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Abstract

Background: Similaritysearch in chemical structure databases is an important problem with many applications in
chemical genomics, drug design, and efficient chemical probe screening among others. It is widely believed that
structure based methods provide an efficient way to do the query. Recently various graph kernel functions have
been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive
and classification models, graph kernel functions can not be applied to large chemical compound database due to
the high computational complexity and the difficulties in indexing similarity search for large databases.

Results: To bridge graph kernel function and similarity search in chemical databases, we applied a novel kernel-
based similarity measurement, developed in our team, to measure similarity of graph represented chemicals. In our
method, we utilize a hash table to support new graph kernel function definition, efficient storage and fast search.
We have applied our method, named G-hash, to large chemical databases. Our results show that the G-hash
method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Moreover, the similarity
measurement and the index structure is scalable to large chemical databases with smaller indexing size, and faster
query processing time as compared to state-of-the-art indexing methods such as Daylight fingerprints, C-tree and
GraphGrep.

Conclusions: Efficient similarity query processing method for large chemical databases is challenging since we
need to balance running time efficiency and similarity search accuracy. Our previous similarity search method,
G-hash, provides a new way to perform similarity search in chemical databases. Experimental study validates
the utility of G-hash in chemical databases.

Introduction
Elucidate the roles of small organic molecules in biologi-
cal systems, as studied in chemical genomics, is an
emergent and challenging task. Traditionally the analysis
of chemical genomics data was done mainly within
pharmaceutical companies for therapeutics discovery,
and it was estimated that only 1% of chemical informa-
tion was in the public domains [1]. The landscape of
public available chemical genomics data, however, has
been changed dramatically in the last few years. With
the Chemical Genetics Initiative and the Molecular
Library Initiative (started by NIH in 2002, [2], and 2004,

[3], respectively), publicly-available, digitalized data grow
exponentially fast. The PubChem database, just to name
an example, contains structures of more than 18 million
chemical compounds [4]. With the rapid growth of pub-
lic chemical databases, fast similarity search in large
chemical databases has started to attract intensive
research attentions. There are two approaches for simi-
larity search for 2D or 3D structure of biomolecues.
Most 3D structure based approaches compare three-
dimensional shapes using a range of molecular descrip-
tors [5][6]. Such methods provide fast query processing
in large chemical databases but relatively poor accuracy
since such methods may lost much of the structure
information during compressing the three-dimensional
shapes. In 2D based similarity search, we focus on the
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2D connectivity of chemical structures. Current 2D
similarity measurements may be roughly divided into
two categories. In the fragment based method, scientists
embed chemical structures in a high dimensional feature
space, e.g. through Daylight fingerprints [7] with the
Tanimoto distance [8]. Fragment based similarity mea-
surement is by far the most widely used method and is
adopted as the default choice in databases such as Pub-
Chem [4]. Graph based similarity measurements, in con-
trast, do not break the chemical structures into fragment
and has started to gain popularity. In graph based
method, we utilize graph to model chemical structures
and utilize different graph similarity measurements such
as the largest common subgraph approach [9], graph
editing distance [10] or graph alignment algorithms [11]
to measure the similarity of chemical structures [10].
Though graph methods have been successfully applied
in cheminformatics research, as evaluated in our experi-
mental study, none of them has achieved the goal of fast
and effective similarity search in chemical databases, i.e.
having computational efficiency in scaling to large che-
mical databases and computational efficiency in captur-
ing the intrinsic similarity of graphs. With the fast
growing of chemical databases, fast, effective, and index-
able approaches are needed.
Our goal in this paper is to bridge the gap between

graph kernel functions and similarity search for efficient
and accurate similarity search in large chemical data-
bases by applying our previous method, named G-hash
[12]. In our method, we model a chemical structure by
its two dimensional (2D) connectivity graph where
nodes represent atoms and edges represent chemical
bounds between atoms. We extract local features for
each node and their neighboring nodes in the graphs.
Using a hash table, a graph kernel function is defined to
capture the intrinsic similarity of graphs and for fast
similarity query processing. Our experimental results
show that the G-hash method achieves state-of-the-art
performance for similarity search in chemical databases.
The retrieved k nearest neighbors by G-hash are more
likely similar to the query chemical compared with the
state-of-the-art indexing methods such as Daylight fin-
gerprints and C-tree. Most importantly, the similarity
measurement and the index structure is scalable to large
database with smaller indexing size, faster indexing con-
struction time, and faster query processing time as com-
pared favorably with other indexing methods.
The rest of the paper is organized as follows. In the

Related Work section, we will give an overview of
related work on subcomponent search and chemical
similarity search. In the Background Section, we will
introduce the concept of graphs and graph modeling of
chemical structures. In the Methods section, we discuss
the details of our algorithm including our index

structure and kernel function. In the Results section, we
show a comprehensive experimental study using our
method and competing methods, and discuss the influ-
ence of feature sets. Finally, in the Conclusions section,
we conclude with a few remarks on the study.

Related work
In this section we discuss two types of related work, i.e.
subcomponent search and chemical similarity search.
We work exclusively on the 2D connectivity graph of
chemical structures and treat the following terms inter-
changeable: graphs and chemical structures, nodes and
atoms, edges and chemical bounds.

Subcomponent search
Many of the recent subcomponent(subgraph) search
methods adopt a similar framework, decomposing che-
mical structures into a set of smaller pieces, treating
each piece as a descriptor, and building a descriptor-
based index structure for subgraph query. The most
well-known algorithm in this category is the Daylight
fingerprints [7]. In Daylight fingerprints, all paths up to
a fixed length (e.g. 7) are retrieved as descriptors. A
molecule is represented as a bit-string, indexed by the
descriptors. Similar approach of using paths as descrip-
tors is adopted by GraphGrep[13]. Though paths are
easy to retrieve and easy to work with, the simplicity of
paths limits their power in capturing the intrinsic simi-
larity of chemicals.
Recognizing the limitation of paths, gIndex[14], FG-

Index[15] and GDIndex[16] build indices using general
subgraphs. GDIndex also incorporated a hash table of
subgraphs for fast subgraph isomophism lookup. The
main drawback of subcomponent search is that no
quantitative similarity measurement is provided which
makes it difficult to rank the search results in a mean-
ingful manner.

Chemical similarity search
Extending subcomponent strategy to similarity search in
large compound databases is non-trivial. The most
widely used strategy is previously mentioned the Day-
light fingerprints approach, which treats a chemical
compound as a bit-string and use various similarity
metric for bit-strings, such as the Taminoto index [17]
to measure the similarity of chemicals. Though fast,
Daylight fingerprints provides only a coarse measure-
ment of the true similarity of chemicals since majority
of the features (i.e. paths) may not contribute to the
chemical activity of the compounds and there is no fea-
ture selection step in the Daylight system.
Beside fragment-based method, maximal common

subgraph (MCS) [18] was also utilized in measuring the
similarity of graphs. Several heuristic strategies [19],
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based on specific properties of chemical structures, were
proposed to improve the efficiency of MCS-based simi-
larity search algorithm. Recently, anew backtracking
algorithm was presented to compute MCS in [9].
Although such method shows better accuracy, the MCS
computation still time-consuming.
In addition, graph edit distance and graph alignment

[11] were also used in cheminformatics to measure
graph similarity. Unfortunately, there is no easy way to
index both measurements for large chemical structure
databases.

Background
Before we proceed to discuss the algorithmic details, we
present some general background materials which
include the introduction of the concept of graphs and
chemical structures as graphs.

Graphs
A labeled graph G is described by a finite set of nodes V
and a finite set of edges E ⊂ V × V. In most applica-
tions, a graph is labeled, where labels draw from a label
set l. A labeling function l: V ∪ E ® Σ assigns labels to
nodes and edges. For the label set Σ we do not assume
any structure of Σ now; it may be a field, a vector space,
or simply a set. Following convention, we denote a
graph as a quadruple G = (V, E, Σ, l) with aforemen-
tioned V, E, Σ, l. A graph G = (V, E, Σ, l ) is a subgraph
of another graph G′ =(V′, E′, Σ′, l′), denoted by G ⊆ G′,
if there exists a 1-1 mapping f : V® V′ such that

• for all v � V, l(v) = l′ (f(v))
• for all (u, v) �E, (f (u), f (v)) E′
• for all (u, v) �E, l (u, v) = l′ (f (u), f(v))

Graph modeling of chemical structures
Chemical compounds are organic molecules that are
commonly modeled by graphs. In our study, we adopt
the 2D connectivity map where we use nodes in a graph
to model atoms in a chemical structure and edges to
model chemical bonds in the chemical structure. In the
representation, nodes are labeled with the atom element
type, and edges are labeled with the bond type (single,
double, and aromatic bond). The edges in the graph are
undirected, since there is no directionality associated
with chemical bonds. Figure 1 shows one sample chemi-
cal structure and its graph representation.

Methods
Here we investigate the utility of graph kernel for che-
mical similarity measurement. Towards that end, we
first give a overview of G-hash. We then briefly outline
a graph kernel [12], which we will use, to define

similarity of chemical structures. In particular, below we
introduce details of the feature extractiion process, the
index structure for fast similarity query and the kernel
function for similarity measurement.

Algorithm overview
The flowchart of G-hash is show in Figure 2. For graphs
in database, we first extract node features with a graph
wavelet analysis (details discussed later). We then build
a hash table to store such features. For query graphs, we
perform the same preprocessing techniques. Based on
the hash table, we calculate distances between query
graph and graphs in the database. Finally, top k nearest
neighbors are reported.
In particular, the application of G-hash to chemical

databases follows the below steps. In index construction,
we utilize the following steps:

• For each chemical in the chemical database, extract
node features for each atom in the chemical
• Using graph wavelet analysis, extract local features
for each atom in the chemical
• Discretize the combined features and hash the
atoms in a hash table.

In the query processing phase, we utilize the following
steps:

• For the query chemical, extract node and local fea-
tures for each atom in the chemical
• Discretize the combined features and hash the
atoms in a hash table using the same procedure in
index construction
• Compute distances of the query chemical to the
rest of chemicals
• Report the k nearest neighbors.

Node feature extraction
To derive an efficient algorithm scalable to large graphs,
our idea is to use a function Γ: V ® R n to map nodes
in a graph represented a chemical compound to a n-
dimensional feature space that captures not only the
node label information but also the neighborhood topo-
logical information around the node. Two steps involve
this process: first node feature extraction through which
we extract features associated with a node, and second
local feature extraction through which we extract fea-
tures in a local region centered at the specific node.
We use the following node (atom) features: atomic

number, the histogram of atom types of immediate
neighbor of the node, the local functional group infor-
mation, and the histogram of the (immediate) chemical
bond information. The atom type of the node is a single
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number. For histogram of neighboring atom types, we
collect information for C, N, O, S, and group the rest
atom types to “others” to save space. We have a total of
five numbers in the histogram. For local functional
group information, we collect whether the node is in
part of a 5-node ring, a 6-node ring, a high-order ring, a
branch, or a path, as did in [20]. We have a single num-
ber for this feature. For the histogram of the (immedi-
ate) chemical bond information, we have three numbers
corresponding to single, double, and aromatic bonds. In
the previously mentioned node extraction method, we
ignore the neighborhood topology information of the
chemical compound by focusing on atom physical and
chemical properties. To add neighborhood topology
information, we utilize a technique called the graph
wavelet analysis, as originally presented in [21]. The out-
put of the wavelet analysis is a vector of local feature
averages, with the size of the vector controlled by a dif-
fusion parameter d. Further details of the analysis can
be found in [21].

Structure matching kernel
With the feature extraction methods, we designed a
structure kernel, specified below, to measure the similar-
ity of graphs:

K G G K u vm

u v V G V G

, ,
,




       
     

   (1)

K can be any kernel function defined in the co-
domain of Γ. We call this function Km a structure
matching kernel. We visualize the kernel function by
constructing a weighted complete bipartite graph: con-
necting every node pair (u,v) � V[G] × V[G′] with an
edge weighted by K(Γ(v), Γ(v)). In Figure 3, we show a
weighted complete bipartite graph for V[G] = {v1, v2, v3,
v4} and V[G′] = {u1;u2,u3}.
From the figure we see that if two nodes are quite dis-

similar, the weight of the related edge is small. Since
dissimilar node pairs usually outnumber similar node
pairs, in our design, we use the RBF kernel function, as
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Figure 1 Sample chemical structure and its graph representation. Left: the sample chemical structure. Right: Graph representation of the
sample chemical structure.

Graphs in database

Node feature extraction

Local feature extraction

Index structure (hash table)
construction
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Node feature extraction

Local feature extraction

Distance calculation

Report k nearest
neighbors

Figure 2 Flowchart of G-hash algorithm.
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specified below, to penalize dissimilar node pairs.

K X Y e
X Y

,  
 

2
2

2 (2)

where ||X||2 is the L2 norm of the vector X .

Similarity search with hash functions
To support effectively indexing, here we use a hash table
where the key is the related node feature vector and the
value is the node. Two chemicals are similar, if they
share a lot of nodes that are hashed to the same cell
since each node is represented by a feature vector which
contains the local atomic and topological information.
Since node features and local features may contain
numeric value, we discretize each feature vector and
map the feature value to an integer. After discretization,
we hash all nodes in a chemical to the related hash
table. We show an example of such hash table below.
Example 1 For simplicity, we apply the hash process to

the single graph shown in Figure 1 whose nodes are
numbered with p1, p2, p3, p4, p5, p6 shown in Figure 4.
We assume d=0 and each node has 10features. For
example, the feature vector for node with the label of ‘S’
is [016,1,0,0,0,0,4,1,0,0] since its atomic number is ‘16’; it
has only one neighbor with node label ‘C’, zero neighbor
with node label ‘N’, zero neighbor with node label of ‘O’,
zero neighbor with node label of ‘S’, and zero neighbor
with node label of other atom symbol; it is in a path;
and it connects with the neighbor through only one single
bond. The feature vectors for all nodes are also shown in
the Figure 4 and the sample hash table is shown in the
bottom panel of Figure 4.

With the feature vector discretization and hash table,
we revise the structure matching kernel using an hash-
based approximation as described below since only simi-
lar nodes are involved into the kernel calculation and K
(Γh(u), Γh(v)) ≈ 1 if RBF kernel is used.
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where simi(v) is the set containing the nodes from
graph G that are hashed to the same cell as the node v
does. |simi(v)| is the number of nodes in the set of simi
(v). In other words, we only count the number of com-
mon nodes, belonging to the graph G and G’ in this
version.
Finally we compute the distances between the query

chemical and chemicals in a chemical database to obtain
the k nearest neighbors of the query chemical. The idea
is to compute the Euclidian distance of two objects
between their embeddings in the related Hilbert space
according to the kernel function.

Results
Experimental setup
We have performed a comprehensive evaluation of our
method by evaluating the classification effectiveness and
scalability for large chemical databases. We have com-
pared our method with other similarity measurements
including the Daylight fingerprints [7], Wavelet Align-
ment Kernel [21], C-tree [10], GraphGrep [22], gIndex
[23]. For G-hash, we extract 30 features for each node.
We used the OpenBabel software package to compute
Daylight Fingerprints [7] and k-nearest neighbors. For
WA, we set the diameter d = 2 and use haar wavelet
function. For C-tree, GraphGrep and gIndex, we use
default parameters. All methods, except C-tree, were
implemented using the C++ programming language and
compiled using g++ with -O3 optimization. C-tree was
developed in Java and compiled using SUN JDK1.5.0.
We performed our experiments on a Linux cluster
where each node has a dual-core Intel Xeon EM64T
3.2GHz processor and 4G memory running CentOS 4.

Data sets
We chose a number data sets for our experiments. The
first five data sets are established data taken from Joris-
son/Gilson Data Sets [24]. The next seven data sets are
manually extracted from BindingDB data sets [25]. The
last one is NCI/NIH AIDS Antiviral Screen data set

v1
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u2

u1

v4

v3

v2

'GG

K(v1,u1)

K(v4,u2)
K(v3,u3)

K(v2,u1)

Figure 3 A schematic representation of the structure matching
kernel. Highlighted edges (v1, u1),(v2, u1), (v3, u3),(v4, u2) have
larger weights than the rest of the edges dashed.
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Nodes Atomical
number #C #N #O #S #

others
Topological
information

#Single
bond

#Double
bond

#Aromatic
bond

p1

p2

016 1 0 0 0 0 4 1 0 0

006 0 0 2 1 0 4 2 1 0

p3 008 1 0 0 0 0 4 0 1 0

p4 008 2 0 0 0 0 4 2 0 0

p5 006 1 0 1 0 0 4 2 0 0

p6 006 1 0 0 0 0 4 1 0 0

o

s o c
cc

p1

eulavhsahyekhsah

016_1_0_0_0_0_4_1_0_0 p1

006_0_0_2_1_0_4_2_1_0 p2

008_1_0_0_0_0_4_0_1_0 p3

008_2_0_0_0_0_4_2_0_0 p4

006_1_0_1_0_0_4_2_0_0 p5

006_1_0_0_0_0_4_1_0_0 p6

Figure 4 An example graph, related feature vectors, and the hash table contents.
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[26]. For the Jorissen data sets, there are five proteins
for which 100 chemical structures are selected with 50
chemical structures clearly bind to the protein(called
“active” ones) and the other 50 ones similar to the active
ones but clearly not bind to the target protein. See [24]
for the further details. For the BindingDB database, we
manually selected 7 proteins with a wide range of
known interacting chemicals (ranging from tens to sev-
eral hundreds). For the purpose of classification, we
convert the real-valued binding activity measurements
to binary class labels. This is accomplished by dividing
the data set into two equal parts according to the med-
ian activity value (we also deleted compounds whose
activity value is equal to zero). Table 1 shows the char-
acteristics of the data sets. In the same table, positive
compounds refer to those with higher activity values or
binding to the target protein and negative compounds
refer to those with lower activity values or not binding
to the target protein.
We use the NCI/NIH AIDS Antiviral Screen data set,

which contains 42,390 chemical compounds retrieved
from DTP’s Drug Information System, as a large chemi-
cal database. There is a total 63 types of atoms in this
data set; the most frequent ones are C, O, N and S. The
data set contains three types of bonds: single-bond, dou-
ble-bond and aromatic-bond. We randomly sampled
1000 chemicals as the query data set.

Similarity measurement evaluation with classification
We have compared classification accuracy using k-NN
classifier on the 12 Jorissen data sets and BindingDB
data sets with different similarity measurements. For the
WA method, we first obtain kernel matrix, and then cal-
culate distance matrix to obtain the k nearest neighbors.
For subgraph indexing methods such as gIndex and
Graphgrep, we sketch one way to use them for similarity

search. This method contains three steps: (i) randomly
sample subgraphs from a query, (ii) use those subgraphs
as features and compute the occurrences of the sub-
graphs in graph databases, and (iii) search for nearest
neighbors in the obtained feature space. Clearly, the
accuracy depends on the number of features. Here we
pick 20 features for gIndex. We use standard 5-fold
cross validation to obtain classification accuracy. We
have tested different k values ranging from 3 to 11 in
classifications. The quality of the results are similar and
we only report results with k = 5.
The accuracy of the classification is shown in Figure 5.

The average precision and recall are shown in Table 2
and Table 3 respectively. The accuracy results statistical
information is shown in Table 4. From Figure 5, we
know that C-tree and Daylight fingerprints show the
worst performance. Theyjust are a little better than the
random guess. WA method is better than them since it
similarity measurement is based on kernel function. gIn-
dex based similarity measurement and G-hash has simi-
lar classification performance with about 78% of average
accuracy and outperform others. G-hash outperforms C-
tree and Daylight fingerprints on all twelve data sets,
with at least 18% improvement on most of data sets.
The average accuracy difference between G-hash and C-
tree and Daylight fingerprints are around 23% and 22%
respectively. The precision of C-tree and Daylight fin-
gerprints are lower than 50% for almost all data sets. G-
hash is comparable to gIndex on precision and recall,
too.
Here we use 20 features for gIndex. As we mentioned

before, the performance of gIndex depends on the use
of feature set. Figure 6 shows the accuracy comparison
among different feature sets with 5 features, 10 fea-
tures,15 features and 20 features for the method of gIn-
dex. From Figure 6, we know that more features provide
better classification performance than less features do.
Here, 20 feature set provides the best classification
results, 15 features set and 10 features set have a middle
performance, 5 features set has the worst performance.

Chemical enrichment study
In this section, we perform the enrichment study of G-
hash, Daylight fingerprints and C-tree. Towards this
end, we randomly picked 20 chemical compounds from
110 inhibitors of focal adhesion kinase 1 (FADK 1) with
AID810 from PubChem [4]. We call those 20 chemicals
as test data set. We augment this test data set to the
NCI/NIH AIDS Antiviral Screen data set to form a new
database. Then we pick one chemical from these 20 che-
micals as the query chemical to search the new database
and retrieve 100 nearest neighbors. According to these
100 results, we calculate the “precision” curve. Specifi-
cally, for the top k similarity compound, we compute

Table 1 Data set characteristics.

data set #S #P #N #V #E

PDE5 100 50 50 44.7 47.2

CDK2 100 50 50 38.4 40.6

COX2 100 50 50 37.7 39.6

FXa 100 50 50 45.75 48.03

AIA 100 50 50 48.33 50.61

AChE 183 94 89 29.1 32.0

ALF 151 61 60 23.8 25.2

EGF-R 497 250 247 24.6 27.1

HIV-P 267 135 132 43.0 46.2

HSP90 109 55 54 29.84 32.44

MAPK 336 168 168 28.0 31.1

HIV-RT 482 241 241 22.18 24.39

#S: total number of compounds, #P: number of positive compounds,
#N: number of negative compounds, #V: average number of nodes,
#E: average number of edges.
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precision as the percentage of chemicals in the top k
compounds belongs to the true 19 hits and plot the
change of precision along with the number of retrieved
chemicals. Obviously, the high precision shows good
performance. After repeating the above steps for 20
times, we calculate the average precision curve shown in
Figure 7. Although Daylight fingerprints performs better
than C-tree, both of them show the low precision. G-
hash performs much better than Daylight fingerprints

and C-tree. From Figure 7, we see that the precision is
about 0.85 when the total number of retrieved chemicals
is equal to 19 for G-hash which means that 16 chemi-
cals in the test data are contained in the top 19 nearest
neighbors of the query chemical. The result is as same
as what we expected. Edit distance based similarity mea-
surement used by C-tree prefers large graphs. For Day-
light fingerprints, two graphs sharing more small
substructures or patterns are considered to be similar.
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Figure 5 Comparison of averaged classification accuracy over cross validation trials.

Table 2 Average Precision for different data sets.

dataset G-hash WA C-tree Fingerprint gIndex

PDE5 95.48 83.16 31.20 53.02 96.00*

CDK2 79.87 73.81 51.82 57.23 87.81*

COX2 92.40* 75.88 54.85 51.62 82.00

FXa 96.93* 95.78 29.36 52.80 93.23

AIA 96 98.93 36 64.61 99.00*

AChE 77 66.46 62.63 27.80 79.62*

ALF 77.38 72.14 32.59 55.61 82.88*

EGF-R 88.62 72.75 55.41 52.42 96.40*

HIV-P 83.64 56.9 40.81 46.99 95.22*

HSP90 85.66 58.19 48.72 76.57 93.00*

MAPK 84.01 66.31 53.25 44.40 95.79*

HIV-RT 80.93 69.38 54.11 54.20 84.61*

Asterisk (*) denotes the best precision for the data sets among G-hash, WA,
C-tree, Daylight fingerprint and gIndex methods.

Table 3 Average recall for different data sets.

Dataset G-hash WA C-tree Fingerprint gIndex

PDE5 73.19 58.06 46.93 58.80 73.60*

CDK2 67.17 55.87 46.70 47.20 67.82*

COX2 64.22 63.57 51.46 54.21 87.01*

FXa 64.63 58.23 42.06 55.62 71.19*

AIA 80.70* 64.81 55.33 54.41 60.20

AChE 76.13 63.63 44.15 27.40 85.20*

ALF 69.84 61.25 53.83 75.98* 65.00

EGF-R 86.22* 79.64 55.81 54.00 81.61

HIV-P 80.44* 63.4 47.62 42.20 75.40

HSP90 76.31 63.4 47.62 71.00 91.38*

MAPK 86.83* 70.52 72.16 42.01 85.79

HIV-RT 72.83 67.78 56.78 60.80 73.40*

Asterisk (*) denotes the best recall for the data sets among G-hash, WA, C-tree ,
Daylight fingerprint and gIndex methods.
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But as we all know, the connection or position of these
substructures also determines the similarity of graphs.
Our method, G-hash, not only consider the number of
common small substructures but also consider the con-
nection between them through using features reflecting
local topological information and chemical information.

Robustness
In this section, we evaluate the robustness of G-hash by
using four different feature sets for the enrichment
study mentioned above. In the first set of features, we
use 10 features as discussed in the subsection of Node
Feature Extraction. For other three data set, we use
wavelet analysis to extract features from the local region
centered at the particular node. We use d = 1 with 10
additional features, d = 2 with 20 additional features
and d = 3 with 30 additional features. So we have 4 fea-
ture sets with sizes 10, 20, 30 and 40. The average preci-
sion curves over 20 queries and the optimal precision
curve are shown in Figure 8. We draw the optimal

precision curve in this way: if the number is retrieved
chemicals is less than 19, the precision is equal to 1;
otherwise, the precision is equal to 19 over the number
of retrieved chemicals. G-hash with 10 features shows
the worst performance which is similar to that of C-tree
and Daylight fingerprints shown in Figure 7. G-hash
with 20 features has a much improvement. G-hash with
30 features gives the best performance which is near to
the optimal performance. G-hash with 40 features has a
little worse performance than G-hash with 30 features.
With less features, more nodes pairs are hashed into the
same cell. This case prefers those graphs sharing too
many small subcomponents. With more features, just a
few nodes pairs are hashed into the same cell. This case
prefers those small graphs. Therefore the distance
between graphs can not accurately represent their simi-
larity with too large or small feature sets.

Scalability
Index Construction We compare index size and aver-
age index construction time for different methods.
Towards that end, we have sampled different number of
graphs ranging from 5,000 to 40,000. Figure 9 shows the
index construction time in milliseconds with respect to
the size of database for G-hash, C-tree, GraphGrep, gIn-
dex and Daylight fingerprints. The construction time for
G-hash is much faster than those for other four meth-
ods with a speed-up up to three order of magnitudes.

Table 4 Accuracy results statistical information for
G-hash, C-tree WA, gIndex and Daylight fingerprint
on all data sets.

method G-hash C-tree WA gIndex Fingerprint

average 77.81 51.64 66.23 77.83 5292

derivation 6.29 2.68 4.83 7.51 10.03
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Figure 10 shows the sizes of constructed indexes with
respect to database sizes. The index size of G-hash
grows slowly with increasing database size while that of
C-tree increases sharply. Daylight fingerprints shows a
very similar scalability to that of G-hash. A sharp index
size increase is observed for the methods of C-tree and
GraphGrep. We did not show the index size of gindex
since the size is much larger than the rest of the meth-
ods. For example gIndex takes 7.2 MB index spaces for
5,000 chemicals and 20.9MB for 10,000 chemicals.
Query Processing Time There is no direct way that

we could compare G-hash and subgraph indexing meth-
ods such as gIndex and Graphgrep and we use the way
that we outlined before (random sample a few sub-
graphs from the query graph and then perform sub-
graph query search). Clearly the overall query
processing time depends on the many subgraphs we
sample. To estimate the lower bound of the overall
query processing time, we randomly sample a SINGLE
(one) subgraph from each of the 1000 querying graph
and use subgraph indexing method to search for the
occurrence of the subgraph. We record the average
query processing time for each query. This query pro-
cessing time is clearly the lower bound since we use
only one subgraph from the query graph. Figure 11
shows the average query time (over 1000 randomly

samples query chemicals) of different index methods in
milliseconds with respect to the size of database. gIndex
is the worst one. Fingerprints do the query faster than
C-tree and GraphGrep which are comparable. G-hash is
the fastest one. When the size of database increases, G-
hash scales better than Daylight Fingerprints, with
around an order of magnitude speedup. G-hash per-
forms better than C-tree, with two orders of magnitude
speedup.

Discussion
Feature set influences One of the key factors for deter-
mining both the accuracy and efficiency of the G-Hash
method is the feature extraction methods r that maps
nodes to a high-dimensional feature space. In order to
evaluate the results, we have compare five sets of fea-
tures. In the first set of features, we use two features
(atom type and another feature from wavelet analysis
with d = 1) as discussed in the Methods section. In the
second set, we use 10 features described in the subsec-
tion of Node Feature Extraction. In the third feature set,
we dropped the immediate chemical bond information
from the first set and obtained seven features. In addi-
tion, we use wavelet analysis to extract features from
the local region centered at the particular node. We use
d = 1 with 10 additional features and d = 2 with 20
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Figure 11 Query time comparison for NCI/NIH AIDS data set on G-hash, C-tree, GraphGrep, gIndex and Daylight fingerprints.
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additional features. So we have 5 feature sets with sizes
2,7, 10, 20, and 30.
We have tested the classification accuracy with differ-

ent feature sets. The average accuracy on 12 datasets is
shown in Figure 12. When more features are used, we
can obtain better results. The largest difference happens
between 2 features and 7 features which means that the
histogram of atom types of immediate neighbors and the
local functional group information make a big contribu-
tion to improve classification performance. Another rela-
tively large difference happens between 20 features and
30 features which means the topological information of
neighbors with hop distance equal to 2 much more
makes sense. The difference between 7 features and 10
features is very small which shows that the histogram of
the immediate chemical bond information plays little
role in improving classification accuracy. We also tested
the query processing time difference between different
feature sets shown in Table 5. Both too less features and
too more features will speed up query processing. With
too less features, many modes are likely hashed into the
same cell so that the hash table is too short and less
query processing time is needed. With more features,
nodes are more likely to be hashed to different cells. If
too more features are used so that the nodes of the query
graph just are hashed into a few cells and hence we could
speed up query processing time.

So to obtain both good classification performance and
fast query processing, relatively more features should be
used. In our case, the feature set with 30 features is the
best choice.

Conclusions
In summary, similarity search plays a critical role in che-
minformatics. Efficient similarity query processing
method for large chemical databases is challenging since
we need to balance running time efficiency and similar-
ity search accuracy. Here we applied our previous simi-
larity search method, G-hash, combining hash based
indexing and graph kernel function, and applied it into
the similarity search in the large chemical databases.
The key features of G-hash are that the k-NN query
time is scalable to large databases and has better
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Figure 12 Average accuracy for different feature sets.

Table 5 Average query running time for different
number of features with different database sizes.

# of features Average Running Time (ms)

10k 20k 30k 40k

2 30.97 67.71 102.9 139.39

7 109.12 219.2 333.86 451.96

10 107.01 233.13 355.69 471.22

20 23.3 56.6 80.76 113.74

30 14.67 29.94 44.71 61.16
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classification accuracy. We have compared our method
with commonly used methods such as Daylight finger-
prints [7] and C-tree [10] and have demonstrated the
utility of our method.
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