0 1 0 0 0 0 0 1 0 1 5 TRUE TRUE

Aqu1.227071 1 0 0 1 0 0 0 0 0 1 0 1 5 TRUE TRUE

Rows represent selected genes (representative instances of gene families) from all Animal Metagenome pool, columns mark occurrence of the given gene from
this pool in a particular genome. The last two columns have logical expressions for such gene occurrence in any Bilateria and in any Basal Metazoa genomes.
Abbreviations: am – Amphimedon; ar – Arabidopsis; br – Branchiostoma; ca – Capsaspora; da – Daphnia; ho – Homo; lo – Lottia; mo – Monosiga; ne – Nematostella;
pb – Pleurobrachia; tr – Trichoplax; ur – Sea urchin (Strongylocentrotus).

Figure 2 Common, unique and differential occurrence of genes in major phyla. Diagram shows absolute number of “all non-redundant
genes from 12 genomes used” (horizontal axis) that map to a particular genome. Out of 92,320 total 8,501 gene families are found in all
genomes and 52,910 are unique to a particular genome.
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in this case a BLAST e-value threshold). Adding more
genomes is likely to enhance the resolution of gene gain
and gene loss analysis.
Large degrees of disequilibrium between genes that were

lost and gained in a particular branch may indicate trends
towards increasing or decreasing morphological complex-
ity. These situations are most apparent in Placozoa (Tri-
choplax), Choanoflagellates (Monosiga) and Capsaspora
(all having more than 7,000 gene loss events). In contrast,
Amphimedon (which might show a loss of only 1,700
genes from the common ancestor of all animals) and bila-
terian genome composition in general revealed a lesser
degree of gene loss. These numbers overlap with the pre-
dicted most likely position of the early branches off the
root of the evolutionary tree of the animal kingdom (see
Figure 3). Nevertheless, Trichoplax genome composition
presents a special case and might be related to a significant
secondary loss of morphological complexity and an overall
gene complement from the common metazoan ancestor.
Comparison of genes shared in pairs of genomes exclu-

sively is summarized in Table 3. While other nearest
neighbors correspond to the nearest neighbors by tradi-
tional comparative morphology, Trichoplax shares an
anomalously high number of putative gene homologs with
a plant genome. Our analysis suggests a high degree of
“contamination” of this Trichoplax genome with plant-like
genes, possibly from symbiotic algae. Whether this influx
results from genuine incorporation of horizontally

transferred genes into host genomes or from a laboratory
artifact remains to be seen.
The software is capable of comparing a few distantly

related eukaryotic genomes using computational facil-
ities available to a majority of academic research labora-
tories and in a time frame acceptable for research
projects (under two weeks of computation in our case

Figure 3 Estimated gene loss in selected lineages within the animal kingdom (Metazoa).

Table 3 Anomalous number of gene families shared
exclusively by Placozoan (tr) and Plant genomes (ar).

am ar br ca da ho lo mo ne pb sa tr ur

am 0 24 9 63 13 18 0 83 4 2 0 13

ar 0 0 0 0 0 0 0 0 0 10605 0

br 6 30 124 77 0 102 3 60 0 42

ca 9 3 2 0 5 5 3 0 5

da 22 56 0 35 18 3 0 11

ho 29 0 30 3 12 0 28

lo 0 89 19 13 0 27

mo 0 9 0 0 0

ne 9 8 0 21

pb 0 2 6

sa 0 52

tr 0

ur

Pair-wise table of genes found exclusively in two genomes. Abbreviations: am
– Amphimedon; ar – Arabidopsis; br – Branchiostoma; ca – Capsaspora; da –
Daphnia; ho – Homo; lo – Lottia; mo – Monosiga; ne – Nematostella; pb –
Pleurobrachia; tr – Trichoplax; ur – Sea urchin (Strongylocentrotus).
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study). The most computationally demanding part is a
reciprocal BLAST search, which scales well to the num-
ber of CPUs available. We produced tables of reciprocal
BLAST results from the Linux machine at the Advanced
Computing and Information Systems (ACIS) Lab, Elec-
trical and Computer Engineering, University of Florida.
The ASIC machine has 12 nodes (IBM x3850 M2 and
X5) configured as four Non-Uniform Memory Access
(NUMA), of which one was dedicated to our study.
Each NUMA machine has 64 cores (Quad-core Xeon
Tigerton 2.93 GHz and 8-core Xeon Nehalem 2.0 GHz)
and 512 GB of Random Access Memory (RAM). Clus-
tering, extraction and mapping of gene family occur-
rence in genomes has been done on a smaller desktop
workstation with 16-core (2× 8-Core AMD Opteron
6136, 2400 MHz) and 32 GB RAM running Windows 7.
The hard drive storage was not critical for purpose of
the study and has not been described in detail; all initial
setup, intermediate data and final results used a fraction
of a 2TB partition of scrap space. The final output of
our software could be a starting point for a number of
branching research projects as the table of gene family
occurrence in genomes can be interrogated in multiple
ways with multiple logical expressions detailing macroe-
volution of distant taxa.

Conclusion
The presented computational workflow allows the user to
address specific questions regarding gene gain and gene
loss in particular genomes and user-defined groups of gen-
omes. We report a few interesting observations made
using this new method and open source software imple-
mentation. For example, our analysis of 12 sequenced gen-
omes indicated that these genomes possess at least 90,000
unique genes and gene families, suggesting enormous
diversity of the genome repertoire in the animal kingdom.
Approximately 9% of these gene families are shared uni-
versally (homologous) among all genomes, 53% are unique
to specific taxa, and the rest are shared between two or
more distantly related genomes. More results could be
expected from analysis of gene gain and loss in distantly
related phyla as new genomes are sequenced.
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