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Abstract

Background: Fold recognition techniques take advantage of the limited number of overall structural organizations,
and have become increasingly effective at identifying the fold of a given target sequence. However, in the absence
of sufficient sequence identity, it remains difficult for fold recognition methods to always select the correct model.
While a native-like model is often among a pool of highly ranked models, it is not necessarily the highest-ranked
one, and the model rankings depend sensitively on the scoring function used. Structure elucidation methods can
then be employed to decide among the models based on relatively rapid biochemical/biophysical experiments.

Results: This paper presents an integrated computational-experimental method to determine the fold of a target
protein by probing it with a set of planned disulfide cross-links. We start with predicted structural models obtained
by standard fold recognition techniques. In a first stage, we characterize the fold-level differences between the
models in terms of topological (contact) patterns of secondary structure elements (SSEs), and select a small set of
SSE pairs that differentiate the folds. In a second stage, we determine a set of residue-level cross-links to probe the
selected SSE pairs. Each stage employs an information-theoretic planning algorithm to maximize information gain
while minimizing experimental complexity, along with a Bayes error plan assessment framework to characterize the
probability of making a correct decision once data for the plan are collected. By focusing on overall topological
differences and planning cross-linking experiments to probe them, our fold determination approach is robust to
noise and uncertainty in the models (e.g., threading misalignment) and in the actual structure (e.g., flexibility). We
demonstrate the effectiveness of our approach in case studies for a number of CASP targets, showing that the
optimized plans have low risk of error while testing only a small portion of the quadratic number of possible cross-
link candidates. Simulation studies with these plans further show that they do a very good job of selecting the
correct model, according to cross-links simulated from the actual crystal structures.

Conclusions: Fold determination can overcome scoring limitations in purely computational fold recognition
methods, while requiring less experimental effort than traditional protein structure determination approaches.

Introduction
Despite significant efforts in structural genomics, the
vast majority (> 90% [1]) of available protein sequences
do not have experimentally determined three-dimen-
sional structures, due to experimental expense and lim-
itations (e.g., lack of crystallizability). At the same time,
since structure is more conserved than sequence, there

may be only a small number (a thousand or two [2,3])
of distinct natural “folds” (overall structural organiza-
tions), and many of them can already be found in the
protein databank (PDB). Fold recognition techniques
[1,4] take advantage of this, and have become increas-
ingly effective at identifying the fold of a given target
sequence. However, the series of Critical Assessment of
Structure Prediction (CASP) [5] contests demonstrates
that, in the absence of sufficient sequence identity, it
remains difficult for fold recognition methods to always
select the correct model. While a native-like model is

* Correspondence: cbk@cs.dartmouth.edu
1Department of Computer Science, Dartmouth College, Hanover, NH 03755,
USA
Full list of author information is available at the end of the article

Xiong et al. BMC Bioinformatics 2011, 12(Suppl 12):S5
http://www.biomedcentral.com/1471-2105/12/S12/S5

© 2011 Xiong et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:cbk@cs.dartmouth.edu
http://creativecommons.org/licenses/by/2.0


often among a pool of highly ranked models, it is not
necessarily the highest-ranked one, and the model rank-
ings depend sensitively on the scoring function used
[5,6]. Fig. 1(left) illustrates two possible alternative mod-
els for one target from a recent CASP competition.
Seeking to close the gap between computational struc-

ture prediction and experimental structural determina-
tion, we [7,8] and others [9-11] have developed methods
(which we call structure elucidation) to select structural
models based on relatively rapid biochemical/biophysical
experiments. One type of experiment particularly suita-
ble for this purpose is cross-linking, which essentially
provides distance restraints between specific pairs of
residues, based on the formation (or not) of chemical
cross-links. While residue-specific (e.g., lysine-specific)
cross-linking has been effectively used for this task
[10,12,13], we previously showed that planned disulfide
cross-linking has a number of advantages, in terms of
the ease and reliability of experiment and the quality of
the resulting information content [7]. In disulfide cross-
linking (or “trapping”) [14-16], a pair of cysteine substi-
tutions is made and the formation of a disulfide bond
after oxidation is evaluated, e.g., by alteration in electro-
phoretic mobility [7,14,16]. An important point for our
purposes here is that disulfide cross-links are plannable
—we control exactly which pair of residues is probed in
a particular experiment.

While earlier methods have focused on probing geome-
try and selecting a model, we target here a more defined
characterization of protein structure, ascertaining the
overall protein fold. We call this approach fold determi-
nation, named in contrast to purely computational fold
recognition and our less defined structure elucidation
approach. We first characterize the topological / fold-
level differences in a set of models in terms of contact
patterns of secondary structure elements (SSEs); see the
middle panel of Fig. 1. The topological representation
allows for a robust experimental characterization of the
structure, less sensitive to noise and uncertainty in both
the models (e.g., threading misalignment) and the actual
structure (e.g., flexibility). As a representation with fewer
degrees of freedom than the complete threading models,
the topological representation also enables us to explicitly
consider all possibilities and handle the case when none
of the models is correct. Once we have identified a subset
of SSE pairs that are most informative for fold determina-
tion, we plan disulfide cross-links to evaluate these SSE
pairs; see the right panel of Fig. 1. By specifically planning
for each such SSE pair, we can account for the depen-
dence among the cross-links and select a set that will be
robust to, and even help characterize, model misalign-
ment and protein flexibility.
The method presented here strikes a balance between

very limited cross-linking (e.g., six disulfide pairs in our

Models SSE contact graphs Selected residue pairs
Figure 1 Protein fold determination by disulfide cross-linking. The example shows two models, but the method readily handles tens or
even hundreds of models. (left) Two models, TS125_3 (green) and TS194_2 (magenta), for CASP target T0351, are of reasonable quality but have
rather different topologies. (middle) The three-dimensional structures are compiled into graphs on the secondary structure elements (SSEs),
representing the topology in terms of contacting SSE pairs. A topological fingerprint is selected based on differences in SSE contacts (e.g., 1-2, 2-
4, 3-5, etc.) that together distinguish the models. (right) For each SSE pair in the topological fingerprint, a set of residue pairs is selected for
disulfide cross-linking, in order to robustly determine whether or not the SSE pair is actually in contact. The figure shows the selected cross-links
(yellow) to test for SSE pair (1, 2). Residues selected for cross-linking are colored red.
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earlier work [7]) and testing all residue pairs. We
assume that robotic genetic manipulation methods (e.g.,
based on SPLISO [17] and RoboMix [18]) can construct
a combinatorial set of dicysteine mutants, but that we
still should test a much smaller set than all residue
pairs. (Our plans require tens to around a hundred
cross-links, depending on error requirements.) Thus we
must optimize a plan so as to maximize information
gain while minimizing experimental complexity. This is
analogous to feature subset selection, where the goal is
to choose a subset of features from a dataset such that
the reduced set still keeps the most “distinguishing”
characteristics of the original [19,20]. At the topological
level (Fig. 1, middle) the features are SSE pairs, and the
objective is to select those that will correctly classify the
real structure to a model. At the cross-link level (Fig. 1,
right panel) the features are potential disulfide pairs and
the objective is to select those that will correctly classify
contact/not for the SSE pair. For each level, we optimize
a plan by employing an information-theoretic planning
algorithm derived from the minimum redundancy maxi-
mum relevance approach [21]. We then evaluate a plan
with a Bayes error framework that characterizes the
probability of making a correct decision from the
experimental data.

Methods
We are given a set M of models. They may be redun-
dant (i.e., some may have the same fold), and they may
be incomplete (i.e., a representative of the correct fold
may not be included). Our goal is to plan a set of disul-
fide cross-linking experiments (i.e., identify residue pairs
to be individually tested) in order to select among them.
As discussed in the introduction, we do this in two
stages (Fig. 1), first selecting a “topological fingerprint”
of SSE pairs to distinguish the folds, and then selecting
cross-links to assess these SSE pairs.

Topological fingerprint selection
In order to compare SSE topologies, we need a common
set of SSEs across the models. Since secondary structure
prediction techniques are fairly stable [22,23], it is gen-
erally the case that models have more-or-less the same
set of SSEs, covering more-or-less the same residues (>
50% overlapping as observed in our test data). Our
approach starts with a set S of SSEs that are common to
at least a specified fraction (default 50%) of the given
models. For example, both models in Fig. 1 have 5 a-
helices, as do 63 other models for the same target. The
later cross-link planning stage will account for the fact
that the common SSEs may in fact extend over slightly
different residues in the different models.

Given the SSE identities, we form for each model mi

Î M an SSE contact graph GSSE,i = (S, Ci) in which the
nodes S are the SSEs (common to the specified fraction
of models, as described in the preceding paragraph) and
the edges Ci ⊂ S × S are between contacting SSEs (spe-
cific to each model). We determine SSE contacts from
residue contacts, deeming an SSE pair to be in contact
if a sufficient set of residues are. Our current implemen-
tation requires at least 5 contacts (at < 9 Å Cb-Cb dis-
tance), and at least 20% of each SSE’s residues to have a
contact partner in the other SSE.
Our goal then is to find a minimum subset F ⊂ S × S

of SSE pairs providing the maximum information con-
tent to differentiate the models. As discussed in the
introduction, this is much like feature subset selection;
in particular, the max-dependency feature selection pro-
blem seeks to find a set of features with the largest
dependency (in term of mutual information) on the tar-
get class (here, the predicted structural model) [21].
While max-dependency leads to the minimum classifica-
tion error, there is unfortunately a combinatorial explo-
sion in the number of possible feature subsets that must
be considered. To deal with the combinatorial explosion,
we develop here an approach based on the minimum
Redundancy Maximum Relevance (mRMR) method [21].
Probabilistic model
First we develop a probabilistic model in order to evalu-
ate the information content in a possible experiment
plan. Let us treat each edge as being a binary random
variable c representing whether or not the SSE pair is in
contact, with Pr(c) the probability of being in contact (c
= 1) or not (c = 0). We estimate Pr(c) by counting
occurrence frequencies over the contact edge sets Ci for
the models:
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where the summed variables range over {0, 1} and the
indicator function 1 tests for membership of c in set Ci,
and thus the set includes those SSE contact graphs for
which the contact state of c agrees with y. To allow for
noise, when evaluating x = 1 we include a contribution
from y = 0 (false negative) along with that for y = 1
(true positive), and similarly when evaluating x = 0 we
consider both y = 1 (false positive) and y = 0 (true nega-
tive). The q function weights the contributions for the
agreeing and disagreeing case. We currently employ a
uniform weighting independent of edge, since we
observed in cross-link planning (below) that the
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expected error rate in evaluating any SSE contact was
well below 10% when using a reasonable number of
cross-links:
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The approach readily extends to be less conservative
and to allow different weights for different SSE pairs, e.
g., according to cross-link planning (discussed in the
next section).
We can likewise compute a joint probability Pr(c, c′)

from co-occurrence frequencies:
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where again the sums are over {0, 1} and the indicator
function is as described above.
Then we can evaluate the relevance of each SSE con-

tact edge c in terms of its entropy H(c); a high-entropy
edge will help differentiate models while a low-entropy
one won’t. We can also evaluate the redundancy of a
pair (c, c′) of edges in terms of their mutual information
I(c, c′); a high mutual-information pair contains redun-
dant information:
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Experiment planning
The mRMR approach seeks to minimize the total
mutual information (redundancy) and maximize the
total entropy (relevance). In this paper, we define the
objective function as the difference of the two terms:
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To optimize this objective function, we employ a first-
order incremental search [21], which builds up a set F
starting from the empty set and at each step adding to
the current F the edge c* that maximizes:
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The search algorithm stops when the score for c*
drops below a threshold (we use 0.01 for the results
shown below).
The original mRMR formulation with first-order

incremental search was proved to be equivalent to max-
dependency (i.e., to provide the most information about
the target classification) [21]. The proof carries over to
our version upon substituting our formulations of
redundancy and relevance (discrete, with choices of SSE
pairs providing information about models) in place of
the original ones (continuous, with gene profiles repre-
senting different types of cancer or lymphoma). Essen-
tially, it can be proved that the optimal max-dependency
value is achieved when each feature variable is maxi-
mally dependent on the class of samples, while the pair-
wise dependency of the variables is minimized.
Furthermore, this objective can be obtained by pursuing
the mRMR criterion in the “first-order” incremental
search (i.e., greedy) where one feature is selected at a
time. Therefore we don’t need to explicitly compute the
complicated multivariate joint probability, but can
instead compute just the pair-wise joint probabilities.
We thus have an efficient algorithm for finding an opti-
mal set of SSE pairs to differentiate models.
Data interpretation
In the next section, we will describe the planning of dis-
ulfide cross-linking experiments to evaluate a given fin-
gerprint. For now, let us assume that the form of
experimental data X regarding a fingerprint F is a binary
vector indicating for each edge whether or not the SSE
pair was found to be in contact. Let us denote by
 = { , }| |0 1 F the set of possible binary vector values for
X. Then the likelihood takes the joint probability over
the edges, testing agreement between the observed con-
tact state and that expected under the model:

Pr( | ) Pr( | )
| |

X m F X mi i

i

F

= =
=

∏
1

(8)

where we use the subscript to get the ith element of
the set. The naive conditional independence assumption
here is reasonable, since the elements of Fi (SSE contact
states) depend directly on the model, and are thus con-
ditionally independent given the model. We then select
the model with the highest likelihood. (If we have infor-
mative priors, evaluating model quality, we could instead
select based on posterior probabilities.)
Plan evaluation
In the experiment planning phase, we don’t yet have the
experimental data. However, we can evaluate the poten-
tial for making a wrong decision using a given plan by
computing the Bayes error, ∊. If we knew which model
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m were correct and which dataset X we would get, we
could evaluate whether or not we would make the
wrong decision, choosing a wrong model m′ due to its
having a higher likelihood for X than the correct model
m. The Bayes error considers separately each case where
one particular model is correct and one particular data-
set results, and sums over all the possibilities. It weights
each possibility by its probability—is the model likely to
be correct, and if it is, are we likely to get that dataset.
Thus:

∈= ⋅ ⋅ < ′
∈

′≠
∈

∑ ∑Pr( ) Pr( | ) (Pr( | ) max Pr( | ))m X m X m X m
m M

m m
X

1


(9)

where Pr(m) is the prior probability of a model, which
we currently take as uniform, but could instead be
based on fold recognition scores. Here and in the fol-
lowing formulas we use an indicator function 1 that
gives 1 if the predicate is true and 0 if it is false. So we
assume each different model is correct (at its prior
probability), and assess whether or not it would be bea-
ten for each different data set (at probability conditioned
on the assumed correct model). This framework thereby
gives a probabilistic evaluation of how likely it is that we
will make an error, in place of the usual empirical cross-
validation that is performed to assess a feature subset
selected for classification.
In the case of fold determination, there may not be a

single best model—a number of models may in fact
have the same fold, and thus be equally consistent with
the experimental data. Thus in the data interpretation
phase we would not want to declare a single winner, but
instead would return a set of the tied-for-optimal mod-
els. In the experiment planning phase, we develop a
complementary metric to the Bayes error, which we call
the expected tie ratio, τ:
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The formula mirrors that for ∊, but instead of count-
ing the number of incorrect decisions, it counts the frac-
tion of ties. Evaluating τ as we build up a topological
fingerprint allows us to track the incremental power to
differentiate folds, up to the point where we find that a
set of models has the same fold and τ has flat-lined. The
metric can readily be extended to account for sets of
models whose likelihood is within some threshold of the
best.
Finally, the topological fingerprint approach allows us

to handle the “none-of-the-above” scenario, when we
decide that no model is sufficiently good; i.e., the correct
fold isn’t represented by a predicted model. While in
other contexts that would be done by comparing the
likelihood to some threshold (is the selected model

“good enough”?), here we can actually explicitly consider
the chance of not considering the correct fold. Note that
since a fingerprint typically has a small number of SSE
pairs, we can enumerate the space  = { , }| |0 1 F of its
possible values (indicating whether or not each SSE pair
in the fingerprint is in contact). Some of those values,
M , correspond to models in M, while the rest,
 − M , are “uncovered”. We want to decide if an
uncovered fold ′ ∈ −f M  is better than the fold f
for the selected model. Moving from models to folds,
we can evaluate Pr(X | f) by a formula like Eq. 8, simply
testing whether each Xi has the value specified in f.
Then we can decide that it is “none of the above” (mod-
els) if ∃ ′ ∈ −f M  such that
Pr( | ) max Pr( | )X f X ff M

′ ≥ ∈ .
Moving from data interpretation to experiment plan-

ning, we can again evaluate a plan for the probability of
deciding none of the above. If we think of Bayes error
as the false positive rate, then we want something more
like a false negative rate. We call this metric ν, the
expected none-of-the-above ratio:

u = ′ ⋅ ′ >
∈

∈′∈
∑∑ Pr( ) . (Pr( | ) max)Pr( | ))| |
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f X f X fF
M
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f
Xf

1
2

1
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Thus ν is the fraction of experimental datasets for
which an uncovered fold will be better than the best
covered fold. We currently do not include a prior on X,
in order to provide a direct assessment of how many
experiments could lead to a none-of-the-above decision.
However, we could obtain a weighted value by estimat-
ing Pr(X), e.g., from the priors on the individual SSE
pairs (from Eq. 1). For the same reason, we treat Pr(f′)
as uniform over the uncovered folds f′, rather than eval-
uating it by priors on SSE pairs. Note that the formula
does not include SSE pairs in (S × S) \ F; i.e., pairs not
in the fingerprint. This is as if they contribute equally to
covered and uncovered folds, and thus do not affect the
outcome. In the absence of other information or
assumptions about the uncovered folds, this is a reason-
able (and conservative) assumption, and yields an inter-
pretable metric.

Cross-link selection
Once a topological fingerprint F has been identified, the
next task is to optimize a disulfide cross-linking plan to
experimentally evaluate the SSE pairs in the fingerprint.
We separately plan for each SSE pair (their conditional
independence was discussed in the previous section),
optimizing a set of disulfide cross-link experiments (a
single cross-link per experiment), such that, taken
together, these cross-links will reveal whether or not the
SSE pair is in contact. The overall plan is then the
union of these SSE-pair plans. Thus we focus here on
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planning for a single SSE pair. We must account for
noise and uncertainty in both the model and the actual
protein, as well as for dependency among cross-links.
This paper represents the first to address these issues.
Different models may place an SSE at somewhat dif-

ferent residues, so when planning cross-links to probe
that SSE’s contacts, it is advantageous to focus on resi-
dues common to many models (and thus able to provide
information about cross-linkability in those models). We
define for each SSE a set of common residues that may
be used in a disulfide plan. Our current implementation
includes all residues that appear in at least half of the
models that have that SSE. In the following, let R denote
the common residues for a target SSE pair.
For each model mi we construct a residue cross-link

graph Gxlink,i = (R, Di), in which the nodes are common
residues R and there are edges Di ⊂ R × R between pos-
sible disulfide pairs (specific to each model). We com-
pute the cross-linking distance for a residue pair as the
Cb–Cb distance, and take as edges those with distance
at most 19 Å, based on an analysis of rates of disulfide
formation [7,14]. Our method could be generalized to
include a more detailed geometric evaluation of the like-
lihood of cross-linking.
Probabilistic model
We must define a probabilistic model in order to evalu-
ate the information content provided by a set of cross-
links. We treat possible cross-link (pair of residues) as a
binary random variable indicating whether or not there
is a cross-link. We start with the model of our earlier
work, in which the prior probability of a cross-link wrt a
model is 0.95 for distances ≤ 9Å, 0.5 for distances
between 9 and 19 Å, and 0.05 for those > 19 Å [7].
However, we also account for two important types of
noise in this context: threading misalignment and struc-
tural flexibility (Fig. 2).

We place a distribution Pr(δ) over possible offsets by
which an SSE could be misaligned in a model. That is,
residue number r in the model is really residue r + δ in
the protein, and thus a cross-link involving residue r + δ
is really testing proximity to residue r. We use a distri-
bution with 0.5 probability at 0 offset, decaying expo-
nentially on both sides up to a maximum offset.
Analysis of a model or the secondary structure predic-
tion could provide a more problem-specific distribution.
We currently consider each SSE separately; a future
extension could model correlated misalignments result-
ing from threading. We sample a set of alternative back-
bones for a model, and place a distribution Pr(b) over
the identities of these alternatives. While there are many
ways to sample alternative structures, we currently use
Elastic Normal Modes (ENMs) as implemented by
elNémo[24], sampling along the lowest non-trivial nor-
mal mode. We set Pr(b) according to the amplitude of
the perturbation, using a Hookean potential function
derived from ENMs. Future extensions could model dif-
ferent aspects of flexibility, such as local unfolding
events during which a cross-link may be captured.
These two factors result in dependence among possible

cross-links: if an SSE is misaligned or has moved relative
to the original model, all its cross-links will be affected.
However, the cross-links are conditionally independent
given the particular value of misalignment or backbone
choice. Thus we have for any two cross-links ℓ, ℓ′:

Pr( , ) Pr( ) Pr( | , ) Pr( | , ) Pr( )   ′ = ⋅ ⋅ ′ ⋅∑∑ m m m
m

d d d
d

(12)

and similarly for backbone flexibility. Furthermore,
misalignment and flexibility are independent.
Experiment planning
Our goal is to select a “good” set of residue pairs L ⊂ R
× R to experimentally cross-link, in order to assess

True

Contacts Predicted

True

True

SSE 2

Predicted True

Predicted

Contacts SSE 1

SSE 2

SSE 1

Misalignment Flexibility
Figure 2 Noise factors in cross-link planning. Noise factors include misalignment (left) and flexibility (right). Blue dots represent residues and
yellow lines their contacts. Regions in dashed lines are the modeled SSE and those in solid lines those measured by cross-linking experiments.
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whether or not the SSE pair is in contact. This is
another feature subset selection problem, and we again
employ an mRMR-type incremental algorithm. Here a
possible cross-link ℓ’s relevance is evaluated in terms of
the information it provides about whether or not the
SSE pair is in contact: I(ℓ, c), where c is the binary ran-
dom variable for contact of a target SSE pair. Redun-
dancy is again evaluated in terms of mutual information.
Thus the objective is:

s L
L

I c
L

I
L L

( )
| |

( , )
| |

( , )
,

= − ′
∈ ′∈
∑ ∑1 1

2  
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(13)

and we incrementally select cross-links to maximize
the difference in relevance regarding contact and aver-
age redundancy with already-selected cross-links.
Data interpretation
Once we have experimentally assessed cross-link forma-
tion for each selected residue pair, we can evaluate the
probability of the SSE pair being in contact. Let Y be
the set of cross-linking data, indicating for each residue
pair in L whether or not a disulfide was detected. To
decide whether or not c is in contact, we will compare
Pr(Y | c = 1) and Pr(Y | c = 0), and take the one with
higher likelihood. Intuitively, the more cross-links that
are detected, the more confident we are that the SSE
pair is in contact. Thus we currently employ a sigmoidal
function to evaluate the likelihood:

Pr( | ) .
( ) ( )

Y c x
e

x k k
= =

+ − ⋅ −

1

1 1 0
(14)

Here k is the number of detected cross-links in Y, and
k0 is the minimum number of positive cross-links for us
to start believing c is in contact. For example, for c = 1,
given a default number of 10 experiments, we set k0 = 3
and the likelihoods of c = 1 for k = 0, 3, 6 are then
approximately 0.05, 0.5, and 0.95, respectively. The
metric could be extended to reward the broader distri-
bution of cross-links throughout each SSE. However, in
our current framework, we find that having a sufficient
number of cross-links without regard to location tends
to achieve that goal.
Plan evaluation
Finally, in order to assess an experiment plan’s robust-
ness, we develop a Bayes error criterion to evaluate the
probability of making a wrong decision regarding SSE
contact:

∈= = ⋅ = ⋅ = < ≠
∈∈
∑∑ Pr( ) Pr( | ) (Pr( | ) Pr( | ))

{ , }

c x Y c x Y c x Y c x
Yx

1
0 1

(15)

As in the previous section, we sum over the possible
outcomes (here, in contact or not) and the possible

experimental results (  ={ , }| |0 1 L , all binary choices for
cross-links in plan L), weighted by their probabilities,
and see which yield the wrong decision. In the absence
of an informative prior for c (and one that we want to
use in interpreting the data), we simply use Pr(c = 1) =
Pr(c = 0) = 0.5. Note that, if desired, we could use the
cross-linking Bayes error as a replacement for q (as 1 –
∊) in evaluating Pr(c = x). These values could be pre-
computed for all candidate SSE pairs, or a fingerprint
could be reevaluated and perhaps modified upon evalu-
ating its possible cross-link plan.

Results and discussion
We demonstrate the effectiveness of our approach with
a representative set of 9 different CASP targets (Tab. 1),
including proteins that are all-a, some that all-b, and
some that are mixed a and b. For each target, a number
of high-quality models have been produced by different
groups; we evaluate those of common SSE content, as
described in the methods. The models vary in similarity
to the crystal structure (the PDB ID indicated), which is
unknown at the time of modeling and furthermore not
used for experiment planning, as well as to each other
(the average root mean squared deviation in atomic
coordinates, RMSD, between pairs of models is indi-
cated). Our goal is to select for each target an experi-
ment plan to robustly determine the model(s) of the
same fold as the crystal structure.

Topological fingerprint selection
Fig. 3 shows the trends of Bayes error (∊), expected tie
ratio (τ), and expected none-of-the-above ratio (ν) as
more SSE pairs are included in the topological finger-
print. It may seem counterintuitive that ∊ initially
increases with the addition of SSE pairs. However, this
is because we define the Bayes error of a tie as zero (Eq.
9), and separate out the tie ratio. With few SSE pairs in
the fingerprint, τ is generally high—few decisions will be
made, as many models look equally good, and the Bayes
error is small. Then as SSE pairs are added, τ drops

Table 1 Test data sets (from CASP7)

CASP ID PDB ID 2° AAs Models Av. RMSD

T0283_D1 2hh6 5a 97 162 17.26

T0289_D2 2gu2 5b 74 34 13.45

T0299_D1 2hiy 3a, 3b 91 30 15.23

T0304_D1 2h28 2a, 5b 101 26 15.76

T0306 2hd3 7b 95 45 14.22

T0312_D1 2h6l 2a, 5b 132 55 16.13

T0351 2hq7 5a 117 65 15.42

T0382_D1 2i9c 6a 119 196 12.79

T0383 2hnq 2a, 4b 127 59 11.61
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sharply—the fold is more specifically determined, deci-
sions will be made, and the potential for error (as
reflected in the Bayes error) increases. Once a sufficient
number of SSE pairs has been selected, the specifically-
determined fold is distinct, and the decisions are likely
to be right, and ∊ will decrease. Thus it is both appro-
priate and helpful to consider ∊ and τ together, as they
provide complementary information in the progress
toward obtaining a unique and correct fold.
On the other hand, we observe that the ν value is

usually 0 in the first few steps, because at that point
there are not distinct folds separated, and it is easy for
the SSE graphs from the predicted models to “cover” all
the possible folds. ν becomes non-zero when there are
uncovered folds. Its value first decreases because the
number of covered folds and the number of uncovered

folds are both increasing as more SSE pairs are included,
and ν only gets contributions from an uncovered fold
with greater (not equal) likelihood as the best covered
fold. At some point the number of covered folds stops
increasing (due to the limited set of predicted fold
types), while the number of uncovered folds is still
growing. Then the additional fold possibilities in the
uncovered space result in a higher risk of “none-of-the-
above”, and thus the ν value starts increasing again. This
trend is particularly obvious for targets T0289_D2 and
T0304_D1; in fact, we return to T0304_D1 below as a
real example of “none-of-the-above”.
The fingerprint evaluation incorporates a parameter in

the q function (Eq. 2), essentially indicating the confi-
dence we expect to have in the experimental evaluation
of an SSE pair. We performed a sensitivity analysis for
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Figure 3 Evaluations of fingerprints for case study targets. The plots show Bayes error (∊), expected tie ratio (τ), and expected none-of-the-
above ratio (ν), with addition of SSE pairs to fingerprints for targets. x-axis: SSE pairs. y-axis (left): τ, (%). y-axis (right): ∊, ν.
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three values of q, from 0.7 (fairly ambiguous) to 0.9
(fairly confident). Fig. 4 shows that for one target the
trends are very similar for all three values; our algorithm
is insensitive to the choice. Other targets display similar
insensitivity (not shown).

End-to-end simulation study
Once we have selected a topological fingerprint, we next
design a disulfide cross-linking plan to determine the
contact state of the selected SSE pairs. To validate the
overall process (fingerprint + disulfides), we perform a
simulation study. Given a selected set of residue pairs
for cross-linking, we use the crystal structure (PDB
entry in Tab. 1) to determine whether or not they
should form disulfides (Cb-Cb distance < 9 Å), and treat
those evaluations as the data. We also use the set of all
SSE pairs to directly compare the fold of each model
with that of the crystal structure, and thereby label each
model as being the “correct” fold or not depending on
whether or not they have the same SSE contacts for the
same SSE pairs. We then evaluate whether or not the
simulated data for the selected cross-linking plans result
in the same conclusions as the direct comparisons of
folds.
To compare the decision based on simulated cross-

linking data with that based on fold analysis, we per-
formed a Receiver Operator Characteristic (ROC) analy-
sis. The area under the ROC curve (AUC) measures the
probability that our experiment plan will rank a ran-
domly chosen positive instance higher than a randomly
chosen negative one. The larger the AUC, the better
classification power our algorithm has to detect the
right fold. Fig. 5 illustrates the simulation results on
eight example protein targets (ROC analysis for
T0304_D1 is not applicable and we will discuss it
below). ROC curves are shown for different thresholds
for the percentage r of residues that must be in contact
to declare that the SSE pair is in contact in the structure
or model. A high r value results in very few SSE pairs

deemed to be in contact (we found that to happen with
r = 0.3), while a low one yields some fairly weak con-
tacts. As the figure shows, a moderate r value of around
0.2 generally results in quite good fold determination
results.

Robustness
One of the merits of the fold determination approach is
that it is robust to errors in models, and can even
account for the case when none of the models is cor-
rect. The selected targets provide examples requiring
such robustness; we summarize here just a couple. Mis-
alignment. In Eq. 12 we account for being off by up to δ
residues in the SSE locations. In the case of T0312_D1,
there are 23 models of the correct fold, but with δ = 0,
only 7 of them agree with the crystal structure regarding
all the cross-links in the experimental plan, while with δ
= 1 there are 14 that agree, and with δ = 2 there are 16.
The remaining unmatched models are looser in struc-
ture, and the match is sensitive to the threshold we use
to measure SSE contacts. None-of-the-above. For target
T0304_D1, none of the models has the same SSE con-
tact graph as the crystal structure. The GDT [6] scores
of predicted models are in the low 30s, which indicates
relatively poor agreement with the crystal structures. As
shown in Fig. 3, the ν value is relatively high, indicating
a potential risk of missing the right fold. Indeed once
we evaluate the models under the simulated data, we
find that the likelihoods are low (< 2 × 10–3), compared
to that (≈ 0.66) of the uncovered but correct fold, which
is found by enumeration.

Conclusions
This paper presents a computational-experimental
mechanism to rapidly determine the overall organization
of secondary structure elements of a target protein by
probing it with a planned set of disulfide cross-links. By
casting the experiment planning process as two stages
of feature selection—SSE pairs characterizing overall
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fold and residue pairs characterizing SSE pair contact
states—we are able to develop efficient information-the-
oretic planning algorithms and rigorous Bayes error
plan assessment frameworks. Focusing on fold-level ana-
lysis results in a novel approach to elucidating three-
dimensional protein structure, robust to common forms
of noise and uncertainty. At the same time, the
approach remains experimentally viable by finding a
greatly reduced set of residue pairs (tens to around a
hundred, out of hundreds to thousands) that provide
sufficient information to determine fold.
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