
BioMed CentralBMC Bioinformatics

ss
Open AcceProceedings
A chemogenomics view on protein-ligand spaces
Helena Strömbergsson1 and Gerard J Kleywegt*2

Address: 1Department of Cell and Molecular Biology/The Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden and 
2Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden

Email: Helena Strömbergsson - helena.strombergsson@lcb.uu.se; Gerard J Kleywegt* - gerard@xray.bmc.uu.se

* Corresponding author    

Abstract
Background: Chemogenomics is an emerging inter-disciplinary approach to drug discovery that
combines traditional ligand-based approaches with biological information on drug targets and lies
at the interface of chemistry, biology and informatics. The ultimate goal in chemogenomics is to
understand molecular recognition between all possible ligands and all possible drug targets. Protein
and ligand space have previously been studied as separate entities, but chemogenomics studies deal
with large datasets that cover parts of the joint protein-ligand space. Since drug discovery has
traditionally focused on ligand optimization, the chemical space has been studied extensively. The
protein space has been studied to some extent, typically for the purpose of classification of proteins
into functional and structural classes. Since chemogenomics deals not only with ligands but also
with the macromolecules the ligands interact with, it is of interest to find means to explore,
compare and visualize protein-ligand subspaces.

Results: Two chemogenomics protein-ligand interaction datasets were prepared for this study.
The first dataset covers the known structural protein-ligand space, and includes all non-redundant
protein-ligand interactions found in the worldwide Protein Data Bank (PDB). The second dataset
contains all approved drugs and drug targets stored in the DrugBank database, and represents the
approved drug-drug target space. To capture biological and physicochemical features of the
chemogenomics datasets, sequence-based descriptors were computed for the proteins, and 0, 1
and 2 dimensional descriptors for the ligands. Principal component analysis (PCA) was used to
analyze the multidimensional data and to create global models of protein-ligand space. The nearest
neighbour method, computed using the principal components, was used to obtain a measure of
overlap between the datasets.

Conclusion: In this study, we present an approach to visualize protein-ligand spaces from a
chemogenomics perspective, where both ligand and protein features are taken into account. The
method can be applied to any protein-ligand interaction dataset. Here, the approach is applied to
analyze the structural protein-ligand space and the protein-ligand space of all approved drugs and
their targets. We show that this approach can be used to visualize and compare chemogenomics
datasets, and possibly to identify cross-interaction complexes in protein-ligand space.
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Background
Human genome sequencing has led to the emergence of
chemogenomics which is an inter-disciplinary approach
to drug discovery [1]. In chemogenomics, compound
libraries are combined with gene and protein information
and the ultimate goal is to understand molecular recogni-
tion between all possible ligands and all proteins in the
proteome. However, the size of the protein-ligand space
makes any systematic experimental characterization
impossible. The number of reasonably sized molecules,
up to about 600 Da in molecular weight, that contain
atoms commonly found in drugs is very large. A com-
monly quoted mid-range estimate is 1062 [2]. The human
genome project has identified and characterized more
than 25000 genes in the human DNA [3]. Due to phe-
nomena such as alternative splicing and post-transla-
tional modifications, each gene may result in several
proteins, and the human proteome is estimated to con-
tain more than 1 million different proteins [4]. The chem-
ogenomic grid is thus sparse since experimental data, e.g.
in the form of binding affinity values such as inhibition
constants (Ki) and inhibitory concentrations (IC50), is
available only for a very limited number of protein-ligand
complexes. Chemogenomics approaches are therefore
focused either on generalized models that attempt to fill
this sparse grid by prediction of protein-ligand interac-
tions, or on thorough investigation of more limited well-
characterized systems. Examples of the latter are studies
by Martin et al. [5] and Guba et al. [6], in which selective
ligands against somatostatin G-protein-coupled receptor
(GPCR) subtype 5 were designed by carrying out a focused
screen of drug candidates that target GPCRs in which
amino acids of the drug-binding site share notable simi-
larity to that of the subtype 5 GPCR receptor. Examples of
generalized models, that attempt to span larger parts of
the protein-ligand space, are those of Lindström et al. [7]
who induced a model from a set of structurally diverse
proteins, Bock et al. [8] who induced a model on a large
set of sequentially diverse GPCRs, and Strömbergsson et
al. [9] who recently reported on a model that spans the
entire structural enzyme-ligand space. All models were
able to predict binding affinities fairly well with a cross-
validated coefficient of determination r2 of 0.4–0.5. How-
ever, a proteome-wide model that spans protein and lig-
and representatives from the entire known protein-ligand
space has not been reported yet.

Protein and ligand space have traditionally been studied
as separate entities. Since conventional drug discovery is
focused on ligand optimization, the chemical space has
been studied extensively [10]. Oprea and Gottfries [11]
introduced ChemGPS, which is an efficient method to
navigate the chemical space through a subset of ligands
that act as core and satellite compounds. Protein space has
mostly been studied with the aim to classify proteins into

protein families, and in the study of evolutionary relation-
ships. Classifications of proteins have been made both at
the sequence and structural level. For instance, Pfam [12]
is a large collection of protein families each represented by
a multiple sequence alignment, and the databases SCOP
(Structural Classification Of Proteins) [13], and CATH
(Class, Architecture, Topology and Homologous super-
family) [14] describe the structural and evolutionary rela-
tionships between all proteins whose structure is known.

Chemogenomics has fuelled the creation of publicly avail-
able protein-ligand databases such as ChemBank [15],
which stores raw data from screening assays, and Drug-
Bank [16], which contains information on drugs and their
known targets. Protein-ligand space has mainly been
explored through structure-based methods such as high-
throughput docking, where chemical libraries are system-
atically docked against an array of protein targets [17],
and molecular dynamics simulations, where the free
energy of ligand binding is predicted [18]. Lately, the
chemogenomics space has also been explored through
networks and knowledge-based methods. For instance,
Park & Kim [19] compared structural features of proteins
and ligands which resulted in a protein-ligand binding
similarity network, and Campillos et al. [20] explored
known side-effects information of marketed drugs to
induce a drug-drug target relation network, which resulted
in the prediction and successful experimental validation
of a number of novel drug-drug target interactions.

Due to the paucity of protein-ligand interaction data, any
chemogenomics study deals with large datasets that cover
only a small part of the protein-ligand space. In this study,
we present a new approach to visualize and compare
chemogenomics protein-ligand subspaces. The method
can be used on any protein-ligand interaction dataset and
is applied here to the well-defined structural protein-lig-
and subspace of the Protein Data Bank (PDB) [21] and the
subspace of all approved drugs and their known targets in
the DrugBank [16] database. We show that this approach
can be used to compare chemogenomics subspaces, and
to identify close neighbours in protein-ligand space,
which may be used in focused screening applications to
predict and further investigate unwanted cross-interac-
tions of candidate drugs with other proteins.

Results and discussion
A protein-ligand interaction dataset encompassing the 
structural protein-ligand space
The PDB is the single world-wide archive of structural data
of biological macromolecules and contains more than
50000 structures. All ligands (6253) in the PDB were
downloaded from MSDchem (Macromolecular Structure
Database Ligand Chemistry Service) [22]. Each ligand was
found in complex with one or more biomolecules in the
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PDB. Ligands that had fewer than 10 non-hydrogen
atoms, or that were known to be additives from crystallo-
graphic experiments, were removed from the dataset. This
resulted in the removal of 772 ligands (additional file 1).
A non-redundant set of proteins co-crystallized with each
ligand was obtained through the culling server PISCES
[23] (see methods). This resulted in 13275 non-redun-
dant protein-ligand interactions that cover the entire PDB
protein-ligand space (additional file 2).

It is not trivial to determine which ligands in the PDB
bind non-specifically. For instance, many commonly
occurring carbohydrates can bind specifically to some
proteins but may also be additives from experiments. Lig-
ands suspected to be additives, and ligands associated
with more than 100 PDB entries were scrutinized using
literature searches and discussed with an expert (L. Liljas,
Uppsala). Figure 1 shows that the large majority of ligands
are associated with fewer than 100 non-redundant PDB
chains. However, since only a small fraction of the ligands
(~150 out of 6253) were investigated manually, it is likely
that there are some non-specific ligands in the final PDB
interaction dataset (that is based on 5481 ligands). In
addition, the set of 772 removed ligands may well contain
a few "true" ligands that bind specifically to their protein
target. However, considering the large size of the final

PDB interaction dataset (13275 complexes), we assume
that the possible inclusion of a few non-specific ligands
will not seriously affect the projection of the protein-lig-
and space.

A dataset representative for the protein-ligand space of 
approved drugs
The DrugBank [16] database is one of the most compre-
hensive resources for information on drugs and drug tar-
gets. The 2D structures of all 1492 approved drugs listed
by DrugBank were obtained together with information on
their targets. The large majority of the drugs (91%), had
one or several known targets. To obtain a non-redundant
set of protein targets associated with each drug, each pro-
tein set was subjected to pair-wise global alignment by the
Needleman-Wunsch algorithm and the sequences were
culled at 95% sequence identity. This resulted in a dataset
of 3789 interactions (additional file 3), containing of
1200 unique drugs and 1481 unique targets. More than
half (59%) of the drugs are listed to interact with more
than one protein target. This clearly indicates that cross-
interaction of drugs with other possibly unwanted pro-
teins in the proteome is very common.

Selection of protein and ligand descriptors
Protein descriptors have been designed mainly for the
purpose of protein classification and prediction and can
be based on protein 3D structure, the entire primary struc-
ture, or amino-acid properties where each residue is
treated as a separate entity within a sequence or structure.
Examples of descriptors based on 3D structure informa-
tion are local protein substructure descriptors [24] that
have been applied to protein family classification and
function prediction of protein-ligand binding affinity val-
ues [25], and structural motif descriptors [26] that have
been applied to prediction of binding sites in proteins.
Protein descriptors based on the entire sequence typically
use properties such as amino acid composition, amino
acid sequence order or physiochemical features of amino
acids. For instance, the PROFEAT server [27] computes
more than 1400 protein descriptors from their sequence.
Single residues within a sequence or structure can be
described by so-called z-scales [28] which are principal
components of a large number of physicochemical amino
acid properties. Such z-scale descriptors have been applied
successfully in proteochemometrics [29], but they require
a sequence alignment in order to compare and describe
variable positions in related sequences. The protein-lig-
and datasets used in this study contain proteins that vary
greatly in structure, sequence and function. Moreover,
since a large part of the known drug targets are mem-
brane-bound receptors, the DrugBank dataset contains
many proteins for which no 3D structure is available.
Descriptors were therefore computed from the entire
sequence. In this study, a set of easily interpretable protein

Number of PDB chains bound to each ligandFigure 1
Number of PDB chains bound to each ligand. The 
number of non-redundant PDB chains is plotted for ligand 
10–1000 in the structural dataset. All ligands in complex with 
more than 100 chains (red dotted line) were checked manu-
ally.
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descriptors, developed by Dubchak et al. [30] were used.
The descriptors are based on composition, transition and
distribution of structural and physicochemical properties,
such as hydrophobicity, polarity, charge and solvent
accessibility (see methods).

A large number of ligand descriptors has been developed
for use in drug discovery and development. Ligand
descriptors are typically classified by the dimensionality
of the representation of the compound [31]. So-called
zero-dimensional (0D) descriptors are derived from the
chemical formula, and include simple atom counts and
molecular weight. One-dimensional (1D) descriptors are
computed from a ligand represented as a substructure list,
and include count descriptors of functional groups, rings
and bonds. 2D descriptors are derived from the graphical
representation of a chemical structure, and include 2D
binary fingerprints and connectivity indices. Finally,
three-dimensional (3D) descriptors are generated from
3D conformations and include dipole moments and
hydrophobicity potentials. In this study, a set of 0D
descriptors commonly used in quantitative structure activ-
ity relationship (QSAR) studies were used (see Table 1).
These descriptors are easy to interpret and describe vari-
ous physiochemical properties important for drug devel-
opment. Moreover, the same descriptors have previously
been used successfully by Larsson et al. to visualize chem-
ical space [32].

PDB vs. DrugBank – a comparison of protein-ligand 
subspaces
To visualize and compare the protein-ligand interaction
subspace of the PDB to the subspace of all approved
drugs, a principal component analysis (PCA) [33] was
performed on the concatenated PDB and DrugBank data-
set. PCA is an unsupervised machine learning approach
that is used to describe associations and patterns among a
set of input variables. The idea behind PCA is to find prin-
cipal components which are linear combinations of the
original variables that describe each object in the dataset.
PCA is used for data compression and outlier analysis,
provided that the extracted components account for a suf-
ficiently large part of the variation in the original dataset.

To identify any outliers, PCA was performed separately on
the ligand and protein descriptors of the merged dataset.
This resulted in the detection and removal of 12 ligand
outliers and six protein outliers (additional file 4). Since
all descriptors are interpretable, a descriptor contribution
study of an outlier provides some information on how the
outlier differs from the average of the entire dataset. For
instance, the descriptor nSK (number of non-hydrogen
atoms, see Table 1) was the highest contributing descrip-
tor of the ligand outlier Bivariludin® (DB00006). The
number of non-hydrogen atoms in the 20 residue peptide

was 155 as compared to average of 25.5 for the entire
dataset. A corresponding example of a protein outlier is
the PDB entry 1L3R, chain I, which is a cAMP dependent
protein kinase inhibitor. The highest contributing protein
descriptor was a transition descriptor that is the percent-
age low polarizability residues followed by high polaraza-
bility residues or vice versa. The value of this descriptor was
42%, for 1L3RI, compared to an average of 15.9% for the
entire dataset.

After removal of outliers, three separate PCA models were
induced on the merged PDB and DrugBank dataset. The
first PCA model was induced only on protein descriptors,
the second one only on ligand descriptors, and the third
one included both protein and ligand descriptors. Table 2
shows the results of the PCA modelling. Two measures of
model quality are reported: R2X which is the goodness of
fit, and Q2, which is a measure of the predictive power of
the model (see methods). All three models explain more
than half of the variation (R2X ≥ 0.5) in the data. Moreo-

Table 1: Ligand descriptors

Abbreviation Description

MW molecular weight
Sv sum of atomic van der Waals volumes
Se sum of atomic Sanderson electronegativites
Sp sum of atomic polarizabilities
Mv mean atomic van der Waals volume
Me mean atomic Sanderson electronegativity
nAT number of atoms
nSK number of non-hydrogen atoms
nBT number of bonds
nBO number of non-hydrogen bonds
nBM number of multiple bonds
ARR aromatic ratio
nCIC number of rings
RBN number of rotatable bonds
RBF rotatable bond fraction
nDB number of double bonds
nAB number of aromatic bonds
nC number of carbon atoms
nN number of nitrogen atoms
nO number of oxygen atoms
nX number of halogens
nBnz number of benzene rings
nCar number of aromatic carbon atoms
nRCONH2 number of primary amides
nROH number of aliphatic hydroxyl groups
nArOH number of aromatic hydroxyl groups
nHDon number of hydrogen bond donors
nHAcc number of hydrogen bond acceptors
Ui unsaturation index
Hy hydrophilic factor
AMR Ghose-Crippen molar refractability
TPSA(Tot) topological polar surface area
ALOGP Ghose-Crippen octanol-water partition coefficient
LAI Lipinski alert index
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ver, the Q2 values are on a par with the R2X values, which
shows that the model is able to predict data removed dur-
ing cross-validation. This shows that both protein and lig-
and descriptors alone can be used for PCA model
induction and, more importantly, that it is possible to
induce valid PCA models on the combination of protein
and ligand descriptors.

The PCA models based on protein, ligand and protein-lig-
and descriptors are displayed in Figure 2A, B, and 2C
respectively, where the datasets are projected onto the
three first components. To obtain an estimate of the over-
lap between the PDB and DrugBank datasets, a nearest-
neighbour (NN) approach was used. All computed com-
ponents, i.e. not only the tree components shown in Fig-
ure 2, were used to compute the distances. A comparison
of R2X of the first three components (displayed in Figure
2) and of all components (Table 2) shows that the first
three components contain the bulk of the captured varia-
tion in the PCA models. However, since the other compo-
nents contain on average 20% of the captured variation in
the data, it is reasonable to compute the distances using
all available components.

The NN analysis results are listed in Table 3. The NN anal-
ysis of the PCA model based on protein descriptors alone
reveals that 20% of the DrugBank proteins have a NN in
the PDB dataset, and that 6% of the PDB proteins have
their NN in the DrugBank dataset. This indicates that the
PDB and DrugBank protein subspaces have limited over-
lap, which is expected since a large number of drugs bind
to membrane receptors for which no crystal structure is
available. Although Figure 2B may give the impression
that the DrugBank ligand subspace is a subset of the PDB
ligand subspace, the NN analysis resulted in similar over-
lap percentages as the protein descriptor PCA model. This
indicates that a large fraction of the known drugs are yet
to be co-crystallized with any protein targets.

Figure 2C shows the DrugBank and PDB subspaces based
on protein and ligand descriptors. The NN analysis

PCA model projectionsFigure 2
PCA model projections. This figure shows scatter plots of 
first three principal components (c1, c2, and c3) of the PDB 
(blue) and DrugBank (red) interaction datasets. For each 
PCA model, the goodness of fit (R2X) for the three principal 
components is shown. The plots are based on (A) protein 
descriptors, (B) ligand descriptors, and (C) protein and ligand 
descriptors.

Table 2: Results from PCA models on the PDB and DrugBank 
dataset.

Descriptor set #descriptors R2X Q2 #components

Protein 147 0.695 0.554 10
Ligand 35 0.798 0.729 4
Ligand + Protein 182 0.638 0.552 10

This table contains the results obtained from a principal component 
analysis on the dataset, described by protein or ligand descriptors in 
isolation, and by the combination of protein and ligand descriptors. 
The number of descriptors (#descriptors) is displayed along with the 
fraction of explained (R2X) and predicted (Q2) variation captured by 
the components (#components).
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revealed that 39% of the DrugBank complexes have a NN
in the PDB dataset, and that 14% of the PDB complexes
have a NN in the DrugBank dataset. These numbers are
about twice those obtained for models based on ligand or
protein descriptors separately. This indicates that the pro-
tein-ligand subspaces are more intertwined in the com-
bined protein-ligand model. However, more than half
(61%) of the DrugBank complexes still have their NN in
the DrugBank dataset and not in the PDB dataset, and an
overwhelming majority, 86%, of the PDB complexes has
its NN in the PDB. This shows that the PDB protein-ligand
subspace is quite different from the subspace of known
drugs and drug targets, which should be taken under con-
sideration in, for instance, high-throughput reverse dock-
ing studies.

A DrugBank cross interaction study
More than half of the drugs in DrugBank (59%) interact
with more than one drug target. To investigate whether
our modelling approach is able to detect known drug tar-
get cross interactions, the nearest neighbours (NNs) of
each DrugBank complex were analysed. For each complex
in DrugBank, whose ligand has at least one known cross
interaction, the 25 NNs were computed from all ten
extracted components in the protein-ligand PCA model.
Figure 3 plots the percentage complexes for which at least
one known drug target was found among the NNs, against
the number of checked NNs. The figure shows that the
protein-ligand PCA model is much better at capturing
known protein cross interactions than the PCA model
based only on protein descriptors. This shows that our
PCA modelling approach is able to capture a large fraction
of the known cross interactions, which suggests that the
model will also be able to capture as yet unknown cross
interactions with any protein-ligand interaction dataset.

Case study – Acamprosate in complex with metabotropic 
glutamate receptor 5
Acamprosate (calcium acetylaminopropane sulfonate;
Campral®) is used to treat alcohol dependence [34]. Its
chemical structure is similar to that of gamma-aminobu-
tyric acid, and it is thought to act through several mecha-
nisms affecting multiple neurotransmitter systems.

Serious side effects include allergic reactions, irregular
heartbeat, and low or high blood pressure, while less seri-
ous side effects include headaches, insomnia, and impo-
tence. DrugBank lists five protein targets that interact with
acamprosate (P41594, Q13255, Q14416, Q14832,
Q8TCU5). The targets are all in the human glutamate
receptor family, and protein 3D structures are not availa-
ble for any of the targets. The five nearest neighbours of
glutamate receptor 5 (P41594) were computed from all
extracted components of the protein-ligand PCA model.
Figure 4 shows a ModBase [35] homology model of gluta-
mate receptor 5, and the acamprosate ligand structure,
together with information on the five nearest neighbours,
in the merged PDB and DrugBank datasets. The first
neighbour is an acetyltransferase component of a pyru-
vate dehydrogenase complex(1Y8NB) in complex with its
co-factor lipoic acid (LPA). The second neighbour is a
porin protein from the outer membrane (1IXWC) in com-
plex with a colicin inhibitor (OES). The third neighbour-
ing complex is human carbonic anhydrase I (P00915,
PDB code 1AZMA) and the drug Levetiracetam
(DB01202) that is used to treat epilepsy. The fourth
neighbour is Hepatitis A virus proteinase C (2H9HA) in
complex with a peptide-based ketone inhibitor (EPQ).
The last neighbour is a glutamate receptor that is a known
cross interaction target, and its putative structure is shown
as a homology model obtained from ModBase [35]. Inter-
estingly, in terms of protein sequence similarity and Tan-
imoto score, the last neighbour is the most similar to the
P41594-acamprosate complex. This is probably due the
fact that both protein and ligand descriptors capture gen-
eral features, such a molecular weight or percentage
charged amino acid residues. The major advantages with
the protein descriptors are that they are easy to interpret,
fast to implement, and allow for generalized comparisons
of a large set of heterogeneous proteins. However, the
descriptors do not reflect sequence length or any struc-
tural properties, and like many QSAR descriptors, describe
each protein as single large molecule. Therefore, a protein
and its nearest neighbours will not necessarily display a
high degree of sequence similarity. Similarly, the ligand
descriptors selected for this study are very easy to interpret
and describe properties important for drug development.

Table 3: Nearest-neighbor-based overlap between datasets.

Descriptor block Dataset %NN in PDB %NN in DrugBank

Protein DrugBank 20 80
Protein PDB 94 6
Ligand DrugBank 19 81
Ligand PDB 93 7
Protein-ligand DrugBank 39 61
Protein-ligand PDB 86 14

This table contains the percentage nearest-neighbor (NN) in the tree PCA models based on protein descriptors, ligand descriptors and protein-
ligand descriptors. The NN overlap is reported for DrugBank vs. PDB and vice versa.
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They do not, however, describe any structural properties
which explain the low Tanimoto scores between acampro-
sate and the five neighbouring ligands. Despite the above
mentioned limitations, this example demonstrates that it
is still possible to identify one of the known acamprosate
cross interactions. Considering that this method captures
a large part of the known DrugBank cross interactions
(shown in Figure 3), it is reasonable to assume that the
subset of nearest neighbours may be used in, for instance,
focused screening approaches that aim to design selective
drugs, or as inspiration in the search of novel drug scaf-
folds.

Conclusion
Traditional drug discovery has long been a multidiscipli-
nary effort to optimize ligand properties (potency, selec-
tivity, pharmacokinetics) towards a single molecular
target. The DrugBank data on drugs and drug targets
shows that the majority (59%) of the approved drugs
interact with more than one protein drug target. It is thus
likely that any given drug candidate will interact with sev-
eral proteins in the proteome, and that such cross-interac-
tions may lead to detrimental side-effects. The
chemogenomics approach has already been applied suc-
cessfully in the design of selective drugs by studying pro-
tein targets in the same family [5,6]. Instead of treating the
protein and ligand spaces as separate entities, this study
attempts to look at protein-ligand subspaces from a chem-
ogenomics perspective. To this end, interaction data was
collected from the PDB and DrugBank databases, protein
and ligand descriptors were computed, and a PCA model
was finally induced to compare the two datasets. The
selected descriptors are computed from the primary struc-

ture of a protein and a 2D representation of a ligand. Both
protein and ligand descriptors describe general physico-
chemical features and are easy to interpret. Since the pro-
tein descriptors are computed from the amino acid
sequence, any protein whose sequence is known can be
included in the model. However, the descriptors treat
each protein as a single molecule with only a rough esti-
mate of sequence order. This means that features such as
3D structure or active site location are not described. Sim-
ilarly, the ligand descriptors provide no real information
on ligand structure which explains the low Tanimoto sim-
ilarity of the five nearest neighbours to acamprosate in the
case study. The non-supervised nature of this approach
means that any other descriptors would result in a new
model. It would be of interest to induce a more specific
model based on, for instance, protein active site descrip-
tors such as the SCREEN [36] descriptors, or ligand 3D
structure descriptors such as the GRIND [37] descriptors.
Such a model would of course exclude any protein-ligand
complex whose 3D structure is unknown. Despite the gen-
erality of the descriptors used in this study, our results
show that it is possible to induce a PCA model on the
combined set protein and ligand descriptors, and that the
model captures a large part of the known DrugBank cross
interactions. This indicate that this method could be
applied to find chemogenomically similar protein-ligand
complexes in the proteome, in order to define a subset of
putative drug targets to study for possible cross-interac-
tions. These could be used in more focused studies in vitro,
in vivo or in silico, using methods such as radio-ligand
binding experiments [38], docking studies [39], molecu-
lar dynamics simulations [18].

Methods
Creation of a non-redundant dataset of the PDB protein-
ligand space
MSDchem (Macromolecular Structure Database Ligand
Chemistry Service) [22] was accessed on 30 April, 2008.
All 6253 ligand 3D structures with idealized coordinates
were retrieved as mol files. Lists of amino acids that are in
contact with each ligand in its structures were also down-
loaded from MSDChem. These files were parsed and each
ligand was associated with one or more protein mole-
cules. This resulted in a dataset with 107249 entries that
each consisted of a ligand, the PDB code, and the identi-
fier of the chain in the PDB entry with which the ligand
interacts. For each PDB entry, information on the experi-
mental method was retrieved from MSD [40] and 951
entries determined by nuclear magnetic resonance (NMR)
spectroscopy or single-crystal electron diffraction meth-
ods were removed from the dataset.

Ligands known to be buffer molecules, additives, cryo-
protectants etc, were removed from the dataset. First, this
was done by removal of ligands with fewer than 10 non-

DrugBank cross-interaction studyFigure 3
DrugBank cross-interaction study. The percentage cap-
tured cross interactions is plotted against the number of 
checked neighbours. The blue data series was computed 
from the protein-ligand PCA model and the red series was 
computed from the protein PCA model.
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hydrogen atoms, since those are generally considered to
bind non-specifically to their proteins. Second, larger lig-
ands that were suspected to be additives, or that were asso-
ciated with more than 100 PDB entries were scrutinized
using literature searches and discussed with an expert (L.
Liljas, Uppsala). This resulted in the removal of 772 lig-
ands from the dataset.

Of the remaining ligands, 65% were associated with more
than one protein molecule. To obtain a non-redundant
set of protein chains associated with each ligand, the PIS-
CES server was used, with the following cut-offs: maxi-
mum sequence identity 95%, lowest resolution 3.0 Å, and
maximum R-value 0.3 [41]. The remaining 35% of the lig-
ands were associated with only one chain. Those chains

A cross interaction case study of P41594 in complex with acamprosateFigure 4
A cross interaction case study of P41594 in complex with acamprosate. The five nearest neighbours of the complex 
of human metabotropic gluatamate receptor 5 (P41594) and acamprosate, according to our pretein-ligand model. The protein 
name, percentage sequence identity to P41594, Tanimoto score of its ligand and acamprosate as well as the nearest neighbour 
distance between the two complexes is reported for each neighbour.
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were quality checked by information on resolution and R-
value, downloaded from the PDBsum database [42], and
chains with a resolution worse than 3.0 Å or an R-value
greater than 0.3 were removed from the dataset. The cull-
ing resulted in a dataset with 13275 co-crystallized pro-
tein-ligand complexes, comprising 5481 unique ligands.

A protein-ligand dataset created from DrugBank
The complete set of 1492 approved drugs included in the
DrugBank database [16] on 6 June 2008 was obtained,
together with a list of the protein targets of each drug. Of
the approved drugs, 9% had no known target and these
drugs were removed. For each drug, a non-redundant set
of protein targets was obtained by an all-against-all pair-
wise global alignment of the protein primary structure
with the Needleman-Wunsch algorithm [43], as imple-
mented in the European Molecular Biology Open Soft-
ware Suite (EMBOSS, program "needle") [44]. The
sequences were culled at 95% sequence identity, and this
resulted in a dataset of 3789 drug-drug target complexes.

Computation of protein and ligand descriptors
The amino acid sequence derived from the SEQRES
records in the PDB files of the protein chains in the PDB
dataset were obtained from the OCA [45] database, and
amino acid sequences of the DrugBank drug targets were
obtained from UniProt [46]. In this study, descriptors pro-
posed by Dubchak et al.[30], based on composition, tran-
sition and distribution were used. The computation of
these descriptors was performed in-house, but imple-
mented as described in detail in the PROFEAT server man-
ual [47]. The descriptors were computed from seven
amino acid properties and each property is divided into
three classes [47]. The properties are hydrophobicity, van
der Waals volume, polarity, polarizability, charge, second-
ary structure, and solvent accessibility. For each property,
the amino acids in a sequence are encoded by a class index
1, 2 or 3. The composition descriptors are the overall per-
centages of each encoded class in the sequence. Since
there are seven properties and each property is divided
into three classes, 21 composition descriptors were com-
puted. The transition descriptors are the frequency with
which, for example, 1 is followed by 2, or vice versa in the
encoded sequence. Since there are seven properties, and
three possible transitions between non-identical class
index numbers, 21 transition descriptors were computed.
The distribution descriptors describe the distribution of
each property class in the sequence. For each class, five
distribution descriptors are computed based on the fol-
lowing criteria; first residue, 25% residues, 50% residues,
75% residues, 100 percent residues of a given property.
For instance, a "first residue" distribution descriptors
reflects the position of the first amino acid of a given class
within a sequence, and is simply the positioning of this
amino acid divided by the entire sequence length. Since

there are seven properties with three classes each and five
descriptors for each class, 105 distribution descriptors
were computed. In all, the composition, transition and
distribution descriptors add up to 147 protein descriptors
that describe various global properties of amino acid
sequences.

All 35 ligand descriptors (Table 1) were computed by the
program Dragon v. 5.5 [48]. Corina-generated [49] coor-
dinates for all PDB ligands were obtained from MSD-
Chem [40] and coordinates for all approved drugs were
obtained as 2D coordinate files from DrugBank [16].

Model induction and analysis
All principal component analysis (PCA) computations
were performed with SIMCA.P+ 11 [50]. Prior to model
induction, all entries of the data matrix X were variance-
scaled and mean-centred. Two measures of model quality,
R2X and Q2, are reported by the program. R2X is the sum
of squares of the entries of X, explained by all extracted
components. Q2 is the fraction of the total variation of the
entries of X that can be predicted by all extracted compo-
nents, as estimated by cross validation. In the cross-valida-
tion process, rows and columns are temporarily deleted
and a PCA model is induced on the remaining data. Obvi-
ously, it is impossible to obtain a high Q2 without a high
R2X, and the difference between R2X and Q2 should not
exceed 0.2 [51].

The PDB and DrugBank datasets were merged by concate-
nation of the datasets. To detect any outliers, PCA was per-
formed on protein and ligand descriptors separately. The
three first components were used to plot all objects. Out-
liers were detected by manual inspection. After removal of
outliers, the PCA models were induced on protein and lig-
and descriptors separately, and on protein and ligand
descriptors simultaneously. Prior to induction of the
models based on only protein or ligand descriptors, all
variables were variance-scaled and mean-centred. Since
the protein-ligand PCA model was based on a much larger
number of protein descriptor variables (147) than ligand
descriptor variables (35), block scaling was performed to
avoid that the model would be dominated by the protein
variables. The final plots of the protein-ligand spaces (Fig-
ure 2) were generated by the TOPCAT program [52]. Var-
iable importance and associations are visualized by so-
called loading plots that are provided as supplementary
materials (additional file 5). For each of the three models,
the loading plot for component one vs. component two,
and component two vs. component three has been given.
Variables that are associated with one another are close to
one another in space, and the distance to origo reflects
variable importance.
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To obtain a measure of how the PDB and DrugBank sub-
spaces overlap, a nearest neighbour (NN) approach was
used. For each complex, the Euclidean distance was com-
puted to all other complexes in the space defined by all
extracted principal components. The degree of overlap
was calculated simply as the percentage objects in the PDB
dataset that had their NN in the DrugBank dataset and vice
versa.

DrugBank nearest neighbour study
For each DrugBank complex, the 25 nearest neighbours
(NNs) were computed from all extracted components of
the PCA models. The NNs were computed from the model
based on protein-ligand descriptors, and the model based
on only protein descriptors. The drug targets of ligands
known to interact with at least one protein were identi-
fied. The 5, 10, 15, 20 and 25 NNs of each complex in
DrugBank were checked for the occurrence of one or more
known cross interacting drug targets, and the results are
shown in Figure 3.

The NNs in the acamprosate case study were obtained
from the 5 NNs list generated by the method described
above. The homology models of the glutamate receptors
P41594 and Q14416 were obtained from Modbase [35].
The structure of P00915 has been solved and was
obtained from the PDB database [21]. Pictures of all struc-
tures were generated with PyMOL [53]. The percentage
sequence similarity values were computed by the Water-
man-Smith [54] pair-wise local alignment algorithm
using the EMBOSS [44] implemented program "water".
The Tanimoto ligand similarity scores were computed
from 2D fingerprints with OpenBabel [55].
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