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Abstract

Background: RNA viruses infecting a host usually exist as a set of closely related sequences, referred to as
quasispecies. The genomic diversity of viral quasispecies is a subject of great interest, particularly for chronic
infections, since it can lead to resistance to existing therapies. High-throughput sequencing is a promising
approach to characterizing viral diversity, but unfortunately standard assembly software was originally designed for
single genome assembly and cannot be used to simultaneously assemble and estimate the abundance of multiple
closely related quasispecies sequences.

Results: In this paper, we introduce a new Viral Spectrum Assembler (ViSpA) method for quasispecies spectrum
reconstruction and compare it with the state-of-the-art ShoRAH tool on both simulated and real 454
pyrosequencing shotgun reads from HCV and HIV quasispecies. Experimental results show that ViSpA outperforms
ShoRAH on simulated error-free reads, correctly assembling 10 out of 10 quasispecies and 29 sequences out of 40
quasispecies. While ShoRAH has a significant advantage over ViSpA on reads simulated with sequencing errors due
to its advanced error correction algorithm, ViSpA is better at assembling the simulated reads after they have been
corrected by ShoRAH. ViSpA also outperforms ShoRAH on real 454 reads. Indeed, 7 most frequent sequences
reconstructed by ViSpA from a real HCV dataset are viable (do not contain internal stop codons), and the most
frequent sequence was within 1% of the actual open reading frame obtained by cloning and Sanger sequencing.
In contrast, only one of the sequences reconstructed by ShoRAH is viable. On a real HIV dataset, ShoRAH correctly
inferred only 2 quasispecies sequences with at most 4 mismatches whereas ViSpA correctly reconstructed 5
quasispecies with at most 2 mismatches, and 2 out of 5 sequences were inferred without any mismatches. ViSpA
source code is available at http://alla.cs.gsu.edu/~software/VISPA/vispa.html.

Conclusions: ViSpA enables accurate viral quasispecies spectrum reconstruction from 454 pyrosequencing reads.
We are currently exploring extensions applicable to the analysis of high-throughput sequencing data from bacterial
metagenomic samples and ecological samples of eukaryote populations.

Background

Viral quasispecies

Many viruses (including SARS, influenza, HBV, HCV,
and HIV) encode their genome in RNA rather than
DNA. Unlike DNA viruses, RNA viruses lack the ability
to detect and repair mistakes during replication [1] and,
as a result, their mutation rate can be as high as 1
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mutation per each 1,000-100,000 bases copied per repli-
cation cycle [2]. Many of the mutations are well toler-
ated and passed down to descendants, producing a
family of co-existing related variants of the original viral
genome referred to as quasispecies, a concept that ori-
ginally described a mutation-selection balance [3-7].

The diversity of viral sequences in an infected indivi-
dual can cause the failure of vaccines and virus resis-
tance to existing drug therapies [8]. Therefore, there is a
great interest in reconstructing genomic diversity of
viral quasispecies. Knowing sequences of the most

© 2011 Astrovskaya et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


http://alla.cs.gsu.edu/~software/VISPA/vispa.html
mailto:iraa@cs.gsu.edu
mailto:alexz@cs.gsu.edu
http://creativecommons.org/licenses/by/2.0

Astrovskaya et al. BMC Bioinformatics 2011, 12(Suppl 6):S1
http://www.biomedcentral.com/1471-2105/12/56/S1

virulent variants can help to design effective drugs [9,10]
and vaccines [11,12] targeting particular viral variants in
vivo.

454 pyrosequencing technology

Briefly, the 454 pyrosequencing system shears the source
genetic material into fragments of approximately 300-
800 bases. Millions of single-stranded fragments are
sequenced by synthesizing their complementary strands.
Repeatedly, nucleotide reagents are flown over the frag-
ments, one nucleotide (A, C, T, or G) at a time. Light is
emitted at a fragment location when the flown nucleo-
tide base complements the first unpaired base of the
fragment [13,14]. Multiple identical nucleotides may be
incorporated in a single cycle, in which case the light
intensity corresponds to the number of incorporated
bases. However, since the number of incorporated bases
(referred to as a homopolymer length) cannot be esti-
mated accurately for long homopolymers, it results in a
relatively high percentage of insertion and deletion
sequencing errors (which respectively represent 65%-
75% and 20%-30% of all sequencing errors [15,16]).

The software provided by instrument manufacturers
were originally designed to assemble all reads into a sin-
gle genome sequence, and cannot be used for recon-
structing quasispecies sequences. Thus, in this paper we
address the following problem:

Quasispecies Spectrum Reconstruction (QSR) problem
Given a collection of 454 pyrosequencing reads generated
from a viral sample, reconstruct the quasispecies spec-
trum, i.e., the set of sequences and the relative frequency
of each sequence in the sample population.

A major challenge in solving the QSR problem is that
the quasispecies sequences are only slightly different
from each other. The amount and distribution along the
genome of differences between quasispecies varies sig-
nificantly between virus species, as different species have
different mutation rates and genomic architectures. In
particular, due to the lower mutation rate and longer
conserved regions, HCV quasispecies are harder to
reconstruct than quasispecies of HBV and HIV. Addi-
tionally, the QSR problem is made difficult by the lim-
ited read length and relatively high error rate of high
throughput sequencing data generated by current
technologies.

Related work

The QSR problem is related to several well-studied pro-
blems: de novo genome assembly [17-19], haplotype
assembly [20,21], population phasing [22] and metage-
nomics [23]. As noted above, de novo assembly methods
are designed to reconstruct a single genome sequence,
and are not well-suited for reconstructing a large
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number of closely related quasispecies sequences. Hap-
lotype assembly does seek to reconstruct two closely
related haplotype sequences, but existing methods do
not easily extend to the reconstruction of a large (and a
priori unknown) number of sequences. Computational
methods developed for population phasing deal with
large numbers of haplotypes, but rely on the availability
of genotype data that conflates information about pairs
of haplotypes. Metagenomic samples do consist of
sequencing reads generated from the genomes of a large
number of species. However, differences between the
genomes of these species are considerably larger than
those between viral quasispecies. Furthermore, existing
tools for metagenomic data analysis focus on species
identification, as reconstruction of complete genomic
sequences would require much higher sequencing depth
than that typically provided by current metagenomic
datasets.

In contrast, achieving high sequencing depth for viral
samples is very inexpensive, owing to the short length of
viral genomes. Mapping based approaches to QSR are
naturally preferred to de novo assembly since reference
genomes are available (or easy to obtain) for viruses of
interest, and viral genomes do not contain repeats.
Thus, it is not surprising that such approaches were
adopted in the two pioneering works on the QSR pro-
blem [24,25]. Eriksson et al. [24] proposed a multi-step
approach consisting of sequencing error correction via
clustering, haplotype reconstruction via chain decompo-
sition, and haplotype frequency estimation via expecta-
tion-maximization, with validation on HIV data. In
Westbrooks et al. [25], the focus is on haplotype recon-
struction via transitive reduction, overlap probability
estimation and network flows, with application to simu-
lated error-free HCV data. Recently, the QSR software
tool ShoRAH was developed [26] and applied to HIV
data [27]. Another combinatorial method for QSR was
also developed and applied to HIV and HBV data in
[28], with results similar to those of ShoRAH. Our con-
tributions in this paper are as follows:

+ A novel QSR tool called Viral Spectrum Assembler
(ViSpA) taking into account sequencing errors at multi-
ple steps,

« Comparison of ViSpA with ShoRAH on HCV syn-
thetic data both with and without sequencing errors,
and

« Statistical and experimental validation of the two
methods on real 454 pyrosequencing reads from HCV
and HIV samples.

Methods

Our method for inferring the quasispecies spectrum of a
virus sample from 454 pyrosequencing reads consists of
the following steps (see Fig. 1):
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Figure 1 ViSpA's flowchart.

« Constructing the consensus virus genome sequence
for the given sample and aligning the reads onto this
consensus,

« Preprocessing aligned reads to correct sequencing
errors,

» Constructing a transitively reduced read graph with
vertices representing reads and edges representing over-
laps between them,

« Selecting paths in the read graph that correspond to
the most probable quasispecies sequences, and assem-
bling candidate sequences for selected paths by weighted
consensus of reads, and

« Estimating candidate sequence frequencies by EM

Below we describe each step separately.

Read alignment and consensus genome sequence
construction

We assume that a reference genome sequence of the
particular virus strain is available (e.g., from NCBI
[29]). Since viral genomes do not have sizable repeats
and the quasispecies sequences are usually close
enough to the reference sequence, the majority of
reads can typically be uniquely aligned onto the refer-
ence genome. However, a significant number of reads
may remain unaligned due to differences between the
reference genome and sequences in the viral sample.
In order to recover as many of these reads as possible,
we iteratively construct a consensus genome sequence
from aligned reads.

In particular, we first align 454 pyrosequencing reads to
the reference sequence using the SEGEMEHL software
[30]. Then we extend the reference sequence with a pla-
ceholder I for each nucleotide inserted by at least one
uniquely aligned read. Similarly, we add a placeholder D
to the read sequence for each reference nucleotide miss-
ing from the aligned read. Then we perform sequential
multiple alignment of the previously aligned reads against
this extended reference sequence. Finally, the consensus
genome sequence is obtained by (1) replacing each
nucleotide in the extended reference with the nucleotide
or placeholder in the majority of the aligned reads and
(2) removing all I and D placeholders, respectively corre-
sponding to rare insertions and to deletions found in a
majority of reads. Reads may contain a small portion of
unidentified nucleotides denoted by N’s — we treat N as a
special allele value matching any of nucleotides A, C, T,
G, as well as placeholders I, and D.

Iteratively, we replace the reference with the consen-
sus and try to align the reads, for which we could not
find any acceptable alignment previously. Our experi-
ments on a dataset consisting of approximately 31,000
454 pyrosequencing reads generated from a 5.2kb-long
HCV fragment (see data description in Results and Dis-
cussions) show that 85% of reads are uniquely aligned
onto the reference sequence and an additional 9% of the
reads are aligned onto the final consensus sequence.
Reads that cannot be aligned onto the final consensus
are removed from the further consideration.
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Preprocessing of aligned reads

Since aligned reads contain insertions and deletions, we
use placeholders I and D to simplify position referencing
among the reads. All placeholders are treated as addi-
tional allele values but they are removed from the final
assembled sequences. First, we substitute each deletion
in the aligned reads with placeholder D. Deletion sup-
ported by a single read is replaced either with the allele
value, which is present in all other reads overlapping
this position, or with N, signifying an unknown value,
otherwise. Next, we fill with placeholder / each gap in a
read corresponding to the insertions in the other reads.
All insertions supported by a single read are removed
from consideration.

Read graph construction

We begin with the definition of the read graph, intro-
duced in [25] and independently in [24], and then
describe the adjustments that need to be made to read
graph construction and edge weights to account for
sequencing errors as well as the high mutation rate
between quasispecies.

The read graph G = (V, E) is a directed graph with
vertices corresponding to reads aligned with the consen-
sus sequence. For a read u, we denote by b(u), respec-
tively e(u), the genomic coordinate at which the first,
respectively the last, base of u gets aligned. A directed
edge (u, v) connects read u to read v if a suffix of u
overlaps with a prefix of v and they coincide across the
overlap. Two auxiliary vertices - a source s and a sink ¢
— are added such that s has edges into all reads with
zero indegree and ¢ has edges from all reads with zero
outdegree. Then each s — ¢-path corresponds to a possi-
ble candidate quasispecies sequence. The read graph is
transitively reduced, i.e., each edge e = (u, v) is removed
if there is a u — v-path not including edge e. Note that
certain reads can be completely contained inside other
reads. Let a superread refer to a read that is not con-
tained in any other read and let the rest of the reads be
called subreads. Subreads are not used in the construc-
tion of the read graph, but are taken into account in the
final assembly of candidate sequences and frequency
estimation.

Since the number of different s — ¢-paths is exponen-
tial, we wish to generate a set of paths that have high
probability to correspond to real quasispecies sequences.
In order to estimate path probability, we independently
estimate for each edge e the probability p(e) that it con-
nects two reads from the same quasispecies, and then
multiply estimated probabilities for all edges on the
path. Under the assumption of independence between
edges, if we assign to each edge e a cost equal to — log
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(p(e)) = log(1/p(e)), then the minimum-cost s — t-path
will have the maximum probability to represent a qua-
sispecies sequence.

For reads without errors, [25] estimated the probabil-
ity that two reads u and v connected by edge (u, v)
belong to the same quasispecies as

p, = exp(—AN/Lg) = ©(e™) (1)

where A = b(v) — b(u) is the overhang between reads u
and v[25], N = #reads, g = #quasispecies, and L = #start-
ing positions. Thus, in this case the cost of an edge with
overhang A can be approximated by A « log(1/p,).

To account for sequencing errors, we adjust the con-
struction of the read graph to allow for mismatches. We
use three parameters: (1) n = #mismatches allowed
between a read and a superread, (2) m = #mismatches
allowed in the overlap between two adjacent reads, and
(3) t = #mismatches expected between a read and a ran-
dom quasispecies. The probability that two reads » and
v with j mismatches within an overlap of length o = e(u)
— b(v) belong to the same quasispecies can be estimated
as:

Pa, ze‘A[jJ(l—e)"‘fsf )

where ¢ is the estimated 454 sequencing error rate. As
in the case of error-free reads, defining the edge costs as
Alog(( ?)_1 (1-e) e ) e log(1/p,,) ensures that s — ¢-
paths with low cost correspond to most likely quasispe-
cies sequences.

Candidate path selection

To generate a set of high-probability (low-cost) paths
that are rich enough to explain observed reads, we com-
pute for each vertex in the read graph the minimum
cost s — t-path passing through it. Finding these paths is
computationally fast. Indeed, we only need to compute
two shortest-paths trees in G, one outgoing from s and
one incoming into ¢; the shortest s — ¢-path passing
through a vertex v is the concatenation of the shortest s
— v-and v — t-paths.

Preliminary simulation experiments (see Additional
File 1) show that better candidate sets are generated
when edge costs ¢ defined by (1) and (2) are replaced by
e“. In fact, if we use even faster dependency on ¢ then
we obtain better candidate sets. The fastest growing cost
effectively changes the shortest path into so called max-
bandwidth path, i.e., paths that minimizes maximum
edge cost for the entire path and for each subpath. So,
ViSpA generates candidate paths using this strategy.
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Candidate sequence assembly
When no mismatches are allowed in the construction of
the read graph, finding the candidate sequence corre-
sponding to a s — t-path is trivial, since by definition
adjacent superreads coincide across their overlap. When
mismatches are allowed, we first assemble a consensus
sequence from superreads used by the s — ¢-path. It may
be not the best choice, especially when the coverage
with superreads is low. Hence, we replace each initial
candidate sequence with a weighted consensus sequence
obtained using both superreads and subreads of the
path, as described below.

For each read r, we compute the probability that it
belongs to a particular initial candidate sequence s as:

pls.r) = (,i ](1 ey ) ®

where 1 and L denote the lengths of the read and
initial candidate sequence, respectively, k is the number
of mismatches between the read and the initial candi-
date sequence s, and ¢/L is the estimated mutation rate.
Then final candidate sequence is computed as the
weighted consensus over all reads, where the weight of
a read is the probability that it belongs to the sequence.
Note that, unlike the case without mismatches, the same
candidate sequence can be obtained from different can-
didate s — t-paths, so we remove duplicates at the end
of this step.

Estimation of candidate quasispecies sequence
frequencies
We assume that reads R with observed frequencies

{OT}LRJI where generated from a quasispecies population

Q as follows. First, a quasispecies sequence g € Q is
randomly chosen accordingly to its unknown frequency
Jo A read starting position is generated from the uni-
form distribution and then a read r is produced from
quasispecies g with j sequencing errors. The probability

. . 1 =j
of this event is calculated as h,, :( j)(l—s) e,

where [ is the read length and ¢ is the sequencing error
rate. Thus, the probability of observing the read r under

this model is Pr(r) = quQ fahar .
Quasispecies frequencies {fq}lg1 are estimated by

maximizing the log-likelihood function:

Ufrreeifig) = ZTGROT log Pr(r) using an EM algo-
rithm [31] (see Additional File 1 for details). Currently,

convergence of the EM algorithm is determined at the
tolerance level 0.005.
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Results and discussions
In our simulation studies we use the following read data
sets.

Reads simulated from known HCV quasispecies

In order to perform cross-validation on the assembly
method, we simulate reads data from 1739-bp long frag-
ment from the E1E2 region of 44 HCV sequences [32]
when sequence frequencies are generated according to
some specific distribution. In our simulation experi-
ments, we use geometric distribution (i-th sequence is
constant factor more frequent than the (i + 1)-th
sequence) to create sample quasispecies populations
with different number of randomly selected above-men-
tioned quasispecies sequences.

We first simulate reads without sequencing errors: the
length of a read follows normal distribution with a parti-
cular mean value and variance 400, and a starting posi-
tion follows the uniform distribution. This simplified
model of reads generation has two parameters: number
of the reads that varies from 20K up to 100K and the
average read length that varies from 200bp up to 600bp.

Additionally, we simulate 454 pyrosequencing reads
from 10 quasispecies sequences (following geometric
distribution of frequencies) out of 44 HCV sequences
[32] using FlowSim [33]. We generated 30K reads with
average length 350bp.

454 pyrosequencing reads from HCV samples

The data set Datal has been received from HCV
Research Group in Institute of Biomedical Research, at
University of Birmingham. Datal contains 30,927 reads
obtained from the 5.2kb-long fragment of HCV-1a gen-
ome (which is more than a half of the entire HCV gen-
ome). The average (aligned) read length average is
292bp but it significantly varies as well as the depth of
position coverage (see Additional File 1 for details). The
depth of reads coverage variability is due to a strong
bias in the sequence start points, reflecting the second-
ary structure of the template DNA or RNA used to gen-
erate the initial PCR products. As a result, shorter reads
are produced by GC-rich sequences. Datal is available
upon request from the authors.

454 pyrosequencing reads from HIV samples

The HIV dataset [27] contains 55,611 reads from mix-
ture of 10 different 1.5kb-long region of HIV-1 quasis-
pecies, including pol protease and part of the pol reverse
transcriptase. The aligned reads length varies from 35bp
to 584bp with average about 345bp (see Additional File
1 for details). In contrast to [27], we do not filter out
reads with low-quality scores.
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Experimental validation on simulated data

In all our experimental validations, we compare the pro-
posed algorithm ViSpA with the state-of-the-art tool
ShoRAH as well as with ViSpA on ShoRAH-corrected
reads (ShoRAHreads + ViSpA). We say the quasispecies
sequence is captured if one of the candidate sequences
exactly matches it. We measure the quality of assem-
bling by portion of the real quasispecies sequences

being  captured by  candidate sequences
P
sensitivity = —————) and its portion among candi-
( Y= i) p g
date  sequences  (positive  predictive  value
(PPV = L)) in cross-validation tests. Both sensi-
TP + FP

tivity and PPV are analyzed as functions of the number
of quasispecies in underlying sample population (see
Fig. 2 (left)). ViSpA can correctly assemble all sequences
out of 10 quasispecies and 29 sequences out of 40 qua-
sispecies if average read length is at least 300bp. If the
average read length is smaller (for example, in range
from 250bp till 299bp), the method can assemble at
least 8 out of 10 sequences and 20 out of 40 sequences.
Here, we see advantage of ViSpA over ShoRAH.
Following [24], we measure the prediction quality of
frequency distribution with Kullback-Leibler divergence,
or relative entropy. Given two probability distributions,
relative entropy measures the “distance” between them,
or, in the other words, the quality of approximation of
one probability distribution by the other distribution.
Formally, the relative entropy between true distribution
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P and approximation distribution Q is given by the for-
mula:
Dy (P = P(i)1 m,
w(PlQ) Z (i)log o5
where summation is over all reconstructed original
sequences I = {i | P(i) > 0, Q(i) > 0} , i. e, over all origi-
nal sequences that have a match (exact or with at most
k mismatches) among assembled sequences. The relative
entropy is decreasing with increasing of the average read
length. It is expected since sensitivity is increasing with
increasing of the average read length and EM predicts
underlying distribution more accurately. ViSpA algo-
rithm considerably outperforms ShoRAH (see Fig. 2
(right)).

However, ShoRAH has a significant advantage over
ViSpA on a read data simulated by FlowSim both in
prediction power and in robustness of results (see Table
1). Indeed, ShoRAH correctly infers 3 out of 10 real
quasispecies sequences whereas ViSpA reconstructs only
1 sequence. Additionally, 10 most frequent assemblies
inferred by ShoRAH are more robust with repeating up
to 45% of times on 10%-reduced data versus 1% of
times for ViSpA’s assemblies. This advantage can be
explained by superior read correction in ShoRAH. If
ViSPA is used on ShoRAH-corrected reads, the results
drastically improves: 5 quasispecies sequences are
inferred and exactly 95% of times are repeated on
reduced data, confirming that ViSpA is better in assem-
bling sequences (see Table 1).

PPV and Sensitivity

==4==ShoRAH PPV
== ShoRAH Sensitivity

=dr=VISpA PPV

=&—VISpA Sensitivity

10 20 30 40
Number of Quasispecies

length (40K reads from 10 quasispecies).

Figure 2 Statistical validation on error-free reads from known HCV quasispecies. Left: PPV and sensitivity as a function of the number of
quasispecies in the original population (40K reads with average read length 300). Right: the relative entropy as a function of the average read

Relative Entropy

19
17
16 \
15 ¢
14
13
12 N N\
11 Q’—Li —4—ShoRAH RE_20K

1 - ~f=ShoRAH RE_40K
g: w=dr=ShoRAH RE_60K
0.7 == \/iSpA RE_20K
06
05 e \fiSpA RE_40K
04 =8—ViSpA RE_60K
03
0.2
01

0 o 0

200 300 400 500
Average Read Length




Astrovskaya et al. BMC Bioinformatics 2011, 12(Suppl 6):S1 Page 7 of 10

http://www.biomedcentral.com/1471-2105/12/56/S1

Table 1 Comparison of three methods - ViSpA, ShoRAH, and ShoRAHreads+ViSpA - on the read data simulated by
FlowSim.

ShoRAH ViSpA ShoRAHreads+ViSpA
PPV Sensitivity Reproducibility PPV Sensitivity Reproducibility PPV Sensitivity Reproducibility
Max Average Max Average Max Average
k=0 0.0097 03 045 0.11 0.0008 0.1 0.1 0.1 05 05 0.95 0.95
k=1 0.0129 04 0.6 0.32 0.0008 0.1 0.1 0.1 0.5 0.5 0.95 0.95
k=9 0.0162 0.5 0.95 0.64 0.0015 0.2 0.1 0.1 0.5 1 0.95 0.95

The quasispecies sequence is considered found if one of candidate sequences matches it exactly (k = 0) or with at most k (1 or 9) mismatches. All methods are
run 100 times on 10% - reduced data. For the i-th (i = 1, .., 10) most frequent sequence assembled on the whole data, we record its reproducibility, i.e.,
percentage of runs when there is a match (exact or with at most kK mismatches) among 10 most frequent sequences found on reduced data. "Reproducibility:
Max" and "Reproducibility: Average” report respectively maximum and average of those percentages.”

Experimental validation on 454 pyrosequencing reads
from HCV samples

We first discuss the choice of parameters of the read
graph and candidate sequence assembly from s — ¢-
paths. Then we give statistical validation for obtained 10
most frequent quasispecies sequences.

We infer quasispecies spectrum based on the read
graphs constructed with various numbers # and m
(numbers of mismatches allowed for superreads and
overlaps corresponding to edges). We sort the estimated
frequencies in descending order and count the number
of sequences which cumulative frequency is 85%, 90%,
and 95%. Fig. 3 reports these numbers as a percent of
the total number of candidate sequences. There is an
obvious drop in percentage for all three categories if we
allow up to n = 6 mismatches to cluster reads and up to

m = 15 mismatches to create edges. In this case, the
constructed read graph has no isolated vertices.

To refine assembled candidate sequences, we use all
reads and parameter ¢ varying from 80bp till 350bp, or, in
the other words, mutation rate varying from 1.75% up to
8% per sequence (which is in the range observed in [34]).
Out of 3207 max-bandwidth paths, we obtain as much as
938 distinct sequences (¢t = 80) and as low as 755
sequences (¢ = 350) for different values of £ € [80; 350].

The neighbor-joining tree for the most frequent 10
candidate sequences obtained by ViSpA and ShoRAH
(see Fig. 4) reminds a neighbor-joining tree for HCV
quasispecies evolution. Additionally, the most frequent
candidate sequence found by ViSpA is 99% identical to
one of the actual ORFs obtained by cloning the
quasispecies.

Percentage of Max-Bandwidth paths for R8_MID2_ID10 without N's
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Figure 3 Percentage of candidate sequences which cumulative frequency is 85%, 90%, and 95%. The values on x-axis corresponds to the
number of allowed mismatches during read graph construction. n_m means that up to n mismatches are allowed in superreads and up to m
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Figure 4 The neighbor-joining phylogenetic tree for 10 most
frequent HCV quasispecies variants on a 5,205bp-long
fragment obtained by ViSpA and ShoRAH. Sequences are
labeled with software name and its rank among 10 most frequent
assembled sequences.

Viral sequences containing internal stop codons are
not viable since the entire HCV genome consists of a
single coding region for a large polyprotein. So the
number of reconstructed viable sequences can serve as
an accuracy measure for quasispecies assembly. Out of
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10 most frequent sequences reconstructed by ViSpA,
only 3 are not viable while ShoRAH is able to recon-
struct only one viable sequence. This sequence has
99.94% similarity with the ViSpA’s fourth most frequent
assemblies. Both methods returned similar frequency
estimations for this sequence: 0.017% (ShoRAH) and
0.019% (ViSpA).

Both ShoRAH and ViSpA (n = 6, m = 15) are run on
eight 2.66GHz-CPUs with 8M cache. They take around
40 minutes to assemble sequences and estimate their
frequencies. Smaller value of # increases ViSpA’s run-
time since its bottleneck (candidate sequences assem-
bling) is proportional to the number of reads times
number of paths. Indeed, smaller value of # results in
larger number of superreads in built read graph, thus, in
larger set of candidate paths. For example, ViSpA runs
90 minutes for n = 2, m = 2.

Statistical validation of the quasispecies spectrum
The plot on Fig. 5 shows validation results for 10 most
frequent quasispecies sequences with respect to EM esti-
mations assembled on Datal by ShoRAH and ViSpA (n
= 6, m = 15, and ¢ = 120). Repeatedly, 100 times we
have deleted randomly chosen 10% of reads and run
both methods on each reduced read instance to recon-
struct quasispecies spectrum.

The plot reports the percentage of runs when each of
10 most frequent sequences assembled on Datal are
reproduced among the 10 most frequent quasispecies

ShoRAH vs ViSpA: % of Iterations
095 ‘
sesssssad®,,
085 e,
...,
075 - T
‘ ., ¢ ShoRAHK=0
w065 - e, cedee ViSPA k=
------ pA k=0
a A ......... Oe....., ® e,
B 055 . . B shoRAHk=1
- .
% 045 - O -+ - ViSpAK=1
& o3 . ‘o, ShoRAH k=2
. " Ppeerrerer a . -
0.35 * - k=
'._. . . 'O._‘ .‘_,- ViSpA k=2
0.25 . Lo .~ -
Gl S . g B ® ShoRAHK=5
..... . . i " . ... . sedes \iSpA k=5
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o et
005 ; : : <
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Most Frequent Assemblies
Figure 5 Percentage of runs when the i-th most frequent sequence is reproduced among 10 most frequent quasispecies assembled
on the 10%-reduced set of reads. The /-th point at x-axis corresponds to the i-th most frequent sequence assembled on the 100% of reads.
No data are shown for the sequences that are reproduced less than 5% of runs.
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inferred on the reduced instances with no mismatches
(k = 0), or with k = 1, 2, 5 mismatches. For example, for
k = 0 ShoRAH repeatedly (35% of times) reconstructs
only the third most frequent sequence while ViSpA
reconstructs 7 sequences in at least 15% times, and the
most frequent sequence is reconstructed 40% times.
This plot shows that the found sequences are pretty
much reproducible for ViSpa.

Experimental validation on 454 pyrosequencing reads
from HIV samples
In order to compare ViSpA and ShoRAH, we run both
of the methods on HIV dataset, used in the first experi-
ment in [27]. As said above, we do not preprocess reads
with respect to its 454 quality score, and it can explain
poorer performance of ShoRAH. Indeed, ShoRAH cor-
rectly infers only 2 quasispecies sequences with at most
4 mismatches: one assembly has 3 mismatches with real
quasispecies sequence, and the other has 4 mismatches.

ViSpA correctly reconstructs 5 quasispecies with at
most 2 mismatches (3 of them among 10 most frequent
assemblies): two sequences are inferred without any
mismatches (one is among 10 most frequent assem-
blies), one assembly has 1 mismatch with real quasispe-
cies sequence (and it is among 10 most frequent
assemblies), and the rest sequences have 2 mismatches
(one is among 10 most frequent assemblies). The assem-
blies correspond to a viable protein sequences.

If ViSpA is applied to ShoRAH-corrected reads, it can
successfully infer three real quasispecies without any
mismatches.

Conclusions

In this paper, we have proposed and implemented
ViSpA, a novel software tool for quasispecies spectrum
reconstruction from high-throughput sequencing reads.
The ViSpA assembler takes into account sequencing
errors at multiple steps, including mapping-based read
preprocessing, path selection based on maximum band-
width, and candidate sequence assembly using probabil-
ity-weighted consensus techniques. Sequencing errors
are also taken into account in ViSpA’s EM-based esti-
mation of quasispecies sequence frequencies.

We have validated our method on simulated error-free
reads, FlowSim-simulated reads with sequencing errors,
and real 454 pyrosequencing reads from HCV and HIV
samples. We are currently exploring extensions of
ViSpA to paired-end reads; the main difficulty is selec-
tion of pair-aware candidate paths. We also foresee
application of ViSpA’s techniques to the analysis of
high-throughput sequencing data from microbial com-
munities [23] and ecological samples of eukaryote popu-
lations [35].
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Availability
The ViSpA source code is available at http://alla.cs.gsu.
edu/~software/VISPA /vispa.html.

Additional material

Additional file 1: Supplementary Materials. The file contains
derivation of edge cost formula (2) and EM algorithm, example of read
graph construction and analysis of 454 pyrosequencing data.
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