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Abstract

Background: Combining the results of studies using highly parallelized measurements of gene expression such as
microarrays and RNAseq offer unique challenges in meta analysis. Motivated by a need for a deeper understanding
of organ transplant rejection, we combine the data from five separate studies to compare acute rejection versus
stability after solid organ transplantation, and use this data to examine approaches to multiplex meta analysis.

Results: We demonstrate that a commonly used parametric effect size estimate approach and a commonly used
non-parametric method give very different results in prioritizing genes. The parametric method providing a meta
effect estimate was superior at ranking genes based on our gold-standard of identifying immune response genes
in the transplant rejection datasets.

Conclusion: Different methods of multiplex analysis can give substantially different results. The method which is
best for any given application will likely depend on the particular domain, and it remains for future work to see if
any one method is consistently better at identifying important biological signal across gene expression
experiments.

Background
Messenger RNA expression measurement with microar-
rays enables a very highly multiplexed examination of
the relative expression of genes under different experi-
mental conditions, and several different techniques for
combining the results of different microarray experi-
ments have been proposed [1-5]. However, there has
been very little work done looking at the differences
between meta analysis techniques [6] and how they may
be used together to understand a concrete biomedical
problem with clinical implications. By looking at a parti-
cular biomedical problem, in this case acute rejection of
solid organ transplants, we can compare the results of
different meta analysis approaches, both to one another
and what is known about the process of transplant
rejection.

In 2007, more than 28,000 solid organs (including
heart, liver, lung, pancreas, kidney and intestine) were
transplanted in the United States [7]. Unfortunately,
recipients of allografts are subject to the problems of
transplant rejection. Particularly dire is the activation of
a significant T-cell mediated response against the
implanted tissue, termed acute rejection. Therefore, we
can expect that samples taken from patients undergoing
acute rejection will have substantially increased expres-
sion of genes associated with a T-cell mediated immune
response than samples taken from patients not under-
going acute rejection. However, the mechanism by
which T-cells infiltrate the allografts and mediate rejec-
tion is not known. It can be hypothesized that although
the prompts for tissue-specific injury may be different,
there may be common mechanism of rejection (e.g.,
T-cell infiltration) across all solid organ transplants.
Identification of shared mechanisms that lead to tissue-
specific destruction can facilitate novel treatments
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without requiring the understanding of individual, tis-
sue-specific mechanisms. However, the conventional
experiment design, where only one type of solid organ
allograft is examined in an experiment is inadequate to
identify such a mechanism. In this regard, microarray
data from different solid organ transplants, available
from public data repositories such as NCBI Gene
Expression Omnibus (GEO), can be combined to gain a
greater understanding of the process of acute rejection
to aid in early diagnosis and the tailoring of treatment
regimens.
However, these experiments are performed on differ-

ent microarray platforms by different laboratories, Sev-
eral techniques for combining the results of different
microarray experiments have been proposed and the
theoretical differences between methods have been
presented and a range of methods have been covered
in review articles [1-5]. However, there has been very
little work done looking at the empirical differences
between meta analysis techniques. Furthermore, most
previous work has used simulated data or measures of
consistency [6]. We are most interested in how meta-
techniques may be used together with real data to
understand a concrete biomedical problem with clini-
cal implications.
Multiplexed meta analysis differs from traditional, sin-

gle measurement, approaches in the number of variables
being simultaneously combined across experiments. In
traditional meta analysis, a given variable is combined
across several experiments which may be measuring the
exactly the same feature or slightly different features
that will be combined, and there is an extensive set of
techniques for this form of analysis [8]. However, in
multiplex meta analysis, many variables are being simul-
taneously combined across experiments. Some of the
experiments may not have measured that particular vari-
able, and some of the experiments may have measured
that variable multiple times within a single experiment
(such as multiple probes measuring expression of the
same gene on a microarray).
In single measurement approaches, it is often impor-

tant to identify whether or not the experiments com-
bined are comparable in design and consistent in result.
However, in multiplexed meta analysis, we are often try-
ing to identify which variables represent a core of simi-
lar behavior across experiments and it is not essential
that the other variables are homogeneous in variation.
Finally, multiplexed meta analysis is often used for

data-mining purposes to identify particularly strongly
associated variables across experiments, such as the
development of biomarkers and other forms of hypoth-
esis generation that will be validated experimentally. It
is therefore often acceptable to sacrifice significant

amounts of sensitivity for a high degree of specificity
when analyzing tens of thousands of variables.
In this work, we focus on the application of some of the

traditional approaches of meta analysis applied to multi-
plex gene expression data. We show that for the very basic
task of developing a prioritized gene list, our applied para-
metric approach with known flaws actually outperforms
non-parametric methods that should have greater accu-
racy at the level of any individual gene. For multiplex pro-
blems, the large error bars associated with the estimation
of meta fold-change for any particular gene is less impor-
tant than the overall average improvement in gene ranking
that this meta analysis method provides.

Results
Traditional meta analysis methods may be grouped into
two broad categories of approach. The first is to use a
non-parametric method to combine the significance
results of the different experiments being amalgamated
in the meta analysis. At the simplest level this can
include counting methods that look at the proportion of
experiments showing significance. More accurate tests
include omnibus methods that combine p-values to
obtain a meta p-value. The second general approach is
to try to merge a series of predictions from separate
experiments to develop a model of effect size. For gene
expression this would amount to a meta fold-change
estimate. We examined the most commonly used exam-
ples of both approaches.
There is a range of non-parametric omnibus methods

for combining p-values from different studies. The basic
assumption of most methods is that in the absence of
any actual difference in a variable being measured, the
p-values should be uniformly distributed. We will focus
on one of the best studied, Fisher’s method, which com-
bines the squares of the p-values, [pi], from each of the
k studies and compares that to a c2 distribution:
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The resulting list of meta p-values, one for each gene,
can then be subject to correction for multiple hypothesis
testing or used to estimate a false discovery rate and
obtain a q-value [9].
As an underlying statistical test, we used two one

sided t-tests, one for a hypothesis of increased expres-
sion, another for a hypothesis of decreased expression.
Because Fisher’s method does not take into account the
sign of the variation, we examine the hypothesis of
increased expression separately from decreased expres-
sion, and then for each gene, take the minimum p-
value. Taking the minimum of two values introduces a
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very slight bias, but our primary interest is in creating a
ranked list. For the combination of these five microarray
studies, we get a substantially enriched selection of dif-
ferentially expressed genes over random; 5.2% of the
20,113 genes studied have a meta p-value less than 0.01
for the hypothesis of increased expression (1% expected
by chance), whereas 6.5% have p-values less than 0.01
for the hypothesis of decreased expression (1% also
expected by chance). When the minimum p-value of the
Fisher’s method applied to the two one-sided t-tests was
corrected for multiple hypothesis testing through the
method proposed by Benjamini and Hochberg [10], 584
genes had a corrected p-value less than 0.01; this sug-
gests a substantial enrichment for true positives.
Another important purpose of meta analysis is to

model the magnitude, i.e. the effect size, of the variation.
For gene expression measurements, this corresponds to
combining fold-changes across studies to identify a
meta-fold-change that is an amalgamation of the consti-
tuent studies. One commonly used method is to take a
linear combination of effect sizes (fold-changes in this
case, fi), weighted by the variance in the effect size
within each study (wi), with the confidence intervals
combined with the same weights. This means that stu-
dies with larger intra-study variation (noise) contribute
less to the overall estimate of fold-change.
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Unfortunately, this approach makes a strong assump-
tion about the distribution of the data and how it may
be combined. For multiplexed meta analysis, there are
many variables each with possibly very different distri-
butions, and it is very difficult, if not impossible, to
identify any single best distribution to model the data,
and there are generally insufficient samples to develop
separate models for each variable (gene). That means
that this is neither a robust nor a powerful statistical
test for each variable.
The non-parametric methods of p-value combination

make no assumptions about the underlying distribution
of the data, and rely only on the results of the underly-
ing statistical methods used to analyze that data. Meth-
ods such as the t-test are very robust and accurate
when looking at gene expression measurements.
Indeed, they are more accurate at detecting differential
expression than fold-change [11]. However, the fold-
change is still an important measure of effect size, and
it is substantially more reproducible across studies
[12]. For instance, if gene expression studies are being
combined to suggest proteins for further analysis, a
very small gene expression fold-change is not likely to
lead to a measurable difference in protein expression,

independent of the statistical significance of the
difference.
The difference between significance and effect size is

an important distinction in applied statistics in general.
Although, statistical significance is often associated with
large effect size, they are not equivalent as demonstrated
in the commonly used ‘volcano plot’ to display gene
expression data [13]. For another example, a correlation
coefficient is a measure of effect size, whereas a p-value
on a measure of correlation is a significance measure.
When doing most types of analysis, we want both a sig-
nificance estimate and an effect size estimate. In multi-
plexed meta analysis, we suggest combining a robust
measure of significance (such as a t-test or modified t-
test) using one of the non-parametric omnibus methods
to identify significant difference with a parametric
method of combining effect size estimates to get a rea-
sonable estimate of effect size (i.e. fold-change).
The meta p-values obtained by Fisher’s method and

the meta-fold-change value obtained by the invariance
method can be plotted for each gene, leading to a meta
analysis version of the volcano plot [14]. A typical vol-
cano plot graphs p-value against fold-change and shows
that extremely high and extremely low fold-changes
tend to be associated with highly significance p-values,
and has a marked triangle shape.
Interestingly, we see in Figure 1 that the meta analysis

results are not separated into the forked distribution of
a traditional volcano plot. It shows the characteristic tri-
angular shape only slightly, if at all. This means that
genes that are highly significant in differential expres-
sion across the experiments (significant meta p-value)
can have a very small meta-fold-change estimate, and
the reverse. We see that these two methods do not have
a clear relationship with each other. The coefficient of
correlation between the log significance values and the
absolute value of the meta fold-change is 0.3, which is
not nearly as dramatic as might be expected. It is cer-
tainly possible that genes that differ in expression mag-
nitude (meta fold-change) only modestly may show a
significant difference across experiments as captured by
Fisher’s, non-parametric, method. This is indeed what
may be seen in Figure 1. This suggests that Fisher’s
method might be superior at identifying some consis-
tently differentially expressed, low magnitude, signal that
is biologically important. However, for our chosen eva-
luation, this does not seem to be the case.
To attempt to identify which method is better at iden-

tifying biologically relevant genes in this data set, we use
the Molecular Signatures Database [10] to identify the
lists of genes associated with “Immune Response” and
“Defense Response”. A gene expression meta analysis
approach that is being used to probe the undesirable
immune response in transplant rejection should
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prioritize these genes more highly. We can compare the
prioritization provided by Fisher’s method p-values
(using the lower p-values as indicating higher priority)
and the meta fold-change provided by the inverse var-
iance method to select these import immune function
genes. These results are shown in Figures 2 and 3. It
can be seen that the ranking provided by the effects size
estimate from the inverse variance method, the meta
fold-change, is superior to that provided by Fisher’s
method, the meta p-values. The Fisher’s method also
does not differentiate itself from the prioritization pro-
vided by the individual constituent datasets being
combined.

Discussion
It is important to evaluate the ability of different
approaches to multiplex meta analysis to answer the
questions being asked. Unfortunately, just as there is no
single question asked of gene expression measurements,
there is no one correct way to evaluate different gene
expression analysis techniques, even with extensive bio-
logical validation.
In this pilot application, we were interested in obtain-

ing a prioritized list of the genes involved in acute rejec-
tion across the types of transplanted organs. We have a
strong prior expectation that this common process of
acute rejection involves an immune response reaction.
We searched for genes known to be involved in immune

response (annotated as “immune response” genes), as
reported by the Molecular Signatures Database [15], and
observe how the different meta analysis approaches
prioritize those genes. Our method of evaluation here
was to count the number of immune related genes at
each point of depth into the ranked list.
We find the meta fold-change derived by the inverse

variance method is better at recapitulating our prior
expectation of immune response genes than any single
dataset, at every depth into the gene list (Figure 2).
Interestingly, the list of genes obtained by ranking
according to the meta p-values obtained by Fisher’s
method are no better than the best individual experi-
mental results at identifying and prioritizing the genes
of interest. Though we acknowledge this is only a preli-
minary analysis, these results suggest that the ordering
of genes provided by meta effect size estimate may be
more biologically relevant, even if non-parametric meth-
ods of significance may be more accurate for any indivi-
dual gene.

Conclusions
Our results show that there is value to be gained in
doing meta analysis and combining results from differ-
ent studies can improve the ranking of genes. However,
not all meta analysis techniques are equivalent, and not
all seem to provide the same level of improvement over
looking at individual experiments.

Figure 1 Meta fold-change obtained from the inverse variance method plotted against -log10(pmeta, Fisher) for each gene, counts smoothed with
hexbin [27]. Panel A shows the Fisher method meta p-values obtained from a one sided t-test checking against lowered expression of the gene.
Panel B shows the Fisher method applied to p-values from a one sided test against a hypothesis of increased expressed. The third panel, C,
shows the minimum of the two Fisher method obtained values obtained for each gene plotted against the meta fold-change. Note that
although a meta p-value for a lowered expression is indeed associated with a lower meta-fold change, and vice versa, overall extreme values in
meta fold-change are not associated with extremely significant p-values. Panel C which combines the two tests does not show the extreme,
marked forked structure that is characteristic of a “volcano plot”. One of the key features of a nonparametric approach like Fisher’s method is
that it allows small changes in fold change that are consistent across experiments to rise to statistical significance across studies. It is important
to note however, that these meta analysis results show that meta fold-change and meta p-value can be more decoupled than they are in a
single study, and that the two methods can give different rank prioritizations of genes that differentially expressed across studies.
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Effective, useful multiplex analysis techniques for gene
expression analysis must be able to provide accurate
estimates of statistical significance of differential expres-
sion. However, we will continue to need general, overall
estimates of effect size (fold-change). Indeed, our results
suggest that for at least some biological questions these
estimates of fold-change are more useful for identifying
features important to the biology of the problem than
meta significance estimates (p-values).
The study of gene expression measurements in acute

rejection offers a particularly good opportunity to inves-
tigate methods of multiplex meta analysis. We know
that a powerful immune response is involved, and the
fact that the meta fold-change approach provides a
greater enrichment of these genes implies that it is cap-
turing more of the core, shared process of acute rejec-
tion across organ types. At the same time that we
generally know that acute rejection involves an immune
response, we are interested in the particular genes and

pathways involved and can investigate the highly ranked
genes more thoroughly and look for biological validation
to help address the important clinical problem of organ
rejection.
In this comparison of two approaches to multiplex

meta analysis, we have identified some of key issues that
need to be investigated further. The fact that two of the
most common approaches to traditional meta analysis, a
nonparametric significance test based approach and a
parametric, effect size estimate approach, give very dif-
ferent results highlights many of the challenges. This is
an opportunity for future efforts, as we can investigate
methods that combine both of these approaches. It will
also be important to identify in future work if one of
these two methods or another approach is able to con-
sistently identify important biologically relevant signals
across gene expression experiments. The evaluation we
have chosen, the prioritization of immune relevant
genes in transplant rejection expression variation

Figure 2 Receiver Operating Characteristics (ROC curves) showing the relative ability of the meta fold-changes and the meta p-values to
prioritize genes associated with “IMMUNE RESPONSE” as identified in the Molecular Signatures Database. The ability of individual studies to
identify/prioritize genes is also shown, indicated by the last name of the first author of the associated publication. In the figure legends, the
different sources of the ROC curves are indicated by different colors and the area under the curve is shown to the right of the label. The greater
the area under the curve, the great predictive power to identify genes involved in immune response. Note that the meta fold-change (indicated
by MetaEffect for the meta effect estimate approach) has the greatest predictive power. The Fisher’s method (FisherP) meta p-values do better
than most of the single experiments, but are completely dominated by the meta fold-change.
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datasets is far from a perfect evaluation metric. Future
comparisons will need to look at other biomedically
important problems and gold-standards to identify if
any one approach of family approaches can be shown to
provide better results than another.

Materials and methods
We chose to search for a common signature of organ
transplant rejection as a test of our methods. We col-
lected data from five publicly available gene expression

studies (Table 1) on transplant rejection using Affyme-
trix single color arrays: two on kidney [16,17], two on
lung [18,19], and one on heart [20].
The individual data sets were taken from the Gene

Expression Omnibus [21] and the data was quantile-
quantile normalized and analyzed using Bioconductor
[22]. Two one sided t-tests were performed for each
probeset within each of the five constituent datasets.
Fisher’s method was then performed as previously
described [8] by pooling all the p-values for the probe-
sets for each gene. Probes were mapped to Entrez Gene
identifiers [23] using AILUN [24]. The minimum of the
two p-values (one from each of the two one-sided tests
which were synthesized using Fisher’s method) for each
gene was taken as the meta p-value. Within each experi-
ment, a fold change was calculated for each gene by tak-
ing the log ratio of the geometric means of the
expression values between the samples showing acute
rejection and those showing stable acceptance of the
transplanted organ. The geometric mean of expression

Figure 3 ROC curves showing the relative ability of the meta fold-changes and the meta p-values to prioritize genes associated with “DEFENSE
RESPONSE” as identified in the Molecular Signatures Database. Note that the overall area under the curve is superior for the prioritization of
genes via meta fold-change from the inverse variance meta effect size estimate (MetaEffect), and this method is better at identifying genes at
the very top of the list, as indicated by the dominance of the ROC curve at the far left, indicating very strong enrichment (higher true positive
rate), while the number of false positives are still relatively low. This result suggests that the meta fold-changes provide a superior method for
identifying the key genes in the undesirable immune response in acute organ rejection.

Table 1 Overview of the datasets.

Dataset Organ AR Tol Platform GEO Acc.

Gimino, et al. Lung 7 27 hg133a GDS999

Karason, et al. Heart 3 6 hg133a GDS1684

Patil, et al. Lung 18 14 hg133a GSE6095

Flechner, et al. Kidney 7 10 hgu95a GDS724

Rödder, et al. Kidney 18 8 hg133plu2 GSE9493

AR indicates number of tissue samples of acute rejection, Tol indicates the
number of samples of tissue from graft tolerant patients.
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value is equivalent to taking the arithmetic means of the
log expression values. The sample variance was also cal-
culated for this dimensionless quantity derived from
fold change (a ratio), and then the fold changes were
combined for each gene using the previously described
linear model, weighted by inverse variance, to provide
an effect size estimate, in this case a meta fold-change.
A standard deviation on this effect size estimate was cal-
culated using a fixed effects model [8].
Gene signatures for “Immune Response” and “Defense

Response” were taken from the Molecular Signatures
Database [15], and mapped to our genes through their
gene symbols. These signatures were compared to the
rankings provided by the two meta analysis methods,
and ROC curves were produced using the ROCR pack-
age [25]. The multtest package [26] was used for correc-
tion of the p-values for multiple hypothesis testing.
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