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Abstract

Background: Improving the accuracy and efficiency of motif recognition is an important
computational challenge that has application to detecting transcription factor binding sites in
genomic data. Closely related to motif recognition is the CONSENSUS STRING decision problem that
asks, given a parameter d and a set of ℓ-length strings S = {s1, ..., sn}, whether there exists a
consensus string that has Hamming distance at most d from any string in S. A set of strings S is
pairwise bounded if the Hamming distance between any pair of strings in S is at most 2d. It is trivial to
determine whether a set is pairwise bounded, and a set cannot have a consensus string unless it is
pairwise bounded. We use CONSENSUS STRING to determine whether or not a pairwise bounded set
has a consensus. Unfortunately, CONSENSUS STRING is NP-complete. The lack of an efficient method
to solve the CONSENSUS STRING problem has caused it to become a computational bottleneck inMCL-
WMR, a motif recognition program capable of solving difficult motif recognition problem instances.

Results: We focus on the development of a method for solving CONSENSUS STRING quickly with a
small probability of error. We apply this heuristic to develop a new motif recognition program,
sMCL-WMR, which has impressive accuracy and efficiency. We demonstrate the performance of
sMCL-WMR in detecting weak motifs in large data sets and in real genomic data sets, and compare
the performance to other leading motif recognition programs. In our preliminary discussion of our
CONSENSUS STRING algorithm we give insight into the issue of sampling pairwise bounded sets, and
discuss its relevance to motif recognition.

Conclusion: Our novel heuristic gives birth to a state of the art program, sMCL-WMR, that is
capable of detecting weak motifs in data sets with a large number of strings. sMCL-WMR is orders of
magnitude faster than its predecessor MCL-WMR and is capable of solving previously unsolved
synthetic motif recognition problems. Lastly, sMCL-WMR shows impressive accuracy in detecting
transcription factor binding sites in the genomic data and used in the assessment of Tompa et al.
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Background
Given a number of DNA strings, motif recognition is the
task of discovering similar substrings without prior
knowledge of their consensus or their locations. The
following is a combinatorial formulation of the (ℓ, d)-
motif problem [1]: let S = {s1, ..., sn} be a set of m-length
strings, and s* be the consensus string, a fixed and
unknown string of length ℓ that is contained in each si
as a substring but is corrupted with at most d
substitutions (point mutations). The aim is to determine
s* and the location of the motif instances in each string.
The weak motif recognition problem is to find the motif
instances when the number of degenerate positions d is
large in relation to the motif length ℓ; well-known weak
motif recognition problems exist when the parameters
(ℓ, d) are equal to (11, 3), (15, 4), and (18, 6). This
combinatorial problem has application to finding
transcription factor binding sites in genomic data [2].

Motif recognition is NP-complete and therefore cannot be
solved in polynomial time unless P = NP [3]. Nonetheless,
there are numerous algorithms developed to solve specific
instances of the problem, including PROJECTION [4],
Winnower [1], pattern driven approaches [5], MITRA [6],
PSM1 [7], PMSprune [8], the Voting algorithm [9], MCL-
WMR [10], MEME [11], VAS [12], RISOTTO [13], Weeder
[14] and several others. Li et al. proved the existence of a
PTAS for an optimization version of the motif recognition
problem, though the high degree in the polynomial
complexity of the PTAS algorithm renders this result only
of theoretical interest [15].

Closely related to motif recognition is the CONSENSUS

STRING decision problem. A consensus string for a set S of
strings has Hamming distance at most d from all strings
in S. CONSENSUS STRING asks, given a parameter d and a set
S = {s1, ..., sn} of n strings, each of length ℓ, whether there
exists a consensus string for S. CONSENSUS STRING is NP-
complete even when interest is limited to the binary
alphabet [16].

For a given parameter d we say S is a motif set if there exists
a consensus string s* at distance at most d from any string
in S; we say a set S of strings is pairwise bounded if the
distance between any pair of strings in S is at most 2d.
Every motif set is pairwise bounded; if a pairwise bounded
set is not a motif set we say it is a decoy set. For example, for
d = 1 the set {000, 001, 010, 100} is a motif set because
000 is a consensus string for this set. In contrast, the set
{000, 011, 101, 110} is a decoy set because it is pairwise
bounded (since any two of the strings are at Hamming
distance 2) but no consensus string exists.

The focus of this paper is the development and
application of a heuristic for the CONSENSUS STRING

decision problem (also known as the RADIUS DECISION

problem [16]). We denote the Hamming distance
between any pair of strings si and sj as H(si, sj). We
define the weight of a set of strings S as the sum of
the Hamming distances of each pair of strings in
S (i.e. Σ1 ≤ i ≤ j ≤ n H(si, sj)). If the weight of a set, which
can be calculated in polynomial time, can be used to
indicate whether it is a motif set or a decoy set then
CONSENSUS STRING can be solved extremely efficiently and
accurately in practice–simply calculate the weight of the
pairwise bounded set and decide whether the set has a
consensus based on this value. For this heuristic to work
we need to know how the respective weights of a random
motif set and a random decoy set are distributed.
Further, the distributions need to be adequately sepa-
rated so that the weight of a set leaves little ambiguity as
to whether the set is a motif set or a decoy set.

There exists an algorithm to sample from the set of all
motif sets: simply choose any ℓ-length string as the
consensus sequence and sample with replacement from
the set of all strings that are at distance at most d from that
sequence [10]. Unfortunately we do not know an
analogous sampling algorithm, either exact or approxi-
mate, for decoy sets. If we could sample pairwise bounded
sets uniformly then we could learn the probability
distribution of the weight of a random decoy set.

We give a method to generate pairwise bounded sets
uniformly, use this method to determine the probability
distribution of the weight of a random decoy set, and
show the existence of a separation between this
distribution and the probability distribution of the
weight of a random motif set. Thus, we solve CONSENSUS

STRING instances extremely accurately and efficiently
using the simple heuristic of using the weight as an
indicator as to whether a pairwise bounded set is a motif
set or a decoy set. The separation of the distributions
becomes increasingly more prevalent as the number of
strings in the set (i.e. the parameter n) increases, so the
accuracy of our method increases as the number of
strings increases. We significantly extend our earlier
motif recognition program, MCL-WMR [10], by incor-
porating the heuristic for CONSENSUS STRING described in
this paper. This new algorithm, referred to as sMCL-
WMR, detects motifs in data sets with a large number of
strings (i.e. 30 or more strings), and finds regulatory
strings in genomic data. sMCL-WMR represents the input
data as a weighted graph and uses graph clustering to
narrow the search to smaller problems that can be solved
with significantly less computation. An efficient refine-
ment algorithm that distinguishes valid motif sets from
decoy sets allows sMCL-WMR to detect motifs in very
large data sets in significantly less computational time
than MCL-WMR.
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Methods
Sampling pairwise bounded sets
In this section we discuss uniform sampling, or genera-
tion, of pairwise bounded sets. A standard method used
to generate a random motif set is to choose an ℓ-length
string u.a.r. (uniformly at random) from all possible 4ℓ

strings to be the consensus string, and then form a motif
set by selecting n strings at random with replacement
from the set of all strings with Hamming distance at
most d from this consensus string [4,10]. This does not
sample motif sets uniformly, but rather samples a motif
set with probability proportional to the number of
distinct consensus strings it has and thus, corresponds to
how synthetic problem data sets are constructed and
how we expect meaningful motif sets arise in nature. For
example, synthetic problem instances are traditionally
generated as follows: a random consensus string of
length ℓ is chosen, n occurrences of the motif are
generated by randomly mutating at most d positions,
and each of the n motif instances is embedded at a
random location into a different background string of
length m. We note that other non-uniform distributions
have also been used to generate motif sets [1].

When sampling uniformly from a poorly understood
sample set, rejection sampling is a naïve but useful
technique. If we can find a superset of the target set
that is easy to sample from uniformly, we can sample
from this superset and simply throw away (reject) any
sampled element that is not in the target set. We show
how rejection sampling can be applied to generate
pairwise bounded sets uniformly.

Uniform sampling of pairwise bounded sets
To sample u.a.r. from all pairwise bounded sets using
rejection sampling in the most naïve way, we would
generate n random ℓ-length strings and accept the set if it
is pairwise bounded, and reject and repeat otherwise
(technically this samples uniformly from pairwise
bounded sequences since the order of the strings matters
in a sequence). However, since it is unlikely that such a
randomly generated set would be pairwise bounded, this
method is extremely inefficient. We introduce a heuristic
to generate random sets that are more likely to be
pairwise bounded, thus speeding up the rejection
sampling process enough to be practical.

We generate the first string, s1, u.a.r. from the set of all
ℓ-length strings then generate each of s2, ..., sn in turn
u.a.r. from the set of all strings at distance at most 2d
from s1. This gives us a set of strings generated u.a.r. from
the set of all strings that have s1 as the first string and
each other string at distance at most 2d from s1. If the set
is pairwise bounded we keep it; if it is not we reject it and

start over. The fact that this method generates pairwise
bounded sequences u.a.r. can be verified by induction on
n. The number of times a set of n strings is considered
and rejected until a pairwise bounded set is generated
follows a geometric distribution and therefore, the
efficiency of this method is determined by the prob-
ability that a set is rejected. Though this method is fast
enough to work in practice for values of n we are
interested in, the expected runtime when generating a
single pairwise bounded set grows exponentially with n.

Proposition 1. The probability that a set generated using
rejection sampling is pairwise bounded decreases at least
exponentially fast as a function of n.

Proof. For 1 ≤ i ≤ n let Si be the subset of S containing the
first i randomly chosen strings, with Sn = S. Let Ai be the
event that Si is pairwise bounded. Any subset of a
pairwise bounded set is pairwise bounded, so Ai implies
Ai-1 for 2 ≤ i ≤ n. Therefore by Bayes’ law we have ℙ[Ai] =
ℙ[Ai|Ai-1] ℙ[Ai-1]. To prove that ℙ[An] decays exponen-
tially with n we need only show that ℙ[Ai|Ai-1] is non-
increasing in i, since it can easily be verified to be strictly
less than 1 for i = 3. Let Ki be the set of strings such that Si
∪ {s} is pairwise bounded if and only if s Œ Ki, noting
that Ki = ∅ if Si is not pairwise bounded. We have Kj ⊆ Ki

for any 1 ≤ i <j ≤ n. Since P[ | ] ( )A Ai i
Ki

B d− =1 2
, where B

(2d) is the number of strings at distance at most 2d from
s1, the result holds. □

To empirically evaluate the efficiency of our rejection
sampling method we determined the portion of sets that
will be rejected when generating a sample (of specified
size) of pairwise bounded sets. We performed experi-
ments with varying values of n, ℓ, and d, generated 10000
pairwise bounded sets in each experiment, and consid-
ered the average number of sets rejected before the
pairwise bounded set was obtained. The default values
for (n, ℓ, d) are (20, 15, 4).

The results of the empirical tests are shown in Figure 1. Each
of the three plots shows how the average number of rejected
sets changes when one of the three parameters is varied and
the other two are fixed at their default values. The left plot
shows what happens when d varies between 1 to 7. For
values of d that are either greater than Îℓ/2˚ or equal to 0, any
set we generate is pairwise bounded and hence, we did not
plot data for d = 0 or d ≥ 8. The average number of rejected
sets is largest when d is equal to 2 and decreases dramatically
as d increases. This trend is expected since a large portion of
non-pairwise bounded sets would be rejected when d is
moderately large. The middle plot shows what happens
when ℓ is varied between 9 and 55. The number of rejected
sets increases steadily when ℓ varies within the range [9,20],
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then plateaus when ℓ is above 20. It can be easily shown
analytically that increasing ℓ above 2dn will have no effect,
however, we see empirically that the effect of ℓ is minimal
for values of ℓ greater than 20. The right plot shows the effect
of varying n between 3 and 31. Noting that a logarithmic
scale is used, the average number of rejected sets exhibits
growth that is clearly exponential in n.

A separation of weight distributions
One of the key motivations for the development of
methods to generate pairwise bounded sets from an
appropriate distribution is that it can be used to
determine whether there is a separation between the
probability distribution of the weight of a random valid
motif set and that of a random decoy set. We use the
sampling method just described to generate 1000
random motif sets and 1000 random decoy sets for
varying values of (ℓ, d) and n. For each random motif
and decoy set witnessed we calculated the weight of the
set. Figure 2 depicts, for values considered for (ℓ, d) and
n, the distribution of the weight of the 1000 random
motif sets and that of the 1000 random decoy sets. The
data illustrate an adequate separation between the
distributions.

As the value of n increases, the separation between the
distributions becomes more prevalent since the prob-
ability distributions become more concentrated around
their means and the means themselves diverge. Further,
the dichotomy is again more evident when (ℓ, d) is
increased from (15, 4) to (18, 6). When n is even
moderately large we can use the weight to determine
accurately whether the set is a motif set or a decoy set
and as n increases this method of using the weight as an
indicator will likely increase in accuracy. Similar conclu-
sions can be made when ℓ and d increase. These results
suggest that the simple heuristic of using the weight to
determine whether a pairwise bounded set is a valid
motif set or a decoy set will enable computationally

challenging instances of the CONSENSUS STRING problem
(e.g. when n ≥ 20 or (l, d) is equal to (18, 6)) to be solved
efficiently with minimal probability of error.

These empirical trends illustrate the analytical results of
Boucher et al. [10] that demonstrate that the distribution
of the weight of a random motif set is tightly
concentrated around its mean. The following theorem
proves that the distribution of Wm is sharply concen-
trated around its mean; specifically it provides exponen-
tial tail bounds.

Theorem 1 (Strong concentration bound for motif sets
[10]). Let Wm be the weight of a random motif set and μm be
the expected value of Wm. Then for any l > 0,

P[ ] exp
( )

.W
d n

m m− ≥ ≤ −
+

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

μ λ λ
2

2

2 2 1

It is currently open to prove an analogous result to
Theorem 1 for an arbitrary decoy set. This is a
considerably more challenging problem due to the lack
of a combinatorial characterization of a decoy set.

sMCL-WMR: an efficient method to detect
motifs in large data sets
In 2007, MCL-WMR was developed specifically for the
problem of detecting weak motifs in genomic data [10].
One of the main contributions of MCL-WMR is the
introduction of a novel weighted-graph model for motif

Figure 1
Efficiency of rejection sampling. Average number of
rejections when generating a pairwise bounded set with our
rejection sampling heuristic. Each plot shows the effect of
varying one of the three parameters (n, ℓ, d). Data points are
connected with cubic splines. Note the logarithmic scale
used in the right plot.

Figure 2
Weight distribution histograms. Histograms showing
weight distributions for motif sets and decoy sets. Normal
distributions fitted to the data are shown to indicate that the
weight distributions are approximately normal.
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recognition. Unfortunately, MCL-WMR was unable to
detect motifs beyond when ℓ = 18, d = 6, m = 1000, and
n ≥ 20 [10]. Eskin and Pevzner reported similar results
for various motif recognition programs [6], and Feng
et al. showed limited accuracy for the (15, 4) problem
with 20 strings of length 600 [17]. Specific motif
recognition problems–that is, the problem for specific
values of n, m, ℓ, and d–have remained intractable. For
example, MCL-WMR was unable to solve any instance of
the (25, 8) motif recognition problem with n = 20.

MCL-WMR uses graph clustering to determine pairwise
bounded sets that might be valid motifs. The major
impediment to the efficiency of MCL-WMR was the
exponential-time refinement algorithm used to deter-
mine which “candidate motif sets” (i.e. pairwise
bounded sets) have a consensus string [10]; this step
becomes a bottleneck for solving challenging weak motif
instances, such as (18, 6), when the number of such
candidate sets increases dramatically [4]. Boucher and
Brown [18] give a probabilistic heuristic for solving the
consensus string problem, which filters candidate sets
based on a “majority vote”, that has acceptable accuracy
when n is significantly large (i.e. when n ≥ 20). We
propose a probabilistic algorithm that eliminates the
need for a strong bound on n; our novel algorithm uses a
candidate set’s weight to determine quickly and with a
small probability of error whether the set is a decoy set
or a motif set.

Overview of system
sMCL-WMR considers a weighted graph representation
of the data set, where each substring of length ℓ is
represented by a vertex and the construction of our graph
G ensures that the motif instances represented by
vertices in the graph are connected to each other and
form a clique of size n, though the converse need not
hold. In this model, the problem of finding pairwise
bounded sets in the data reduces to finding cliques of
size n in the graph G .

1. The vertex set contains a vertex vi, j representing the
ℓ-length substring in string i starting at position j, for
each i and j = 1, 2, ..., m - ℓ + 1. There are n(m - ℓ + 1)
vertices.
2. Each pair of vertices vi, j and vi’, j’, for i ≠ i’ is joined
by an edge if and only if the corresponding substrings
are at Hamming distance at most 2d.
3. An edge between vertices having distance k has
weight ℓ - k for d <k ≤ 2d, or 10(ℓ - k) for k ≤ d. This
emphasizes substrings at small distances.

We chose to use the Markov cluster algorithm (MCL) [19]
to cluster the graph G due to its ability to handle large

weighted graphs. We reduce the size of the instance
being passed to MCL by considering subgraphs G = {G1,
G2, ..., Gm-ℓ+1}, where, for some arbitrary choice of
reference string R, Gj is the subgraph induced by the
closed neighborhood of the reference vertex vR, j. This is
more efficient than searching all of G at once. MCL then
clusters each Gi Œ G to determine subgraphs that are
highly interconnected (high edge weight within a
cluster). A clique in Gi that represents a pairwise
bounded set must have size n and have weight at least

(ℓ - 2d)
n

2

⎛

⎝
⎜

⎞

⎠
⎟ since each pair of vertices must be adjacent.

We filter out the clusters produced by MCL that do not
meet these criteria since they cannot contain sufficiently
large cliques. MCL-WMR uses a dynamic programming
algorithm to determine which pairwise bounded sets (or
cliques) represent valid motif sets; this computationally
intensive step limits its ability to solve many motif
recognition instances.

Figure 2 illustrates that both the weight of a random
motif set and that of a random decoy set are approxi-
mately normally distributed, and shows a separation
between these distributions. Using the rejection sam-
pling method described earlier we calculate the mean
and standard deviation of the weight of a random motif
set and the weight of a random decoy set. We use N(μ,
s2) to denote a normal distribution with mean μ and
variance s2. Let random variables Wm and Wd denote the
weight of a random motif set and the weight of a
random decoy set, respectively. Let μm and σm

2 respec-
tively denote the mean and variance of the distribution
of Wm and similarly, let μd and σ d

2 respectively denote
the mean and variance of Wd. Assuming that Wm ~ N
(μm, σm

2 ) and Wd ~ N (μd, σ d
2 ), we can determine the

values am and ad such that:

P P[ ] . [ ] . .W Wm m d d< = > =α α99 99 and 

If am <ad then we can use the weight of a pairwise
bounded set of strings to determine whether the set is a
decoy or a motif as follows: calculate the weight w of the
set and, if w ≤ am or w ≥ ad then return that the set is a
motif or a decoy, respectively; otherwise, use the
dynamic programming algorithm to classify the set.
Hence, if am <ad then more than 99% of pairwise
bounded sets will be classified correctly by considering
the weight of the set. Typically the gap between am and
ad is large enough to guarantee that this rate is far higher
than 99%. In theory it is possible that a set could be
misclassified (e.g. if a motif set has weight greater than
ad) though in practice the probability of this happening
is negligible and does not affect the performance of the
algorithm.
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To increase the efficiency of sMCL-WMR, we include a
pre-calculated table storing μm, μd, σm

2 and σ d
2 for

common values of ℓ, d, and n (for examples see Table 1).
We varied n to be between 10 and 50, ℓ to be between 15
and 30, and d to be between Îℓ/5˚ and Îℓ/2˚ Values with
weaker motifs or with small data sets (i.e. when n ≤ 10)
are not considered since it was shown that MCL-WMR
performs efficiently for these instances [10].

Results and discussion
Performance of sMCL-WMR on synthetic data
We follow the experimental methods of Pevzner and Sze
[1], and Buhler and Tompa [4] by considering the
performance of sMCL-WMR in comparison to other
contemporary and well-known motif recognition pro-
grams on synthetic data. We fix n to be equal to 20, m to
be 600, and consider varied values of ℓ and d. To produce
random motif recognition instances, we generate a
random motif consensus of length ℓ, then generate n
occurrences of the motif, each generated from the
consensus by randomly choosing d positions and for
each of the d positions choosing a random replacement
base from the four possible bases (A, C, G, T). We
construct m background strings of length n and insert the
generated motifs into a random position in the string.
For each of the (ℓ, d) combinations, 100 randomly
generated sets of input strings (n = 20, m = 1000) were
generated. The implementation of sMCL-WMR is in C++.

We note that all experimental tests were performed on a
Linux machine with a 64-bit 2600 MHz processor and 1
Gbyte of RAM running Ubuntu. We compared the
performance of sMCL-WMR with that of the following
motif recognition programs: PROJECTION [4], MCL-
WMR [10], PMSprune [8], and Voting [9]. All programs
were run on the same Linux machine with the same data
sets. These motif recognition programs were chosen for
their availability, performance, and widespread use; they
are appropriate for comparison with sMCL-WMR
because of the previously described capability in solving
weak motif instances and because of their availability to
be run on the described machine. The results of Voting,

PMSprune, and PROJECTION are similar to the ones
reported by Davila et al. [8], and to Chin and Leung [12],
both of whose testing was completed on a machine with
a slightly slower processor and the same core memory
size.

We define the success rate of a given program using the
performance coefficient used by Pevzner and Sze [1],
Buhler and Tompa [4], and others [9,12]. Let K denote
the set of tℓ base positions in the t occurrences of the
planted motif, and let P denote the corresponding set of
base positions in the t occurrences predicted by an
algorithm. The algorithm’s success rate is defined as |K ∩
P|/|K ∪ P|. Table 2 illustrates the comparison between
the running time of sMCL-WMR and that of the other
programs. Our aim was to test the selected programs on
their capability to solve challenging motif instances (i.e.
when d is significantly large with respect to ℓ). In Table 2
“-” implies that the program was not capable of solving
the motif instance on the described machine in a
reasonable amount of time, which we define to be at
most 20 hours, or with reasonable accuracy, which we
define to be at least 75%. Two significant trends are
witnessed in the data: sMCL-WMR is capable of solving
very hard instances of motif recognition (i.e. when ℓ = 30
and d = 9) and gives a dramatic improvement over the
existing programs for instances where ℓ ≥ 14 (for
instances where ℓ ≤ 12 sMCL-WMR had comparable or
better performance to the other programs). We note that
all programs except PROJECTION achieved a 100%
success rate on all motif instances; in Table 2 we put the
success rate of PROJECTION in brackets.

There exist real-genomic data sets which contain a large
number of sequences. For example, a data set, labeled as
hm20, in the TRANSFAC database [20] has 34 input
strings. Unfortunately, it is uncommon to test motif
recognition programs with synthetic data sets with
greater than 20 input strings. For example, the following
motif recognition algorithms were tested with data sets
with at most 20 strings: PROJECTION [4], Winnower [1],
MITRA [6], PSM1 [7], PMSprune [8], the Voting
algorithm [9], MCL-WMR [10], and VAS [12]. We aim

Table 1: Weight distribution properties

(ℓ, d) μm μd σm
2 σ d

2 am ad n μm μd σm
2 σ d

2 am ad

(15, 4) 794 1439 84 84 989 1243 15 432 980 52 60 552 840
(16, 5) 850 1651 86 102 1050 1413 20 794 1439 84 84 989 1243
(18, 6) 899 2204 89 140 1106 1878 25 1529 2250 129 110 1829 1994
(25, 8) 954 2670 111 175 1212 2262 30 1845 3263 196 169 2300 2869
(28, 9) 1024 3230 152 199 1378 2767 35 2240 4523 246 213 2812 4027
(30, 11) 1069 3882 169 245 1462 3312 40 3709 6110 389 275 4613 5460

Data illustrating the change to the mean and standard deviation of the weight of a random motif set and the weight of a random decoy set as the values
of ℓ, d, and n increase. On the left the number of strings is fixed at 20 and on the right the values (ℓ, d) are fixed at (15, 4).
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to investigate the capability of sMCL-WMR - as well as
other motif recognition programs - in solving motif
recognition instances with a large number of strings. The
other programs tested include MCL-WMR, Voting, and
PMSprune. Table 3 shows that sMCL-WMR was capable
of solving instance with up to 40 strings. Again, as in
Table 2 “-” implies that the program was not capable of
solving the motif instance on the described machine in a
reasonable amount of time, which we define to be at
most 20 hours, or with reasonable accuracy, which we
define to be at least 75%. The capability of sMCL-WMR
in solving motif recognition instances with a large
number of strings can easily be explained by the fact
that the runtime of the method used to solve Consensus
String scales slowly in n and therefore, has efficient
running time even when n is large (i.e. n = 40).

Using sMCL-WMR to find regulatory elements
An important biological challenge is to identify DNA
binding sites of transcription factors. In this section, we
demonstrate the use of sMCL-WMR in discovering these
DNA string “motifs” in data sets with a large number of
DNA strings. Tompa et al. extensively assess 13 motif
recognition tools [2] using test sets that make use of
transcription factor binding sites. The binding sites were
obtained from the TRANSFAC database [20] which

contains only eukaryotic transcription factors. The
TRANSFAC database is extremely comprehensive, con-
taining data from a large variety of species, including
yeast, mus, oryctolagus cuniculus, and homo sapiens [20].
For more details concerning the data set, including the
selection process for transcription factors and binding
sites from TRANSFAC, see Tompa et al. [2].

We ran sMCL-WMR on a randomly selected set of set of
transcription factors from those of Tompa et al. [2]. Each
transcription factor gives rise to one set of strings. The
number of strings varied from 34 (hm20) to 8 (hm26)
and the string length (parameter m) varied from 700 bp
to 2000 bp. Experimental results are shown in Table 4.
sMCL-WMR was capable of discovering motifs for these
data sets, as well as many motifs not yet found by the
motif recognition programs assessed by Tompa et al. [2].
The known binding sites shown in Table 4 are as given
by the TRANSFAC database Tompa et al. [2].

Conclusion
In this paper we investigate the relationship between the
weight of a decoy set and the weight of a motif set by
means of random sampling. We discuss a rejection
sampling strategy, and propose a means to make this
uniform sampling method more efficient. Using our

Table 2: Performance on synthetic data with varying (ℓ, d)

(ℓ, d) sMCL-WMR MCL-WMR PROJECTION Voting PMSprune

(10, 2) 15 1020 56 (98%) < 1 12
(12, 3) 24 2780 321 (85%) 28.4 23
(14, 4) 98 3120 658 (75%) 412 102
(16, 5) 253 4101 1312 (80%) 1620 520
(18, 6) 632 10202 2200 (85%) 4210 33560
(20, 7) 1203 - 2700 (75%) 20021 -
(25, 9) 1502 - - - -
(28, 12) 1691 - - - -
(30, 14) 2002 - - - -

Comparison of the performance of sMCL-WMR and other motif recognition programs on synthetic data; other programs tested include
PROJECTION [4], MCL-WMR [10], Voting [9], and PMSprune [8]. All programs except PROJECTION had a success rate of 100% and for this reason,
the success rate was for PROJECTION is included in brackets in the table. The time is given in CPU seconds. In all experiments, n = 600, m = 20, and
ℓ and d are varied. “-” denotes that the program was not capable of solving the specific problem.

Table 3: Performance on synthetic data with varying n

n sMCL-WMR MCL-WMR PROJECTION Voting PMSprune

18 223 5320 698 (85%) 3930 37020
20 243 12032 729 (77%) 5201 45030
24 1354 36112 874 (75%) 10211 -
28 1960 - - - -
30 2504 - - - -
40 3203 - - - -

The performance of sMCL-WMR as the number of strings increases in comparison to other motif recognition programs. Other programs tested
include MCL-WMR [10], PROJECTION [4], Voting [9], and PMSprune [8]. The time is given in CPU seconds. In all experiments, ℓ = 18, d = 6,
m = 600 and n ranges from 18 to 40.
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proposed sampling algorithm, we study the probability
distributions of the respective weights of a random motif
set and a random decoy set. We conclude that the weight
of a pairwise bounded set can accurately predict whether
the set is a valid motif set; we then use this heuristic to
develop a program that efficiently detects motifs in large
data sets. Our focus was to develop an efficient program
that solves a combinatorial version of the motif
recognition problem. A position weight matrix (PWM)
is another commonly used representation of motifs in
biological strings [21]. The application of techniques
described in this paper - graph clustering and satistical
thresholds - to the PWM model of motif recognition
warrants further investigation.
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