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Abstract

Background: The distance between two genomes is often computed by comparing only the common markers
between them. Some approaches are also able to deal with non-common markers, allowing the insertion or the
deletion of such markers. In these models, a deletion and a subsequent insertion that occur at the same position
of the genome count for two sorting steps.

Results: Here we propose a new model that sorts non-common markers with substitutions, which are more
powerful operations that comprehend insertions and deletions. A deletion and an insertion that occur at the same
position of the genome can be modeled as a substitution, counting for a single sorting step.

Conclusions: Comparing genomes with unequal content, but without duplicated markers, we give a linear time
algorithm to compute the genomic distance considering substitutions and double-cut-and-join (DCJ) operations.
This model provides a parsimonious genomic distance to handle genomes free of duplicated markers, that is in
practice a lower bound to the real genomic distances. The method could also be used to refine orthology
assignments, since in some cases a substitution could actually correspond to an unannotated orthology.

Background
The genomic distance is often computed taking into
consideration only the common markers, that occur in
both genomes [1-3]. Approaches to deal with unique
markers (that occur in only one genome) also exist, but
usually allowing only insertions or deletions of these
markers. Insertions and deletions can be shortly called
indels. In [4], the operations allowed are inversions and
indels, while the models given in [5] and [6] consider
indels and the double cut and join (DCJ) operation [7],
that is able to represent most large scale mutation
events in genomes, such as inversions, translocations,
fusions and fissions. The mentioned approaches assign
the same weight to all rearrangement operations, includ-
ing indels, regardless of the size of the affected regions
and the particular types of the operations. A drawback
in these models is that, if a deletion and a subsequent
insertion occur at the same position of the genome, the

cost is the same as a deletion and an insertion in differ-
ent positions.
In the present work we propose a more parsimonious

model in which, instead of deleting or inserting, we
allow the substitution of unique markers between two
genomes, as illustrated in Figure 1. We do not suggest
that a substitution occurs in a precise moment in evolu-
tion, but instead it represents a region that underwent
continuous mutations (duplications, losses and gene
mutations), so that a group of genes is transformed into
a different group of genes (either of which may also be
empty, allowing a substitution to represent an insertion
or a deletion). Other studies also represent continuous
mutations as a rearrangement event [8,9]. By minimizing
substitutions we are able to establish a relation between
indels that could have occurred in the same position of
the compared genomes, identifying genomic regions that
could be subject to these continuous mutations. Observe
that we suggest that such regions have a common evolu-
tionary origin. We develop a method to count the mini-
mum number of substitutions that could have occurred,
by assigning the same weight to substitutions and to the
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other operations, similarly to the approaches that handle
indels.
We analyze genomes with unequal content, but with-

out duplicated markers and extend the results given in
[6] to develop a linear time algorithm that exactly com-
putes the genomic distance with substitutions and DCJ
operations. The objective of this model is to provide a
parsimonious genomic distance to handle genomes free
of duplicated markers, that in practice is a lower bound
to the real genomic distances. In the present work, we
do not study algorithms to generate parsimonious sort-
ing scenarios. Nevertheless, in the analysis of the evolu-
tion of human chromosomes X and Y, we manually
obtain a parsimonious evolutionary scenario under our
model, that is coherent with the results given in [10].
In the remainder of this section we introduce some

concepts given in [1] and [6] and define the operation
that substitutes markers in a genome - these are the
basis of the method that we will present here.

Preliminaries
In the present study duplicated markers are not allowed.
Given two genomes A and B, possibly with unequal con-
tent, we denote by  the “reduced” genome [4], that is
the set of markers that occur once in A and once in B.
Moreover, the set  contains the markers that occur
only in A and the set  contains the markers that
occur only in B. The markers in sets  and  are

also called unique markers. Observe that the sets  ,
 and  are disjoint.
A genome is possibly composed of linear and circular

chromosomes. Each marker g in a genome is a DNA
fragment and is represented by the symbol g, if it is read
in direct orientation, or by the symbol g , if it is read in
reverse orientation. An example of a pair of genomes is
given in Figure 2.
In the following we adopt definitions which we have

given in [6] (some of them are generalizations of con-
cepts introduced by Bergeron et al. [1]).

 -adjacencies
Each one of the two ends of a linear chromosome is
called a telomere and is represented by the symbol ○.
For each marker g ∈ , denote its two extremities by gt

(tail) and gh (head). A  -adjacency in genome A
(respectively in genome B) is in general a linear string v
= g1ℓg2, such that g1 and g2 are telomeres or extremities
of markers of  and ℓ, the string composed of the
markers that are between g1 and g2 in A (respectively in
B), contains no marker that also belongs to  . The
string ℓ is said to be the label of v, and the extremities
g1 and g2 are said to be  -adjacent. If ℓ is a non-empty
string, v is said to be labeled, otherwise v is said to be
clean.
A  -adjacency g1ℓg2 can also be represented by
 . Furthermore, ◦ℓ◦ represents a linear chromosome

(i) (ii) (iii)
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translocation ↓

a b c d u s e t
fusion ↓

a b c d u s e t
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a b c d u s e
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a b c z d u s e
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↓ insertion
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Figure 1 (i) An optimal sorting scenario with DCJ operations and indels. (ii) An optimal sorting scenario with DCJ operations and indels in
which the last two operations occur in the same position of the genome, between markers a and b. (iii) A more parsimonious alternative to the
deletion of consecutive markers s and u and the insertion of consecutive markers x and y would be the substitution of s and u by x and y.

A
a s e t c d u b v w

B
a x y b c z d e

Figure 2 For genomes A, composed of three linear chromosomes, and B, composed of one single chromosome, we have = { , , , , }a b c d e ,
= { , , , , }s t u v w and = { , , }x y z .
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composed only of markers that are not in  . In the
same way, a  -adjacency given by a label ℓ corre-
sponds to a whole circular chromosome composed only
of markers that are not in  . This is the only case of a
 -adjacency in which we have a circular instead of a
linear string.
Two genomes A and B can then be represented by the

sets V A ( ) and V B ( ) , containing their  -adjacen-
cies. For the two genomes in Figure 2, we have
VG(B) = {◦at , ahxybt, bhct, chzdt, dhet, eh◦},
VG(B) = {◦at , ahxybt, bhct, chzdt, dhet, eh◦} and
VG(B) = {◦at , ahxybt, bhct, chzdt, dhet, eh◦}.

The DCJ operation
A cut performed on a genome A separates two adjacent
markers of A. A cut affects a  -adjacency v of V A ( )
as follows: if v is linear, the cut is done between two
symbols of v, creating two open ends in two separate
linear strings; if v is circular, the cut creates two open
ends in one linear string. A double-cut and join or DCJ
applied on a genome A is the operation that generally
performs two cuts in V A ( ) , creating four open ends,
and joins these open ends in a different way. A DCJ
operation can correspond to several rearrangement
events, such as an inversion, a translocation, a fusion, or
a fission [7].
We represent by ({g1ℓ1|ℓ4g4 , g3 ℓ3 | ℓ2g2 } ® {g1ℓ1| ℓ2

g2, g3 ℓ3|ℓ4 g4 }) a DCJ applied on g1ℓ1ℓ4g4 and g3ℓ3ℓ2g2 ,
that creates g1ℓ1ℓ2g2 and g3ℓ3ℓ4g4. Observe that one or
more extremities among g1, g2, g3 and g4 can be equal to
○ (a telomere), as well as one or more labels among ℓ1,
ℓ2, ℓ3 and ℓ4 can be equal to ε (the empty string). Parti-
cular cases include circular adjacencies and are
described in [6].

Adjacency graph and the DCJ distance
The adjacency graph AG(A, B) [1] is the bipartite graph
that has a vertex for each  -adjacency in V A ( ) and
a vertex for each  -adjacency in V B ( ) . Then, for
each g ∈ , we have one edge connecting the vertex in
V A ( ) and the vertex in V B ( ) that contain gh and
one edge connecting the vertex in V A ( ) and the ver-
tex in V B ( ) that contain gt.

The connected components of the graph AG(A, B) are
cycles and paths that alternate vertices in V A ( ) and
V B ( ) . A path that has one endpoint in V A ( ) and
the other in V B ( ) is called an AB-path. In the same
way, both endpoints of an AA-path are in V A ( ) , as
well as both endpoints of a BB-path are in V B ( ) .
Furthermore, AG(A, B) can have two extra types of
components: each  -adjacency that corresponds to a
linear (respect. circular) chromosome is a linear
(respect. circular) singleton. Linear singletons are parti-
cular cases of AA-paths and BB-paths. An example of
an adjacency graph is given in Figure 3.
The number of AB-paths in AG(A, B) is always even

and a DCJ operation can be of three types [1,6]: optimal
when it either increases the number of cycles by one, or
the number of AB-paths by two; neutral when it does
not affect the number of cycles and AB-paths; or coun-
ter-optimal when it either decreases the number of
cycles by one, or the number of AB-paths by two.
Singletons, AB-paths composed of one single edge,

and cycles composed of two edges are said to be DCJ-
sorted. Longer paths and cycles are said to be DCJ-
unsorted. The procedure of using DCJ operations to
turn AG(A, B) into DCJ-sorted components is called
DCJ-sorting of A into B. The DCJ distance of A and B,
denoted by dDCJ(A, B), corresponds to the minimum
number of steps required to do a DCJ-sorting of A into
B and can be easily obtained:
Theorem 1 ( [1])Given two genomes A and B without

duplicated markers, we have d A B cDCJ
b( , ) = − − 2 ,

where is the set of common markers between A and B,
and c and b are the number of cycles and of AB-paths
in AG(A, B).

Runs of unique markers
Given a component C of AG (A, B), we can obtain a
string ℓ(C) by the concatenation of the labels of the
 -adjacencies of C in the order in which they appear.
Cycles, AA-paths and BB-paths can be read in any
direction, but AB-paths should always be read from A
to B. If C is a cycle and has labels in both genomes A
and B, we should start to read in a labeled  -adjacency
v of A, such that the first labeled vertex before v is a

A ◦at
ahset ehtct ch◦ ◦dt

dhubt bh◦ ◦vw◦

B ◦at ahxybt
bhct chzdt dhet eh◦

Figure 3 For genomes A and B, the adjacency graph contains one cycle, two AA-paths (one is a linear singleton) and two AB-paths.
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 -adjacency in B; otherwise C has labels in at most
one genome and we can start anywhere. Each maximal
substring of ℓ(C) composed only of markers in 
(respectively in  is called an  -run (respectively a
 -run). Each  -run or  -run can be simply called
run[6]. A component composed only of clean  -adja-
cencies has no run and is said to be clean, otherwise the
component is labeled. We denote by Λ(C) the number
of runs in a component C. A path can have any number
of runs, while a cycle has zero, one, or an even number
of runs. Figure 4 shows a BB-path with 4 runs.

Substitutions
The unique markers in  and  are represented in
AG (A, B) as labels and singletons and, in order to sort
A into B, they also have to be considered. Here we pro-
pose a model in which only the following operation can
be applied to unique markers. A substitution is an
operation that affects the label of one single  -adja-
cency, by substituting contiguous markers in this label.
Consider the labels ℓ1 and ℓ2, where |ℓ1| = m and |ℓ2|

= n. The substitution of ℓ1 by ℓ2 in a  -adjacency is
represented by (g1ℓ3|ℓ1|ℓ4g2 ® g1ℓ3|ℓ2|ℓ4g2) (for better
reading in our notation we omit the curly set brackets
for singleton sets). One or both extremities among g1
and g2 can be equal to ○ (a telomere), as well as one or
both labels among ℓ3 and ℓ4 can be equal to ε (the
empty string). The substitution of ℓ1 by ℓ2 in a circular
singleton is represented by (|ℓ1|ℓ3| ® |ℓ2|ℓ3|). Observe
that at most one chromosome can be entirely substi-
tuted at once (but we do not allow the substitution of a
linear by a circular chromosome and vice-versa). More-
over, if m = 0, we have an insertion of n contiguous
markers. On the other hand, if n = 0, we have a deletion
of m contiguous markers. Thus, insertions and deletions,
also called indels, are special cases of substitutions.
The DCJ-substitution distance of A and B, denoted by

d A BDCJ
sb ( , ) , is the minimum number of DCJs and sub-

stitutions required to transform A into B. Since substitu-
tions include indels, d A BDCJ

sb ( , ) is upper bounded by
the DCJ-indel distance, the minimum number of DCJ
and indel operations required to transform A into B,
that can be computed in linear time [6]. In the present
work we give an approach to exactly compute
d A BDCJ
sb ( , ) also in linear time.

Results and discussion
The main result of the present study is an exact formula
to compute the DCJ-substitution distance in linear time.
We achieve this formula by developing the substitution-
potential of two genomes, a property that allows us to
obtain a good upper bound to the genomic distance
with DCJ operations and substitutions. Then we show
how some special DCJ operations reduce the overall
number of substitutions and obtain the exact formula.
Although the objective of this model is to provide a par-
simonious genomic distance, that in practice is a lower
bound to real distances, we run some experiments on
data from human X and Y chromosomes and obtained a
parsimonious sorting scenario that is coherent with the
results available in the literature. We also observe that
the DCJ-substitution method could be used to refine
orthology assignments.

The substitution-potential
Observe that a  -adjacency with a non-empty label ℓ
can be cut in at least two different positions, either
before or after ℓ. Since the position of the cut does not
change the effect of the DCJ on dDCJ(A, B), we can
choose to cut at positions that allow the concatenation
of the labels of the original  -adjacencies. As a conse-
quence, a set of labels of one genome can be accumu-
lated with DCJ operations. In particular, when we apply
optimal DCJs on only one component of the adjacency
graph, we can accumulate an entire run in a single
 -adjacency:
Proposition 1 ( [6])A run can be entirely accumulated

in the label of one single -adjacency with optimal DCJ
operations.
Given a DCJ operation r, let Λ0 and Λ1 be, respec-

tively, the number of runs in AG (A, B) before and after
r. We define ΔΛ(r) = Λ 1– Λ 0.
Proposition 2 ( [6])Given any DCJ operation r, we

have ΔΛ(r) ≥ – 2.
In order to obtain the exact formula for the DCJ-sub-

stitution distance, we will first analyze the components
of the adjacency graph separately. Given two genomes A
and B and a component C Î AG (A, B), we denote by
dDCJ(C) the minimum number of DCJ operations
required to do a separate DCJ-sorting in C, applying

�1 �2 �5

︸ ︷︷ ︸

A-run

�3 �4
︸ ︷︷ ︸

B-run

︸︷︷︸

A-run

�6 �7
︸ ︷︷ ︸

B-run

Figure 4 A BB-path with 4 runs. Only the labels of the  -adjacencies are represented.
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DCJs on vertices of C (or vertices that result from DCJs
applied on vertices that were in C). It is possible to do a
separate DCJ-sorting using only optimal DCJs in any
component of AG (A, B), thus, in other words, dDCJ(A,
B) = ∑CÎAG(A ,B)dDCJ(C) [2]. In [6] we have already
defined the indel-potential of a component, denoted by
l(C), that is the minimum number of runs that we can
obtain by DCJ-sorting C with optimal DCJ operations
only, and can be computed with the formula given in
the next proposition.
Proposition 3 ( [6])Given a component C in AG(A, B),

we have l( ) ( )C C= ⎡
⎢

⎤
⎥

+Λ 1
2 , if Λ(C) ≥ 1. Otherwise l(C) = 0.

Similarly, here we denote by s(C) the substitution-
potential of a component C, that is the minimum num-
ber of substitutions that we can obtain by DCJ-sorting C
with optimal DCJ operations only. In order to find a for-
mula to compute s(C), we first obtain a stronger version
of Proposition 1 where not only the labels of a run are
accumulated into a single  -adjacency, but pairs of
consecutive runs are accumulated into adjacent  -adja-
cencies (that are  -adjacencies connected by a single
edge in the adjacency graph).
Proposition 4 ( [6])If g1g2 is a clean -adjacency in a

DCJ-unsorted component C of AG(A, B), such that
neither g1 nor g2 are telomeres, then it is always possible
to extract a clean cycle from C with an optimal DCJ
operation.
Proposition 5 Two consecutive runs in a component C

can be entirely accumulated into the labels of two
adjacent -adjacencies of C with optimal DCJs.
Proof: By Proposition 1 we assume that two consecu-

tive runs of C are accumulated into  -adjacencies vA
and vB. If vA and vB are not adjacent, there are only
clean  -adjacencies between vA and vB in C. By Propo-
sition 4, we can apply optimal DCJs to extract clean
cycles until vA and vB are adjacent.
Pairs of consecutive runs that are accumulated into

adjacent  -adjacencies can be extracted into a labeled
DCJ-sorted component, that can be sorted with one
substitution. Observe that minimizing the number of
pairs of consecutive runs is equivalent to minimizing
the total number of runs. Hence, we can determine the
substitution-potential from the indel-potential.
Proposition 6 Given a component C in AG (A, B), we

haves( ) ( )C C= ⎡
⎢

⎤
⎥

+Λ 1
4 , if Λ(C) ≥ 1. Otherwise s(C) = 0.

Proof: By Proposition 5 we can assume that the runs
of C are accumulated into pairs of adjacent  -adjacen-
cies. By Proposition 3, we can obtain Λ( )C +⎡

⎢
⎤
⎥

1
2

runs
doing a separate DCJ-sorting in C with optimal DCJs.
Moreover, these optimal DCJs can be done in such a
way that pairs of runs that were accumulated into adja-
cent  -adjacencies remain in these adjacent  -adja-
cencies. Since each one of these pairs can be sorted with
one substitution, the substitution-potential of C is equal

to the number of pairs of labeled adjacent  -adjacen-
cies, which is:

s( ) .
( )

( )C
C

C= ⎡
⎢⎢

⎤
⎥⎥

= ⎡
⎢

⎤
⎥

+ +Λ Λ1
2

2
1

4

The formulas to compute l(C) and s(C), given in Pro-
positions 3 and 6 above, are indeed very similar. Conse-
quently, many of the results obtained in [6] can be
adapted to the new substitution-potential. Let s0 and s1

be, respectively, the sums of the number s for the com-
ponents of the adjacency graph before and after a DCJ
operation r. We then define Δs(r) = s1– s0. Further-
more, let Δdcj(r) be respectively 0, +1 and +2 depending
whether r is optimal, neutral or counter-optimal. We
also define Δd(r) = Δdcj(r) + Δs(r).
Proposition 7 Given a DCJ operation r acting on a

single component, we have Δd(r) ≥ + 2 if r is counter-
optimal, or Δd(r) ≥ 0 if r is neutral.
We denote by d CDCJ

sb ( ) the minimum number of
DCJs and substitutions required to sort separately a
component C of AG (A, B). The definition of s and Pro-
position 7 guarantee that d C d C CDCJ

sb
DCJ( ) ( ) ( )= + s .

Observe that, if C is a singleton in the adjacency
graph, d CDCJ

sb ( ) = 1 , corresponding to the insertion or
the deletion of the whole chromosome. We do not
allow the substitution of a linear by a circular singleton
and vice-versa. However, each pair composed by a sin-
gleton in genome A and a singleton in genome B (such
that both are linear or both are circular) can be sorted
with one single substitution, which saves one sorting
step per pair. Let PL and PC be, respectively, the maxi-
mum number of disjoint pairs of linear and circular sin-
gletons in the adjacency graph. Together with the DCJ-
substitution distance per component, these numbers
give a good upper bound for d A BDCJ

sb ( , ) :
Lemma 1 Given two genomes A and B without dupli-

cated markers, we have:

d A B d A B C P PDCJ
sb

DCJ L C

C AG A B

( , ) ( , ) ( ) .
( , )

≤ + − −
∈
∑ s

The formula given by Lemma 1 above corresponds to
the exact distance for a particular set of genomes. Given
a  -adjacency gℓ○ of a genome A such that g≠○, then
g is said to be a tail of a linear chromosome in A. Two
genomes are co-tailed if their sets of tails are equal (this
includes two genomes composed only of circular
chromosomes).
Theorem 2 Given two co-tailed genomes A and B

without duplicated markers, we have:

d A B d A B C P PDCJ
sb

DCJ L C
C AG A B

( , ) ( , ) ( ) .
( , )

= + − −
∈∑ s
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However, for non co-tailed genomes the use of DCJs
applied to two components of the adjacency graph can
lead to a shorter sequence of operations sorting one
genome into another, as we will see in the next section.

The DCJ-substitution distance
Recall that Δs(r) = s1– s0, where s0 and s1 are the
sums of the number s for the components of the adja-
cency graph before and after r. A DCJ operation r that
acts on two components of the adjacency graph is called
recombination.
Proposition 8 Given any recombination r, we have

Δs(r) ≥ –2.
Proof: Only the recombinations that decrease or do

not change the number of runs (ΔΛ ≤ 0) have to be
analyzed (we can not have Δs ≤ –1 if the number of
runs increases). Consider the recombination of two
paths with i and j runs, that result in two new paths
with i′ and j′ runs. The best we can have is when i and j
are multiples of 4, i′ and j′ are multiples of 4 minus 1
and ΔΛ = –2, that gives:
s1

1
4

1
4

2
4 4 4 4

1
4

1
41= ⎡⎢ ⎤⎥ + ⎡

⎢
⎤
⎥ = = = = = ⎡⎢ ⎤⎥ − +′+ ′+ ′+ ′+ + + +i j i j i j i j i j⎡⎡

⎢
⎤
⎥ − = −1 20s .

The analysis of recombinations involving cycles is
analogous.
All recombinations involving at least one cycle are

counter-optimal and any counter-optimal recombination
has Δd ≥ 0, thus only path recombinations can have Δd
≤ –1. The following definitions are similar to those
given in [6], except that here we have a larger number
of labeled path types.
Consider an integer i ≥ 0. For a second integer k Î {1,

3}, let  + k (respectively  + k ) be a sequence with
odd 4i + k runs, starting and ending with an  -run
(respectively  -run). Similarly for k Î {2, 4}, let
 + k (respectively  + k ), be a sequence with
even 4i + k runs, starting with an  -run (respectively
 -run) and ending with a  -run (respectively
 -run). An empty sequence (with no run) is repre-
sented by ε. Then each one of the notations AAε,
AA +1 , AA +1 , AA +2 , AA +3 , AA +3 , AA +4 ,
BBε, BB +1 , BB +1 , BB +2 , BB +3 , BB +3 ,
BB +4 , ABε, AB +1 , AB +1 , AB +2 , AB +2 ,
AB +3 , AB +3 , AB +4 and AB +4 represents a
particular type of path (AA, BB or AB) with a particular
structure of runs (ε,  +1 ,  +1 ,  + 2 ,  + 2 ,
 + 3 ,  + 3 ,  + 4 , or  + 4 ).
The components on which the cuts are applied are

called sources and the components obtained after the
joinings are called resultants of the recombination. The
complete set of recombinations with Δd ≤ –1 is given in
Table 1. In Table 2 we also list recombinations with Δd
= 0 that create at least one source of recombinations of
Table 1. We denote by • an AB-path that can not be a

source in Tables 1 and 2, such as ABε, AB +1 , AB +1 ,
AB +2 , AB +2 , AB +3 and AB +3 .
Proposition 9 The recombinations with Δd = 0 invol-

ving cycles or circular singletons cannot create new com-
ponents that can be used as sources of recombinations
listed in Tables 1 and 2.
The two sources of a recombination can also be called

partners. Looking at Table 1 we observe that some types
of paths have more partners than other types of paths.
For example, all partners of AB +4 and AB +4
paths are also partners of AA +4 and BB +4 paths.
Furthermore, some resultants of recombinations in
Tables 1 and 2 can be used in other recombinations.
These observations allow the identification of groups of
recombinations, as listed in Table 3.
The deductions shown in Table 3 can be computed

with an approach that greedily maximizes the number
of recombinations in U, V, W, X, Y and Z in this order.

Table 1 Path recombinations that have Δd ≤ –1 and
allow the best reuse of the resultants.

sources resultants Δs Δdcj Δd

AA BB + ++4 4 • + • –2 0 –2

AA AA + ++4 4 AA AA + ++3 3 –2 +1 –1

BB BB + ++4 4 BB BB + ++3 3 –2 +1 –1

AA AB + ++4 4 • + +AA 3 –2 +1 –1

AA AB + ++4 4 • + +AA 3 –2 +1 –1

BB AB + ++4 4 • + +BB 3 –2 +1 –1

BB AB + ++4 4 • + +BB 3 –2 +1 –1

AA BB + ++1 4 • + +AB 4 –1 0 –1

AA BB + ++1 4 • + +AB 4 –1 0 –1

AA BB + ++4 1 • + +AB 4 –1 0 –1

AA BB + ++4 1 • + +AB 4 –1 0 –1

AA BB + ++2 4 • + • –1 0 –1

AA BB + ++4 2 • + • –1 0 –1

AA BB + ++2 2 • + • –1 0 –1

AA BB + ++3 4 • + • –1 0 –1

AA BB + ++3 4 • + • –1 0 –1

AA BB + ++4 3 • + • –1 0 –1

AA BB + ++4 3 • + • –1 0 –1

AA BB + ++1 1 • + • –1 0 –1

AA BB + ++1 1 • + • –1 0 –1

AA BB + ++1 2 • + • –1 0 –1

AA BB + ++1 2 • + • –1 0 –1

AA BB + ++2 1 • + • –1 0 –1

AA BB + ++2 1 • + • –1 0 –1

AA BB + ++1 3 • + • –1 0 –1

AA BB + ++1 3 • + • –1 0 –1

AA BB + ++3 1 • + • –1 0 –1

AA BB + ++3 1 • + • –1 0 –1

AB AB + ++4 4 • + • –2 +1 –1
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The U part contains only one operation and the two
groups in V are mutually exclusive after applying U.
The part W is then the application of all possible
remaining groups of two operations with Δd = –2. Simi-
larly, the part X is only the application of all possible
remaining operations with Δd = –1. After X, the two
groups in Y are mutually exclusive and then the same
happens to the groups in Z. Although some groups in
W, X and Z have some reusable resultants, those are
actually never reused (if operations that are lower in the
table use as sources resultants from higher operations,
the sources of all referred operations would be pre-
viously consumed in operations that occupy even higher
positions in the table). Due to this fact, the number of
operations in U, V , W, X, Y and Z depends only on the
initial number of each type of component.
With the results presented in this section we have an

exact formula to compute the DCJ-substitution distance:
Theorem 3 Given two genomes Aand Bwithout dupli-

cated markers, we have:

d A B d A B C P P U V W X Y ZDCJ
sb

DCJ L C

C AG A B

( , ) ( , ) ( )
( , )

= + − − − − − − − −
∈
∑ s 2 3 2 2 ,,

where PL and PC are the numbers of disjoint pairs of
linear and circular singletons and U, V, W, X, Y and Z
are computed as described above.
The formula given in Theorem 3 is analogous to the

one which we have obtained in [6] to compute the DCJ-
indel distance. Both formulas depend on factors that
can be computed in linear time [6].
Triangular inequality
Note that, since only unique markers can be substituted
in this model, we avoid the “free lunch problem”, men-
tioned in [5], that is the possibility of transforming any
genome A into any genome B by simply substituting the
whole content of A by the whole content of B. However,
the triangular inequality can be disrupted in the DCJ-
substitution distance. In other words, given any three
genomes A, B and C without duplicated markers, there
is no guarantee that the triangular inequality
d A B d A c d B CDCJ
sb

DCJ
sb

DCJ
sb( , ) ( , ) ( , )≤ + holds. In a compa-

nion paper [11] we provide an efficient way to establish
the triangular inequality a posteriori in both the DCJ-
indel [6] and the DCJ-substitution distances.

Experiments
The objective of this model is to provide a parsimonious
genomic distance, that in practice is a lower bound to
real distances. Nevertheless, we could run some experi-
ments on data from human X and Y chromosomes and
obtained a parsimonious sorting scenario that is

Table 2 Recombinations that have Δd = 0 and create
resultants that can be used in recombinations with Δd ≤
–1 (listed in Table 1).

sources resultants Δs Δdcj Δd

AB AB + ++4 4 AA BB + ++3 3 –2 +2 0

AA AB q + ++1 4 • + +AA 4 –1 +1 0

AA AB + ++1 4 • + +AA q 4 –1 +1 0

BB AB + ++1 4 • + +BB 4 –1 +1 0

BB AB + ++1 4 • + +BB 4 –1 +1 0

AB AB + ++4 4 AA BB + ++3 3 –2 +2 0

AA AB + ++2 4 • + +AA 1 –1 +1 0

AA AB + ++2 4 • + +AA 1 –1 +1 0

BB AB + ++2 4 • + +BB 1 –1 +1 0

BB AB + ++2 4 • + +BB 1 –1 +1 0

Table 3 All recombination groups obtained from Tables 1
and 2 (the recombinations from Table 2 appear only in
groups in Y and Z). The column scr indicates the
contribution of each path in the distance decrease.

sources resultants Δd scr

U AA BB + ++4 4 2• –2 –1

V 2 4 1 1AA BB BB  + + ++ + 4• –3 –3/4

2 4 1 1BB AA AA  + + ++ + 4• –3 –3/4

W AA BB AB  + + ++ +4 1 4 3• –2 –2/3

AA BB AB  + + ++ +4 1 4 3• –2 –2/3

BB AA AB  + + ++ +4 1 4 3• –2 –2/3

BB AA AB  + + ++ +4 1 4 3• –2 –2/3

2 4 1AA BB + ++ 2 3• + +AA –2 –2/3

2 4 1AA BB + ++ 2 3• + +AA –2 –2/3

2 4 1BB AA + ++ 2 3• + +BB –2 –2/3

2 4 1BB AA + ++ 2 3• + +BB –2 –2/3

X Recombinations from Table 1 with Δd
= –1

–1 –1/2

Y 2 4 1 1AB AA BB  + + ++ + 4• –2 –1/2

2 4 1 1AB AA BB  + + ++ + 4• –2 –1/2

Z AB AA BB  + + ++ +4 2 3 3• –1 –1/3

AB AA BB  + + ++ +4 2 3 3• –1 –1/3

AB AA BB  + + ++ +4 3 2 3• –1 –1/3

AB AA BB  + + ++ +4 3 2 3• –1 –1/3

AB AA BB  + + ++ +4 1 3 3• –1 –1/3

AB AA BB  + + ++ +4 3 1 3• –1 –1/3

AB AA BB  + + ++ +4 1 3 3• –1 –1/3

AB AA BB  + + ++ +4 3 1 3• –1 –1/3

AB AA BB  + + ++ +4 1 1 2 4• + +AB –1 –1/3

AB AA BB  + + ++ +4 1 1 2 4• + +AB –1 –1/3

2 4 1AB AA + ++ 2 3• + +AA –1 –1/3

2 4 1AB BB + ++ 2 3• + +BB –1 –1/3

2 4 1AB AA + ++ 2 3• + +AA –1 –1/3

2 4 1AB BB + ++ 2 3• + +BB –1 –1/3
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coherent with the results available in the literature. Dur-
ing evolution, a portion of the human Y chromosome
has become increasingly subjected to local mutations,
while the X chromosome remained relatively conserved,
as we will see in the following. Human X and Y chro-
mosomes are very different and, while X is 155 Mbp
long, the Y chromosome is 58 Mbp long. However, they
still share pseudo-autosomal regions at both extremities
and are believed to have evolved from an identical auto-
somal pair [12] (the autosomes are all non-sex chromo-
somes). Current theories suggest that the pseudo-
autosomal region, which originally covered the whole
chromosomes, was successively pruned by a few big
inversions on the Y chromosome [13] (we call these
inversions pruning). After each pruning inversion, sev-
eral mutations seem to have occurred on the affected
part of the Y chromosome, while X remained “closer” to
the common ancestor.
A parsimonious scenario of 8 inversions on the mar-

kers common to chromosomes X and Y has been pub-
lished in [[10], Fig. 7], and is given as an argument to
support the existence and bounds of the three most
recent pruning inversions, but unique markers were
simply ignored. We used our method to compute the
DCJ-substitution distance using the same dataset, but
reincorporating the unique markers, and obtained a
DCJ-substitution distance of 14. Then we manually
reconstructed the evolutionary scenario of human chro-
mosomes X and Y and obtained a parsimonious sce-
nario with 8 inversions and 6 substitutions (including 2
insertions and 1 deletion) that is coherent with the
pruning inversions given in [10] (see Figure 5). Although
a DCJ is a very comprehensive operation and can repre-
sent many rearrangement events, in the analysis of

unichromosomal genomes DCJs often represent only
inversions, and this also happens in this dataset.

Discussion
Our method was designed to find gene mutations, but it
could also help to improve orthology assignments, that
are the computational prediction of orthologous pairs of
genes from different species. No orthology predictor is
able to find all assignments correctly. In particular,
when comparing two different species, some pairs of
orthologous genes that are below the predictor thresh-
old remain unassigned. Since our substitutions establish
a relation between different genes in the two compared
genomes, they correspond to candidates to be assigned
as orthologous genes.

Conclusions and future work
In this work we presented a new model to compare two
genomes with unequal content, but without duplicated
markers, using substitutions and DCJ operations, and
developed a linear time algorithm to exactly compute
the DCJ-substitution distance.
Although the objective of this model is to provide a

parsimonious genomic distance, that in practice is a
lower bound to real distances, based on our method we
have manually reconstructed a parsimonious evolution-
ary scenario of human chromosomes X and Y. We con-
sidered biological constraints that are specific to this
case and obtained a scenario that is coherent with the
results given in the literature.
By reconstructing a parsimonious scenario that mini-

mizes substitutions, we may identify genomic regions
that were subject to continuous mutations during evolu-
tion and could have a common evolutionary origin.
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Figure 5 A parsimonious scenario of 8 inversions and 6 substitutions (including 2 insertions and 1 deletion) sorting human X into Y
chromosome, using the dataset given in [10]. The symbol ‘P’ represents the current pseudo-autosomal region in the beginning of X and Y. Each
number represents a common marker, each symbol xi represents a unique marker in X and each symbol yi represents a unique marker in Y (the
unique markers were also obtained from the data in [10]). The three pruning inversions suggested in [[10], Fig. 7] are underlined. The boundary
of the pseudo-autosomal region, indicated with vertical dots, is shifted to the left after each pruning inversion.
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Currently our method is only able to compute the geno-
mic distance, but in a future work we intend to study
the space of all parsimonious sorting scenarios and
develop methods to systematically identify such regions.
The DCJ-substitution model could also be used to

refine orthology assignments, since in some cases a sub-
stitution could actually correspond to an unannotated
orthology. We also plan on exploring the use of our
method in refining orthology in a future work.
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