BIVIC Bioinformatics

Research

Heuristics for the inversion median problem
Vaibhav Rajan*'!, Andrew Wei Xu*"!, Yu Lin, Krister M Swenson
and Bernard ME Moret

Address: Laboratory for Computational Biology and Bioinformatics, EPFL, CH-1015 Lausanne, Switzerland

E-mail: Vaibhav Rajan* - vaibhav.rajan@epfl.ch; Andrew Wei Xu* - wei.xu@epfl.ch; Yu Lin - yu.lin@epfl.ch;
Krister M Swenson - krister.swenson@epfl.ch; Bernard ME Moret - bernard. moret@epfl.ch
*Corresponding author tEqual contributors

from The Eighth Asia Pacific Bioinformatics Conference (APBC 2010)
Bangalore, India 18-21 January 2010

Published: 18 January 2010
BMC Bioinformatics 2010, I 1(Suppl 1):S30 doi: 10.1186/1471-2105-11-S1-S30

This article is available from: http://www.biomedcentral.com/1471-2105/11/S1/S30
© 2010 Rajan et al; licensee BioMed Central Ltd.

@,

BiolVed Central

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: The study of genome rearrangements has become a mainstay of phylogenetics and
comparative genomics. Fundamental in such a study is the median problem: given three genomes
find a fourth that minimizes the sum of the evolutionary distances between itself and the given
three. Many exact algorithms and heuristics have been developed for the inversion median

problem, of which the best known is MGR.

Results: We present a unifying framework for median heuristics, which enables us to clarify
existing strategies and to place them in a partial ordering. Analysis of this framework leads to a new
insight: the best strategies continue to refer to the input data rather than reducing the problem to
smaller instances. Using this insight, we develop a new heuristic for inversion medians that uses
input data to the end of its computation and leverages our previous work with DC] medians.
Finally, we present the results of extensive experimentation showing that our new heuristic
outperforms all others in accuracy and, especially, in running time: the heuristic typically returns
solutions within 1% of optimal and runs in seconds to minutes even on genomes with 25’000
genes—in contrast, MGR can take days on instances of 200 genes and cannot be used beyond 1’000

genes.

Conclusion: Finding good rearrangement medians, in particular inversion medians, had long been
regarded as the computational bottleneck in whole-genome studies. Our new heuristic for
inversion medians, ASM, which dominates all others in our framework, puts that issue to rest by

providing near-optimal solutions within seconds to minutes on even the largest genomes.

Page 1 of 11

(page number not for citation purposes)

mailto:vaibhav.rajan@epfl.ch
mailto:wei.xu@epfl.ch
mailto:yu.lin@epfl.ch
mailto:krister.swenson@epfl.ch
mailto:bernard.moret@epfl.ch
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2010, 11(Suppl 1):S30

Background

Introduction

The advent of high-throughput sequencing, combined with
the development of automated annotation tools (such as
gene hunters), has created entirely new fields of application
for computational methods in biology, most notably
comparative genomics. Comparing two or more genomes
requires models of evolution at various scales, from the well
established sequence evolution models to more speculative
models of structural changes, such as rearrangements,
duplications, and losses. Genomic rearrangements are
evolutionary events through which regions of the genome
are moved around, but without any alteration of sequence
contents; simple examples include transposition (moving a
part of the genome to another location) and inversion
(reversing in place a part of the genome). The study of
genome rearrangements dates back to the pioneering days of
genetics: Sturtevant and Dobzhansky identified inversions
in the genome of D. melanogaster and even used these
inversions as characters in a phylogenetic analysis [1,2];
further work (on plants) came out of Palmer’s laboratory
nearly 50 years later [3]. However, it was the advent of
whole-genome sequencing that provided the main
impetus-as manual analysis of a few inversions had to
give way to computational analyses of hundreds or
thousands of rearrangements.

Sankoff [4] first identified two formal questions about
rearrangements: (i) given two genomes, what is their edit
distance, that is, the length of the shortest series of
rearrangements that can transform one into the other
and (ii) given three genomes, what is a median, that is, a
fourth genome that minimizes the sum of the pairwise
edit distances between itself and the other three. These
problems have by now a large literature [5]. While the
edit distance can be computed in linear time [6,7], the
median problem is known to be NP-hard for most
formulations (see [8,9] for surveys of these formula-
tions). While exact median solvers have been used, most
notably in GRAPPA [10], their computational require-
ments have limited their use to very small genomes, such
as those of organelles (see, e.g., [11]). In order to work
on larger genomes, a large number of heuristics have
been proposed over the years. Most of these heuristics
operate through a type of greedy search by searching for
a “good” move to make, making that move, and iterating
until no further good move can be found.

In this paper, we provide a formal framework for this
type of iterative greedy heuristic; this framework allows
us to classify, characterize, and gain insight into
proposed heuristics. In turn, these insights enable us to
devise a general principle for such heuristics: that the
best continue to base their computations on the original

http://www.biomedcentral.com/1471-2105/11/S1/S30

input data for as long as possible (as opposed to using
new values computed in previous iterations). Using this
principle, we devise an entirely new median heuristic by
leveraging an exact solver for DCJ] medians developed by
one of us. Finally, we present the results of extensive
experimentation with existing median heuristics and our
new heuristic, showing that our new heuristic is both
more accurate and much faster than existing ones, to the
point where even the largest genomes (with tens of
thousands of genes) can be handled very quickly.

Terminology, notation, and definitions

We assume that inversion is the only evolutionary event;
since inversions do not alter gene content, we further
assume that all genomes under consideration have the
same set of genes. Finally, since inversions cannot move
genomic regions between chromosomes, we assume that
the the genome is viewed as a single permutation. While
these assumptions are clearly unrealistic when phrased
in terms of genes (somewhat less so when phrased in
terms of syntenic blocks), they are used in most of the
published work.

A genome consisting of n genes is represented by a
signed linear permutation on the elements {1, ..., n}; if
that permutation is 7, we write the ith element of the
permutation as m;. An inversion, p (i, j) on a permutation
m = (7 ... m... m... m,) reverses all the elements between
(and including) m; and 7; while changing their signs,
yielding 7. p(i, j) = (m1... 17 ... -mi7j41... 7,). For signed
permutations A and B, the inversion distance, d(A, B), is
the minimum number of inversions needed to transform
A into B. If d is the inversion distance between A and B,
then an optimal sorting path from A to B is a sequence of
d + 1 permutations Cy, Cy, ..., C; obeying C, = A, C,; = B,
and, for all C;, 0 < i <d, d(C;, Ci,1) = 1. The number of
such optimal sorting paths is typically very large [12].

The (inversion) median of three permutations A, B and C
is a signed permutation M that minimizes the sum
S(M) = dM, A) + d(M, B) + d(M, C). Note that the
median of three permutations need not be unique.
Given permutations A, B, C and X, where X may or may
not be a median of the first three, we call the sum
d(X, A) + d(X, B) + d(X, C) the (inversion) tree length with
respect to X; if X is a median, we also call the sum the
(inversion) median score of A, B, and C. We write M, p ¢
to denote the set of medians of three given permutations
A, B, and C and P, p ¢ to denote the set of signed
permutations that lie in one or more of the optimal
sorting paths between A and B, A and C, or B and C.

We call an inversion ¢ on permutation A median-
preserving if we have M, , 5, ¢ € My, g, ¢ Identifying

Page 2 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

median-preserving inversions could be useful in finding
a median since one could then restrict a search to only
such inversions. Siepel and Moret [13] first gave a
characterization of such inversions.

Theorem 1. [13]If permutation X is on an optimal sorting
path from one of A to some median in My, g, ¢, then My, g ¢ S
My, B,

Theorem 1 does not aid in finding a median directly
since it assumes that a median is already known, but,
together with the triangle inequality, it can be used to
derive simple bounds on the median score.

Since our new heuristic is based on a median solver for
the DCJ operation, we quickly review the basic defini-
tions for this operation. A double-cut-and-join (DCJ)
operation makes two cuts in the genome (possibly on
different chromosomes) and rejoins the resulting four
cut ends in any of the three possible ways. Depending on
whether the two cuts were made in the same chromo-
some or in two different ones and on which of the two
nontrivial rejoinings is chosen, the result can be an
inversion, a translocation, or a chromosomal fusion or
fission. The DCJ distance, median, and median score are
defined as in their counterparts for inversion, using DCJ
operations in lieu of inversion operations. While DC]J is
more general than inversion, its combinatorial structure
is simpler [7]. However, the main algorithmic results are
the same as for inversions: distance can be computed in
linear time and median-finding is NP-hard.

Results and Discussion

Some negative results about median-finding heuristics
Searching the set P, g for a median appears tempting;
however, an inversion median cannot always be found
on an optimal sorting path.

Theorem 2. There exists a family of permutations: {A, B, C |
Ma B, cNPa B c=9D}.

(The proof is omitted for lack of space; see additional file 1:
proof.pdf)

A well known heuristic to find a median is MGR [14]. It
uses so-called “good” inversions to find an approxima-
tion to the optimal median. Given permutations A, B
and C, a good inversion in A with respect to B and C is an
inversion that is both on an optimal sorting path from A
to B and on an optimal sorting path from A to C. Such
inversions have widely been viewed as median-preser-
ving, justifying their use in the heuristic. Perhaps
surprisingly, they are not, as can be seen by taking A =
(1-64-35-2),B=(31-46-52),andC=(-1-5-4-2-63),

http://www.biomedcentral.com/1471-2105/11/S1/S30

which have an optimal median score of 9. Permutation
D =(2-53 -4 6 -1) can be obtained from A by a
single good inversion with respect to B and C, but the
optimal median score of D, B, and C is 9, so that using a
median of D, B, and C with A, B, and C yields a tree
length of 10, showing that the good inversion is not
median-preserving.

A more recent and better heuristic to find a median is the
method of maximal signatures, originally designed for
use in ancestral reconstruction [15]. A maximal signature
of a permutation A with respect to permutations B and C
is a permutation D such that there exists an optimal
sorting path from A to D that consists of only good
inversions (with respect to B and C) such that there is no
good inversion from D (with respect to B and C). It is a
“last permutation” that is common to sorting paths from
A to both B and C. The following observations reveal
how maximal signatures interact with the set of medians
of three permutations.

Observation 1. There exist three permutations A, B, and C,
and a maximal signature D of A with respect to B and C
together obeying Mp g c N My, g, c = <.

In the example used for MGR, D is also a maximal
signature and so establishes the result.

Observation 2. There exist three permutations A, B, and C, a
maximal signature D of A with respect to B and C, a maximal
signature E of B with respect to C and A, and a maximal
signature F of C with respect to A and B, together obeying Mp,
E FN My p c=9D.

As an example, take A=(-5-41236),B=(25-4-1-36),
C=(4615-32),D=(45123-6),E=(45-6312),and
F=(-5-1-6342).

These counterexamples illustrate that it is not always
possible to reduce the problem of finding an inversion
median of three given permutations to another triple of
permutations obtained by good inversions from the
original three permutations. Indeed, every time a good
inversion is applied, it is possible to move away from the
target set of medians.

A framework for median-finding heuristics

Despite the fact that good inversions are not median-
preserving, in practice they produce permutations with
very good to near-optimal tree lengths. How the good
inversions are chosen and applied, however, has a
significant influence on the quality of the result.
Heuristics based on good inversions differ in two
parameters: the type of good inversion chosen and the
method used to apply successive good inversions.

Page 3 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

The good inversion can be chosen at random from the
set of all possible good inversions. A better choice is to
select a good inversion that, once applied, leaves as large
a set of available good inversions (for the next
permutation) as possible; we call such a choice a greedy
good inversion. On a permutation of length n, all sorting
inversions can be found in O(n’) time. To find a good
inversion, sorting inversions must be found with respect
to two permutations and their intersection can be
computed in O(n®) time. To find a greedy good
inversion, all good inversions must be counted for
each permutation that can be obtained by using a good
inversion on the current permutation. Thus finding a
greedy good inversion takes O(n’) time.

The different methods used to apply good inversions can
be thought of as parallel vs. serial, and stepwise vs.
groupwise (signature).

Heuristic ‘Serial’ (HS): Use a good inversion on A with
respect to B and C to get A', then a good inversion on B
with respect to A' and C to get B' and then a good
inversion on C with respect to A' and B' to get C' (see
Fig. 1). Continue iteratively (on A', B' and C' and so on)
until no good inversions are possible from any one of the
permutations. Let the final permutations be A", B" and
C". Output that of the three with the best tree length.

http://www.biomedcentral.com/1471-2105/11/S1/S30

Heuristic ‘Serial Extended’ (HSE) is the same as
Heuristic HS except for the stopping condition. The
iterative process stops when no good inversions are
possible from all three permutations.

Heuristic ‘Parallel’ (HP): Use a good inversion on A
with respect to B and C to get A', then a good inversion
on B with respect to A and C to get B' and then a good
inversion on C with respect to A and B to get C' (see
Fig. 1). Continue iteratively (on A', B' and C' and so on)
until no good inversions are possible from any one of the
permutations. Let the final permutations be A", B" and
C". Output that of the three with the best tree length.
Heuristic ‘Parallel Extended’ (HPE) is the same as
Heuristic HP except for the stopping condition. The
iterative process stops when no good inversions are
possible from all three permutations.

Heuristic ‘Maximal Signature Serial’ (MSS): Find a
maximal signature of A with respect to B and C: A", a
maximal signature of B with respect to A" and C: B" and
a maximal signature of C with respect to B"and A™: C"
(see Fig. 2). Output that of A", B", and C" with the best
tree length.

Heuristic ‘Maximal Signature Parallel’ (MSP): Find a
maximal signature of A with respect to B and C: A",

>

HEURISTIC SERIAL

HEURISTIC PARALLEL

Figure |

Heuristics Serial and Parallel. A schematic of Heuristic Serial and Heuristic Parallel.

g
Tign
A e,
mar
A Tia ©
MAXIMAL SIGNATURE SERIAL MAXIMAL SIGNATURE PARALLEL
Figure 2

Maximal Signature heuristics. A schematic of Heuristic Maximal Signature Serial and Heuristic MAximal Signature Parallel.

Page 4 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

a maximal signature of B with respect to A and C: B" and
a maximal signature of C with respect to B and A: C" (see
Fig. 2). Output that of A", B", and C" with the best tree
length and call it the Maximal Signature Median (MSM).

Heuristic Serial changes the permutations on which the
computation of good inversions is based at every step,
while heuristic Parallel changes it at every three steps.
MGR-Median uses one of these two heuristics (which
one is not clear from the literature) with greedy good
inversions, followed by a local search to reduce the tree
length. The Heuristic Maximal-Signature-Serial makes
the corresponding changes only twice in the entire
computation, whereas Maximal-Signature-Parallel never
changes the permutations with respect to which good
moves are computed. In this sense, these heuristics are
arranged in descending order of how often the problem
is reduced to finding a median on a new triple of
permutations.

A new heuristic for the inversion median

While MSM does very well in practice, it remains too
slow (at least in a naive implementation) to use on
genomes with tens of thousands of genes. We therefore
set out to design a new heuristic that would never change
the data from which new values are computed, would be
at least as accurate as MSM, but would also run fast
enough to enable the handling of mammalian-size gene
orders. As mentioned earlier, computing with the DCJ
operation has been found to be somewhat simpler and
more efficient than computing with the inversion
operation, so we turned to DC] medians as a way to
obtain a fast approximation to an inversion median-a
reasonable approach, as DCJ] operations reduce to
inversions if splitting chromosomes is not allowed.
Previous work showed that inversion and DCJ distances
remain very close for pairs of unichromosomal genomes
under a variety of evolutionary scenarios [16], so it also
appears likely that DCJ medians and inversions medians
are closely related.

Because DC] operations can split a chromosome into
two smaller chromosomes, the optimal DCJ] median of
three unichromosomal genomes could be a multi-
chromosomal genome. Forcing the median to be
unichromosomal makes median computations much
more expensive. Therefore, we consider the “relaxed”
version of the problem, in which the median produced
by the DCJ median solver may contain extra (small)
chromosomes; if such extra chromosomes exist, we
handle them separately, using a few DCJ operations to
merge them into the main chromosome. Clearly, good
performance will depend on there being very few of
these extra chromosomes.

http://www.biomedcentral.com/1471-2105/11/S1/S30

Finding an optimal DCJ median is, like finding an
optimal inversion median, an NP-hard problem [8,9], so
we base our approach on designing a good heuristic for
the DC] median problem, using a relaxation of the
optimal DCJ median solver developed by one of us
[17,18]. That solver relies on the notion of adequate
subgraphs to decompose a full instance into smaller
instances, a process that is repeated until a solution to
the original instance is found. The decomposition itself
preserves optimality and does not affect the input data-
in that sense, the optimal median solver obeys our main
recommendation for median heuristics. Adequate sub-
graphs, however, can have any size and finding large
adequate subgraphs is hard; in practice, the solver uses a
fixed collection of small adequate subgraphs, the
presence of which can be detected in linear time. If
none of the adequate subgraphs in the collection is
detected, the solver resorts to exhaustive search-and it is
at this level that a heuristic for the DCJ] median problem
must be designed.

The DCJ] median problem can be modelled with a multiple
breakpoint graph (MBG), a regular graph of degree equal to
the number of given genomes, in which each adjacency
between two genes in one genome is represented by a
colored edge, using one color for each genome. Edges
representing adjacencies from a pair of genomes thus form
a collection of color-alternating cycles. Under the DCJ
operation, finding a median is equivalent to creating a
perfect matching to form the maximum number of color-
alternating cycles with the existing edges on the MBG
[8,17]. Adequate subgraphs in effect choose certain edges
to place in this matching. In designing a heuristic, we must
then consider how to select the next edge to add to the
current (incomplete) matching.

An obvious choice for selecting an edge is to pick that
edge whose addition to the matching results in the
largest number of color-alternating cycles. A less obvious
criterion is to match (part of) the definition of an
adequate subgraph-that way, the edge chosen may in
fact implicitly represent an adequate subgraph, which we
know is a good strategy. The critical quantity in the
definition of an adequate subgraph is the adequacy,
defined as ¢ — 3!, where I is the number of edges and ¢
the number of cycles [17]. So a second criterion is to
choose that edge which maximizes the adequacy of the
solution built so far.

The complementary question for selection is what to
search; if the current matching requires m additional
edges, then there are 2m unmatched vertices left and

2m
()] possible edges to choose from. Evaluating each

Page 5 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

such edge may prove expensive, since the growth is
quadratic; however, we are designing a heuristic, so we
can arbitrarily restrict the search in order to speed up this
step, e.g., by using a vertex ordering and focusing on the
next vertex only, thereby cutting down the number of
potential edges to 2m - 2, or further restricting the choice
to just the three existing edges incident upon that vertex,
a constant. In all three cases, after adding the new edge to
the matching and removing the two matched vertices, we
resume the overall procedure, that is, we resume
searching for adequate subgraphs in the remaining
graph. The running time of the complete heuristic is
thus quartic for the search among all potential edges,
cubic for the search focused on the next vertex alone, and
quadratic for the search restricted to the three existing
incident edges, giving us a range of tradeoffs between
speed and accuracy; we call these three versions ASM4,
ASM3, and ASM?2 respectively. Finally, once the approx-
imate median is produced, we use a greedy procedure to
merge any extra circular chromosomes into the main
chromosome: a merging DCJ operation that minimally
increases the total DCJ distance is used, and the step is
repeated until no extra chromosome remains.

From the results of extensive experimentation over a
large range of genome sizes (not shown), we chose to use
the adequacy criterion rather than the cycle criterion for
evaluating a potential new edge. The choice of search
strategy depends in part on the value attached to very
high speeds, but we chose to show data obtained with
the slowest of the three variants, ASM4, mostly because it
is the most accurate of the three and yet is orders of
magnitude faster than its closest competition.

Experimental results

We conducted extensive experiments for all of the
heuristics described, including MGR, every heuristic in
the framework, and ASM, on genomes of small sizes (up
to 200 genes, a size that covers organelles) and of large
to very large sizes (from 1'000 to 25’000 genes), the
latter focused on ASM, as it is clearly the best of the
heuristics in terms of both accuracy and running time.
Some of our genomes are generated as random
permutations, while others are generated from a
known ancestor with controlled numbers of inversions.

http://www.biomedcentral.com/1471-2105/11/S1/S30

Details of the experimental setup can be found under
Methods.

We present and discuss the results in several groups:
those for small genomes and heuristics based on good
inversions, which we conducted to gain insight into the
classification framework and test our conjecture (that the
heuristic that does not deviate from computation with
respect to the original three permutations outperforms
the others), as well as to verify that ASM would indeed
dominate all such heuristics; those for genomes evolved
through controlled numbers of inversions, which we
conducted to evaluate the effect of edge lengths on the
heuristics (and incidentally to observe the difference
between ancestors and medians); and those for large
genomes, in which we evaluate ASM on its own.

Heuristics based on good inversions

Table 1 shows the average tree lengths (averaged over
1’000 triples of random permutations) for all heuristics
based on good inversions using greedy good inversions.
(Other results, not shown, indicate that greedy good
inversions always do better than random good inver-
sions.) It also shows the average scores for MGR and for
“trivial medians” (the best of the three original genomes
used in lieu of a median) computed by MGR for the
same sets of permutations. The standard deviation for
heuristic MSP varies from 1.3 to 1.6 and that for heuristic
HPE (that with the largest standard deviation) varies
from 1.7 to 2.3. The change in stopping condition in
heuristics HS and HP has no significant impact on the
performance and all four versions perform on par with
MGR. The latter is both to be expected (since MGR uses
one of these four in its first stage) and somewhat
disappointing, as it indicates that the expensive local
search run by MGR in its second stage has little effect on
the score. Overall, heuristic MSP gives clearly better
results than the other heuristics; moreover, the difference
in median score between MSP and other heuristics is
always non-negative, making MSP the best-scoring
heuristic in every test case, not just on average.

These experiments confirm our conjecture based on the
framework presented above: the best heuristic is that
which deviates the least from computation with respect

Table |: Comparison of (greedy) good inversion based heuristics. Average tree length for random permutations (MGR-H| used for

length 100)

Length MSP MSS HS HSE HP HPE MGR Trivial

30 46.62 47.31 48.68 48.01 49 48.16 47.23 55.8

50 80.31 81.29 84.11 83.23 84.31 83.5 82.01 94.99

100 167.27 168.48 174.49 173.42 174.56 173.75 181.54 194.35
Page 6 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

to the original three permutations. While computing
with original data is unusual in the realm of greedy
heuristics, it makes perfect sense in this context.
Consider S, the intersection of the sorting paths P(A,
B) and P(A, C), and S/, the intersection of the sorting
paths P(A, B') and P(A, C’), where B’ (resp., C’) is one
good inversion away from B (resp., C) with respect to A
and C (resp., A and B). Since the distance between A and
B’ (resp., C’) is one less than the distance between A and
B (resp., C), the number of permutations in S’ is lesser
than the number of permutations in S-indeed, we have
S’ € S. In the Serial and Parallel heuristics, the search
space reduces at each step, whereas in the heuristics
based on maximal signatures, a larger space (a strict
superset) is searched at every step, leading to the better
quality of the scores.

ASM, MGR, and MSM on random permutations

Figs. 3 and 4 show a comparison (averaged over 100
random triples of permutations) of the three solvers of
highest interest, ASM4, MGR, and MSM in terms of tree
lengths and of running times respectively. ASM4 and
MSM consistently outperform MGR in both accuracy and
speed. ASM4 is clearly the fastest of the three and also
slightly outperforms MSM in accuracy.

ASM, MGR, and MSM under simulation

We also conducted simulations to compare ASM4, MGR,
and MSM. Maximal signatures have been used previously
for ancestral construction [15], but not through a
median-based approach. We ran tests on both symmetric

200 T
— MGR
— MSM
3 ASM
1501

w

&

(=}

L

w

c

o

3 100

b

]

o

I

@

>

<

50
0 30 50 100
Length of Permutation
Figure 3

Performance of median solvers MGR, MSM and ASM
on Random Permutations: average tree length.
Average tree length on random permutations (MGR-H | used
for length 100).

http://www.biomedcentral.com/1471-2105/11/S1/S30

&

=
o

1 MGR
1 MSM
00 ASM

=
o
w
T

=
(=1
~

=
o
-
T

o
T

Average Computation Time in Seconds (log scale)
=
(=]

i

50
Length of Permutation

[y
o

Figure 4

Performance of median solvers MGR, MSM and ASM
on Random Permutations: average running time.
Average running time on random permutations (MGR-HI
used for length 100).

and asymmetric 3-leaf trees and found that symmetric
trees generated harder instances, in terms of both
accuracy and running time, so we present results only
for symmetric trees. The average inversion distance
between the identity (true ancestor) and the approx-
imate medians computed by the three median solvers,
under a regime of inversions only is shown is Fig. 5 and

14

¢ - MGR
= -8 MSM
12f| & -e ASM

10 ,

Average Inversion Distance from True Ancestor
~
%

0 oo=z===:=%=%7% .
0 0.2 0.4 0.6 0.8 1
Rate of Evolution

Figure 5

Ancestral reconstruction: MGR, MSM and ASM
under simulation (inversions only). Inversion distance
from the approximate median to the true ancestor on
permutations generated through k inversions from the
ancestral permutation.

Page 7 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

30 T
+ - MGR
5 = -m MSM »
7 o - ASM !
@ 251 /=
/
& oy
[’y
=] ’ oy
£ "
20 /
£ o, by
2 ‘o !
‘@ ta)
Iv] oy "
£ 15} 2y
0 A ’
o)/ ‘ I/
s M
F-— /
£ 1o AP
> R .
c o e
[0 v ,/
o e
£ g _-w 7
2 o G e
< '5;’ P
- -7
Qk=== iy .- . .
0 0.2 0.4 0.6 0.8 1
Rate of Evolution
Figure 6

Ancestral reconstruction: MGR, MSM and ASM
under simulation (inversions and transpositions).
Inversion distance from the approximate median to the true
ancestor on permutations generated through 0.8 k
inversions and 0.2 k transpositions from the ancestral
permutation.

under a mix of inversions and transpositions is shown in
Fig. 6, the latter used to test sensitivity to model choice.
These tests show that ASM4 matches the performance of
MSM, the best ancestral reconstruction tool to date, on
inversion-only scenarios, and does better for mixed
scenarios, presumably a consequence of its DCJ origins.
Ancestral reconstruction is not our main focus in this
paper, but median solvers are usually the tool of first
recourse for such reconstruction, and ASM is quite
promising in this regard as well.

We expanded these simulation tests to genomes of 100
and 200 genes, and then to large genomes of 1’000, then
5000, then finally 25’000 genes. The last three match the
size of data generated by syntenic block analyses (1°000),
large prokaryotic or small eukaryotic genomes (5'000),
or mammalian genomes (25'000). We used a total
number of inversions varying from 0.1n to 1.6n (to 0.9n
only for the largest genomes), where n is the number of
genes. Figs. 7 and 8 show the results (average scores and
average running times respectively) for genomes of 100
genes. The same results for genomes of 200 genes are
shown in Figs. 9 and 10. We give results for both MGR
and MGR-H1 (MGR run with the weaker H1 option). We
also give the DCJ] median score, which provides a lower
bound on the inversion median score. The ASM4 tree
length tracks very closely the DCJ median score. Up to a
rate of 0.8, the two are indistinguishable, indicating that
ASM4 returned true inversion medians. Beyond that

http://www.biomedcentral.com/1471-2105/11/S1/S30

o
(X
[=2]

e
)
Y

e
o
=}

=—a MGR
-~ MGR H1

& - MSM

a—a ASM4

S ASM2
0.84r| ¢ DC] optimal

normalized average tree length
o o
o] w
[=-] N
4

(=1
©
(=2

00 02 04 06 08 10 12z 14 16
rate of evolution

Figure 7

Performance of various median solvers on genomes

of size 100: average tree length. Average tree length

on genomes of size 100.

10° w
=—a MGR

_10* }| ¥ ¥ MGRH1
s o—s MSM
o 10° || &= ASM4
2 e ASM2
2 10°
o
&
£ 10t b
o
E
2 10°
=
5
<10t
o
il
g 107 /

10-3 L

00 02 04 06 08 L0 12 14 16
rate of evolution

Figure 8

Performance of various median solvers on genomes

of size 100: average running time. Average running time

on genomes of size 100.

point, the two differ slightly, but the difference remains
very small. Moreover, the heuristics are totally ordered,
with ASM4 dominating MSM, MSM dominating MGR,
and MGR dominating MGR-H1.

Turning to running times, the difference between ASM4
and the other heuristics is much more pronounced. Not
only is ASM4 very fast, but it is nearly unaffected by the
evolutionary rate, up to 0.9, whereas all others slow

Page 8 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

4

o

@
T

e

©

<3}
T

o

w0

B
T

=—a MGR
|+ -+ MGRH1

e - MSM

ASM4

e ASM2
0.88| o DCJ optimal

ol
©
N

normalized average tree length

o
O
o

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
rate of evolution

Figure 9

Performance of various median solvers on genomes
of size 200: average tree length. Average tree length on
genomes of size 200.

=—a MGR

=

o
w
T

[

(=]
=
T

= =

[=} o
9 W
T T

=

(=]
-
T

average running time in seconds (log scale)
=
o
>
-
L

=
(=}
N
T
L

10° | 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
rate of evolution

Figure 10

Performance of various median solvers on genomes
of size 200: average running time. Average running time
on genomes of size 200.

down quickly as the tree lengths increase-it should be
noted that the time scale is logarithmic. At r = 0.9, ASM4
still takes milliseconds, whereas MSM takes minutes and
MGR takes hours. Beyond that point, ASM4 slows down
quickly, but even at r = 1.6 (a very large evolutionary
rate, since rearrangements are rare events), it runs in a
few minutes, whereas MSM now takes hours and MGR
takes days. If more speed is desirable, ASM2 can be used:
it still runs in milliseconds at r = 1.6, at the expense of
some accuracy.

http://www.biomedcentral.com/1471-2105/11/S1/S30

1.0010 T T T T T T T T

1.0005f

1.0000 [

normalized average tree length
o o
(=] (=]
[{=] w0
(= 0
=] wu

N 0.9985r Inv n=1000
-- DCJn=1000
0.99801| m—a |nv n=5000 N
-~ DCJn=5000 *
0.9975[| st Inv N=25000 N
DCJ n=25000 K
09992 03 04 05 06 07 08 09 10
rate of evolution
Figure 11

Performance of ASM4 on very large genomes:
average tree length. Average tree length on large
genomes.

10° | == 1000 genes g
. =—a 5000 genes
;—:; a=a 25000 genes
w
2 10" b E
w
°
c
o
o
8 10°} E
c
(1]
E
=
210" — —a .
c
c
2
[}
g
o 107 E
>
L]

-3 1 1 1 1
10%50 0.2 0.4 0.6 08 1.0
rate of evolution

Figure 12

Performance of ASM4 on very large genomes:
average running time. Average running time on large
genomes.

Scaling to 1’000 genes goes beyond the capabilities of
MGR-H1 and scaling to 10’000 genes goes beyond the
capabilities of MSM, so our scaling study focuses
exclusively on ASM4, using a restricted evolutionary
range from 0.1 to 0.9. Figs. 11 and 12 show the DC]
median scores and average tree lengths given by ASM4
and the average running times for ASM4 respectively for
the three large genome sizes. As the number of genes
grows, the running time naturally increases, but note
that, for r < 0.8, ASM4 takes only a few seconds on
genomes of 25’000 genes. As for accuracy, the DCJ lower

Page 9 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

http://www.biomedcentral.com/1471-2105/11/S1/S30

Table 2: Extra circular chromosomes found in ASM4 solution. The average number of extra circular chromosomes in the DC) median

found by ASM4

rate of evolution

genes 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
100 0.00 0.01 0.04 0.05 0.21 0.30 0.36 0.64 0.81
200 0.00 0.00 0.03 0.08 0.26 0.25 0.39 0.79 0.95
1'000 0.00 0.01 0.04 0.11 0.16 0.31 0.57 0.97 1.33
5'000 0.00 0.01 0.05 0.12 0.17 0.32 0.54 0.97 1.75
25'000 0.01 0.02 0.02 0.10 0.17 0.35 0.49 0.81 1.88

bound indicates that, the larger the genome, the more
accurate (for a constant evolutionary rate r) the answer
returned by ASM4 is. Indeed, the solution is optimal for
most instances of 25000 genes and r < 0.8. Thus
computing an approximate median for full gene orders
(under our initial simplifying assumptions) is no longer
an issue: it can be done very quickly and very accurately
up to large evolutionary distances.

For a final perspective, we tabulated the number of
additional small circular chromosomes placed in the
solution returned by ASM4. As expected in view of the
success of the heuristic, Table 2 shows that this number
is very small, usually below one, except for the largest
genomes at the highest evolutionary rates.

Conclusion

We have presented a unifying framework in which to
classify and analyze greedy heuristics for the inversion
median problem. We gave counterexamples to a number
of reasonable assertions about greedy inversions and the
relationships between inversion medians and inversion
sorting paths among the three given genomes. We used
insights derived from our framework to conclude that
the best heuristics continue to base their decisions on the
original input data rather than on refined estimates and
showed that such a strategy maximizes the number of
useful choices available at each step. We gave a new
heuristic that follows this principle, but operates in the
space of DCJ operations rather than inversion opera-
tions. Finally, we presented extensive experimental
results supporting our conclusions about good inver-
sion-based heuristics and showing that our new DCJ-
based heuristic, ASM, clearly dominates all existing
heuristics in terms of both accuracy and running time.
In particular, we showed that ASM can handle full
mammalian gene orders (25’000 genes) in seconds and,
even for considerable evolutionary distances, return a
solution that is optimal or very nearly so. As biological
data is of limited size for any given genome, ASM4

appears sufficient to the task of analyzing the rearrange-
ment history of even the biggest genomes. Its remaining
limitations are also those of every solution proposed so
far: it cannot deal directly with duplications and losses,
nor can it handle additional constraints (such as
constraints on the length of inversions). Further work
will thus include the refinement of ASM to handle gene
families under simple models of duplication and loss,
along with applications to biological data drawn from
the Tree of Life that will help identify relevant biological
constraints on inversions.

Methods

Our first set of experiments uses random permutations
of lengths 30, 50, and 100 and are used to compare
heuristics based on good inversions and to yield a first
comparison of MSM, MGR and ASM4. Each dataset
consists of three randomly generated permutations. The
version of MGR used is 2.01, with the -¢ option
(condensing strips for efficiency) used in all cases, and
the -H1 option used for permutations of length 100 (so
as to speed up the computation-otherwise MGR often
takes several days to compute the scores).

All other experiments are based on simulated evolution.
A dataset is a 3-leaf tree, with the identity permutation
placed at the internal node and a permutation at a leaf
derived from the identity by applying | random inver-
sions (in one case, as noted in the text, a mix of
inversions and transpositions), where 1 is the length of
the edge from the internal node to the leaf. We generate
symmetric trees, in which all three edges have the same
length, although we also use (data not shown) asym-
metric trees where one edge has twice or thrice the length
of the other two. We generally give the sum of the three
edge lengths as the total evolutionary distance; we also
give the same information as the evolutionary rate for
the tree, where the evolutionary rate, r, is simply the total
evolutionary distance, I/, divided by the size of the
permutations, n. These tests are used to compare ASM4,

Page 10 of 11

(page number not for citation purposes)

BMC Bioinformatics 2010, 11(Suppl 1):S30

MGR, MGR-H1, and MSM, plus running times on the
largest datasets for ASM4. Once again, MGR is version
2.01 used with the -c option and MGR-H1 is MGR with
both the -¢ and -H1 options. The DCJ median scores
(optimal values) for these datasets are computed with
the exact solver of Xu and Sankoff [17].

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions

VR constructed the counterexamples for good inversions,
conceived the classification of heuristics, and conjec-
tured that the use of original values would outperform
the use of updated values. AWX conceived and devel-
oped ASM, the DC]J-based heuristics. VR and AWX
implemented all heuristics and conducted the experi-
mental testing. VR, YL and KMS proved theorem 2.
BMEM directed the project. Finally, VR, AWX and BMEM
collaborated closely on the experimental protocol, the
analysis of the results, and the writing of the manuscript.

Additional material

Additional file 1

Proof of Theorem 2. contains the proof of Theorem 2.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-11-S1-S30-S1.pdf]

Acknowledgements
AWX would like to acknowledge Benedict Paten from UCSC for his help
in reviewing an earlier draft of this paper.

This article has been published as part of BMC Bioinformatics Volume ||
Supplement |, 2010: Selected articles from the Eighth Asia-Pacific
Bioinformatics Conference (APBC 2010). The full contents of the
supplement are available online at http://www.biomedcentral.com/1471-
2105/1 I?issue=S|1.

References

I. Sturtevant A: A crossover reducer in Drosophila melanoga-
ster due to inversion of a section of the third chromosome.
Biol Zent Bl 1926, 46:697-702.

2. Sturtevant A and Dobzhansky T: Inversions in the third
chromosome of wild races of Drosophila pseu-doobscura
and their use in the study of the history of the species. Proc
Nat’l Acad Sci, USA 1936, 22:448—450.

3. Palmer] and Thompson W: Rearrangements in the chloroplast
genomes of mung bean and pea. Proc Nat’l Acad Sci, USA 1981,
78:5533-5537.

4. Day W and Sankoff D: The computational complexity of
inferring phylogenies from chromosome inversion data.
J Theor Biol 1987, 127:213-218.

5. Fertin G, Labarre A, Rusu |, Tannier E and Vialette S: Combinatorics of
Genome Rearrangements MIT Press; 2009.

6. Bader D, Moret B and Yan M: A fast linear-time algorithm for
inversion distance with an experimental comparison.
J Comput Biol 2001, 8(5):483—491.

http://www.biomedcentral.com/1471-2105/11/S1/S30

7. Bergeron A, Mixtacki] and Stoye J: A unifying view of genome
rearrangements. Proc 6th Int’l Workshop Algs in Bioinformatics
(WABI'06) Lecture Notes in Computer Science, Springer Verlag,
Berlin; 2006, 4175:163—-173.

8. Caprara A: The reversal median problem. INFORMS | on
Computing 2003, 15:93—113.

9. Tannier E, Zheng C and Sankoff D: Multichromosomal genome
median and halving problems. Proc 8th Int'l Workshop Algs in
Bioinformatics (WABI'08) Lecture Notes in Computer Science,
Springer Verlag, Berlin; 2008, 5251:1-13.

10. Moret B, Siepel A, Tang] and Liu T: Inversion medians
outperform breakpoint medians in phylogeny reconstruc-
tion from gene-order data. Proc 2nd Int’l Workshop Algs in
Bioinformatics (WABI'02) Lecture Notes in Computer Science,
Springer Verlag, Berlin; 2002, 2452:521-536.

I'l. Moret B and Warnow T: Advances in phylogeny reconstruction
from gene order and content data. Molecular Evolution: Producing
the Biochemical Data, Part B, Volume 395 of Methods in Enzymology
Elsevier: Zimmer E, Roalson E 2005, 673-700.

12. Siepel A: An algorithm to find all sorting reversals. Proc 6th Int’l
Conf Comput Mol Biol (RE-COMB’02) ACM Press, New York; 2002.

13. Siepel A and Moret B: Finding an optimal inversion median:
Experimental results. Proc Ist Int’l Workshop Algs. in Bioinformatics
(WABI'0I) Lecture Notes in Computer Science, Springer Verlag,
Berlin; 2001, 2149:189-203.

14. Bourque G and Pevzner P: Genome-scale evolution: recon-
structing gene orders in the ancestral species. Genome
Research 2002, 12:26-36.

I15. Swenson K and Moret B: Inversion-based genomic signatures.
Proc 7th Asia Pacific Bioinformatics Conf (APBC’09), BMC Bioinformatics
2009, 10(Suppl 1):57.

16. Kothari M and Moret B: An experimental evaluation of
inversion- and transposition-based genomic distances
through simulations. Proc 9th IEEE Symp Comput Intell in Bioinf &
Comput Biol (CIBCB’07) IEEE; 2007, 151—158.

17. Xu A and Sankoff D: Decompositions of multiple breakpoint
graphs and rapid exact solutions to the median problem.
Proc 8th Int’l Workshop Algs in Bioinformatics (WABI'08) Lecture Notes
in Computer Science, Springer Verlag, Berlin; 2008, 5251:25-37.

18. Xu A: A fast and exact algorithm for the median of three
problem-a graph decomposition approach. Journal of Compu-
tational Biology 2009, 16(10):1369—1381.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 11 of 11

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/11?issue=S1
http://www.biomedcentral.com/1471-2105/11?issue=S1
http://www.ncbi.nlm.nih.gov/pubmed/11694179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11694179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11779828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11779828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19747038?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19747038?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Introduction
	Terminology, notation, and definitions

	Results and Discussion
	Some negative results about median-finding heuristics
	A framework for median-finding heuristics
	A new heuristic for the inversion median
	Experimental results
	Heuristics based on good inversions
	ASM, MGR, and MSM on random permutations
	ASM, MGR, and MSM under simulation

	Conclusion
	Methods
	Competing interests
	Authors’ contributions
	Additional material
	Acknowledgements
	References

