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Abstract
Background: ESTs and full-length cDNAs represent an invaluable source of evidence for inferring reliable
gene structures and discovering potential alternative splicing events. In newly sequenced genomes, these
tasks may not be practicable owing to the lack of appropriate training sets. However, when expression data
are available, they can be used to build EST clusters related to specific genomic transcribed loci. Common
strategies recently employed to this end are based on sequence similarity between transcripts and can lead,
in specific conditions, to inconsistent and erroneous clustering. In order to improve the cluster building and
facilitate all downstream annotation analyses, we developed a simple genome-based methodology to
generate gene-oriented clusters of ESTs when a genomic sequence and a pool of related expressed
sequences are provided. Our procedure has been implemented in the software EasyCluster and takes into
account the spliced nature of ESTs after an ad hoc genomic mapping.

Methods: EasyCluster uses the well-known GMAP program in order to perform a very quick EST-to-
genome mapping in addition to the detection of reliable splice sites. Given a genomic sequence and a pool
of ESTs/FL-cDNAs, EasyCluster starts building genomic and EST local databases and runs GMAP.
Subsequently, it parses results creating an initial collection of pseudo-clusters by grouping ESTs according
to the overlap of their genomic coordinates on the same strand. In the final step, EasyCluster refines the
clustering by again running GMAP on each pseudo-cluster and groups together ESTs sharing at least one
splice site.

Results: The higher accuracy of EasyCluster with respect to other clustering tools has been verified by
means of a manually cured benchmark of human EST clusters. Additional datasets including the Unigene
cluster Hs.122986 and ESTs related to the human HOXA gene family have also been used to demonstrate
the better clustering capability of EasyCluster over current genome-based web service tools such as
ASmodeler and BIPASS. EasyCluster has also been used to provide a first compilation of gene-oriented
clusters in the Ricinus communis oilseed plant for which no Unigene clusters are yet available, as well as an
evaluation of the alternative splicing in this plant species.
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Background
Expressed sequence tags are short single pass randomly
selected sequence reads derived from cDNA libraries.
Despite their error prone nature, ESTs harbour several
advantages and to date have been used for a plethora of
purposes including gene discovery and annotation, iden-
tification of genetic variations as single nucleotide poly-
morphisms (SNPs) and detection of splice variants (for a
comprehensive review see [1] and [2]). Moreover, ESTs
have been also fruitfully exploited in genome mapping
and gene expression studies.

However, next generation sequencing strategies, provid-
ing a drastic increase in sequencing capacity, are quickly
emerging as worthy alternatives to EST projects and prom-
ise great improvements in understanding of the complex-
ity of eukaryotic transcriptomes [3]. Short reads, in fact,
allow more accurate gene expression profiles and simplify
the identification of transcribed loci appearing as waves of
reads along a reference genome. Nevertheless, interest in
ESTs has not decreased as evidenced by the exponential
growth of such sequences in specialized databases such as
dbEST at NCBI [4]. In contrast to short reads, ESTs can be
efficiently mapped on reference genomes providing indis-
pensable and invaluable sources of evidence for inferring
reliable gene structures and discovering potential alterna-
tive splicing events. Their contribution is particularly rele-
vant and important in newly sequenced genomes in
which these tasks could not be feasible for several limita-
tions such as the lack of appropriate training sets. For this
reason, ESTs have been successfully embedded as a princi-
pal evidence source in different ab initio gene prediction
tools as AUGUSTUS [5], TWINSCAN_EST [6] and
N_SCAN_EST [7] or employed as such to assemble com-
plete gene structures by directed acyclic graphs and
deduce alternative splicing events through ad hoc compu-
tational tools such as Exogean [8] and ASPIC [9].

The recent publication of different web services as
EST2uni [10], ESTpass [11], ESTExplorer [12] or EGassem-
bler [13] providing more or less complex pipelines to han-
dle and analyse ever greater amount of ESTs and FL-
cDNAs also attest to the evergreen interest in these single
pass cDNA reads. These pipelines include facilities and
well-established tools to clean ESTs, removing genomic
and vector contaminants as well as polyA tails, and pro-
duce tentative functional annotations by means of the
combination of programs as BLAST [14], InterPro [15]
and CAP3 [16].

Without any doubt one of the most important issues con-
cerning the analysis of expressed sequence tags and FL-
cDNAs is the generation of gene-oriented clusters or, in
other terms, groups of overlapping ESTs from the same
gene locus. Several tools have been designed to this end as

transcript clustering is an essential step for many bioinfor-
matics analyses. However, the clustering of large collec-
tions of ESTs has very high requirements both in terms of
memory usage and computational power.

The majority of EST clustering algorithms developed until
now rely on pairwise comparisons between ESTs. Such
software, however, works efficiently with small samples of
sequences because of the O(n2) computational complex-
ity. To solve this task different strategies have been pro-
posed. The program CLOBB, for example, builds EST
clusters using BLAST searches over local EST databases
[17]. Recently, a modified version of BLAST named
BLASTClust, available at NCBI web site, has been intro-
duced to improve the clustering of biological sequences
according to the existence of significant local similarities
[18]. BLASTClust formats input sequences to produce
temporary BLAST databases and performs clustering using
the BLASTp algorithm in case of protein sequences or the
megaBLAST algorithm in case of nucleotide sequences.
The quality of the resulting clusters is however strongly
biased by the choice of optimal BLAST parameters to con-
trol the stringency of clustering including thresholds for
score density, percent identity, and alignment length.

Another well-established program to group ESTs sharing
significant regions of near identity is TGICL [19], devel-
oped at the TIGR Institute and currently used to build
"strict" clusters of similar ESTs that are then used in the
construction of tentative consensus sequences to be col-
lected in the TIGR Gene Index database [20]. TGICL is
based on mgBLAST, a modified version of megaBLAST
that provides additional output filtering and quickly per-
forms all-to-all pairwise comparisons between EST
sequences.

A complementary approach is taken to populate the well-
known UniGene database at NCBI [21] where high qual-
ity ESTs are grouped in clusters taking into account the
sequence overlap above a given alignment threshold
according to a "transcript based" approach based on
megaBLAST. When reliable genome assemblies are availa-
ble, UniGene clusters are generated following a "genome
based" strategy in which exon/intron boundaries of ESTs
aligned onto a reference genome are taken into account
during the cluster building.

The method used to build the STACK database [22] is
quite different from the previously described approaches,
even though it still requires pairwise comparisons
between ESTs. Instead of using a local BLAST-like align-
ment algorithm, it considers two ESTs to be closely related
if a sufficiently large percentage of bases are identical
within a fixed-length sliding window. Resulting clusters,
sometimes defined "loose", are then assembled by Phrap
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program [23] before the inclusion in the database. Very
recently a new version of this algorithm has been imple-
mented in the wcd [24] program – optionally replacing
the d2_cluster [25] software within the StackPack system
[2].

Suffix tree based approaches have also been used to speed
up the identification of significant overlapping regions of
pairwise ESTs with satisfactory results. Successful imple-
mentations of suffix tree algorithms can be found in the
programs PaCE [26] and ClustDB [27].

Although different implementations of similarity-based
methods exist, they share several limitations that fre-
quently lead to inconsistent clusters. ESTs from paralo-
gous genes or overlapping genes on opposite strands, for
example, may not be adequately separated and placed in
different clusters. For these reasons and in order to create
more gene-oriented EST clusters, genomic information
has been taken into account when possible. In BIPASS
[28], a recent web service resource, input ESTs are first
mapped onto the corresponding genome by Blat [29] and
resulting alignments are refined by sim4 program [30].
Next, overlapping ESTs are grouped in the same cluster. A
similar approach is taken by ASmodeler [31] in which Blat
and sim4 are again used to map and align ESTs onto a ref-
erence genome and drive a first clustering of overlapping
ESTs according to detected coordinates. Then, each cluster
is refined taking into account exon/intron boundaries.

EST clusters generated employing genome information
are especially useful to improve the identification of
expressed gene loci and infer alternative splicing events.
However, dedicated software to efficiently generate
genome-based clusters of ESTs is not yet available. BIPASS
and ASmodeler, for example, are web services able to ana-
lyze only limited amount of ESTs and in general cannot be
used with newly sequenced genomes. On the other hand,
the software used to create genome-based UniGene clus-
ters is not currently publicly available at NCBI.

In order to fill this gap, improve existing procedures for
cluster building and facilitate downstream and annota-
tion analyses in new genomes, we developed an easy but
efficient system to generate UniGene-like clusters of ESTs
when a genomic sequence and a pool of related expressed
sequences are provided. Our procedure, implemented in
the program hereafter named EasyCluster, takes into
account the spliced nature of ESTs after an ad hoc genomic
mapping. In particular, EasyCluster first performs an EST
to genome mapping using the well-established GMAP
program [32] and then groups aligned ESTs according to
the biological assumption that two or more ESTs belong
to the same transcribed locus if they share at least one
splice site. EasyCluster also implements the detection of

alternative splicing events and provides graphical over-
views of detected clusters in pure HTML format. Moreo-
ver, it has been devised to handle large numbers of ESTs
and complete genomes on desktop computers.

The reliability of EasyCluster has been assessed using a
manually curated human benchmark of more 17,000
ESTs and results have been compared with those obtained
using other recent programs for EST clustering. Finally, the
application of EasyCluster to the oilseed plant Ricinus
communis, for which a draft genome sequence but no Uni-
Gene clusters are available, provided a first set of 5,879
gene-oriented clusters predicting at least 918 alternative
splicing events.

Methods
Algorithm description
The algorithm implemented in EasyCluster harbours new
and unique features in order to improve the clustering
process and, at the same time, facilitate the generation of
gene-oriented clusters to researchers without advanced
skills in bioinformatics. EasyCluster, in fact, can be used
interactively providing only two Fasta files containing
genomic and EST sequences, respectively. The main steps
of the algorithm are shown in the flow chart in Figure 1
and can be summarized in the following six points:

1. Building GMAP and EST databases
The goal of this first step is to read input Fasta files and
store sequences in ad hoc local databases increasing mem-
ory efficiency and making available the management of
complete genomes on desktop computers. In case of
genomic sequences, EasyCluster uses the GMAP_SETUP
facility to construct a genomic oligomer index and a
genomic sequence file in binary format starting from an
arbitrary number of chromosomes or contigs. This pre-
processing phase is particularly useful to speed up GMAP
mapping, reduce memory requirements (minimum is
only 128 MB) even for large complete genomes and pro-
vide rapid access to any genomic sub-sequence.

In case of ESTs and FL-cDNAs, EasyCluster employs the
anydbm python module to builds a local database of
expressed sequences. Such database is like a dictionary in
which each key is the name of the EST (the header of each
Fasta sequence) and the corresponding value is the nucle-
otide sequence. When the number of ESTs is large, the
program makes use of the C library DNA_Stat [33]
through the ctypes python module (embedded in python
version 2.5 and higher). The DNA_Stat library is currently
part of the ClustDB software by Kleffe et al. [27], one the
fastest programs to identify groups of similar nucleotide
sequences by suffix trees. In EasyCluster, the DNA_Stat
library is used instead of the anydbm module to save disk
space and improve sequence retrieval.
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Local GMAP and EST databases can also be used to extract
specific genomic sub-regions or retrieve lists of EST
sequences according to their accessions by means of an
accessory python script called getFastas.py that is part of
the current EasyCluster release. If such databases have
been previously created, they can directly used in Easy-
Cluster providing the corresponding name and hard drive
location. This option is particularly useful for complete
genomes and avoids performing the database building
step every time EasyCluster is launched.

2. GMAP mapping
In this step EasyCluster runs GMAP in order to quickly
map ESTs onto a given genomic sequence – identifying
canonical and non-canonical splice sites in parallel. More-
over, GMAP is not oriented to a specific organism and can

be successfully used in both animal and plant genomes.
GMAP allows the detection of microexons, undetectable
by similar software, and automatically trims low quality
sequences containing polyA tails or vector contaminants.
EST sequences resulting in poor genome alignments are
excluded from mapping. As a consequence, EasyCluster
can handle ESTs of different quality without specific pre-
processing steps. However, clusters produced using low
quality ESTs should be carefully inspected before any
downstream use. Generally, the main effect of low quality
ESTs is an increased number of singletons (clusters con-
taining only one EST).

A desirable feature of GMAP is also the production of a
compressed output file with specific indications about
mapping coordinates, EST orientation, percentage of
alignment identity and coverage. In addition, GMAP can
optionally speed up the EST to genome mapping depend-
ing on available RAM memory or CPUs thanks to its mul-
tithreading architecture.

3. Generation of pseudo-clusters
After the EST to genome mapping, GMAP results are
parsed in order to keep only significant ESTs according to
two simple filtering criteria based on the minimum per-
cent identity and the minimum percent of alignment cov-
erage. Moreover, only sequences with multiple exons
(spliced) are retained for downstream analyses. This pro-
cedure notably reduces unwanted sequences such as
genomic DNA contaminants that generally represent a
major obstacle in EST data processing. Sometimes, single
ESTs can map on different genomic locations. In these
cases, EasyCluster takes only sequences showing the high-
est values of alignment identity and coverage. In rare cases
of more than one identical mapping score, all alternative
paths are included in the clustering process.

Filtered ESTs are split taking into account the reference
genomic region and the strand. All ESTs are finally sorted
according to mapping coordinates and overlapping
sequences are grouped in pseudo-clusters.

4. Cluster refinement
The EST clustering process is complicated by the lack of
information about the gene structures for some gene loci –
even in well-annotated genomes where many protein
products are known. This prevents the generation of accu-
rate gene-oriented clusters even when the gene is fully cov-
ered by at least one cDNA/EST sequence. Moreover, the
clustering efficiency decreases when only EST sequences
are available. However, a way to reduce wrong clustering
is to introduce a stringent but biologically reasonable cri-
terion based on exon/intron borders. For this reason,
EasyCluster runs GMAP again on each pseudo-cluster and
resulting aligned ESTs sharing at least one splice site are

Graphical overview of EasyCluster algorithm and work-flowFigure 1
Graphical overview of EasyCluster algorithm and 
work-flow. In EasyCluster, genomic and EST sequences are 
initially used to build local databases. Next, GMAP is used to 
produce EST to genome alignments and results are parsed to 
build a first round of pseudo-clusters according to overlap-
ping coordinates. For each cluster a refinement procedure is 
used to generate final clusters taking into account exon/
intron boundaries. Before results, the prediction of alterna-
tive splicing events per cluster can be optionally required.
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grouped together. The use of GMAP on pseudo-clusters
and thus on genomic sub-regions increases the quality of
EST to genome alignments improving the detection of real
splice sites.

Moreover, the biological constraint introduced makes
EasyCluster more reliable than BIPASS where only over-
lapping coordinates are used to cluster related ESTs.
ASmodeler, instead, is based on the same biological crite-
rion even though the clustering is less stringent – it
assumes that neighbouring splice sites are considered
identical if they are within ± 16 base pairs.

EST clusters generated in this phase are ready for transcript
assembly, alternative splicing prediction, gene discovery
and annotation.

5. Prediction of alternative splicing events
Once EST gene-oriented clusters have been generated,
EasyCluster can optionally deduce alternative splicing
events thanks to an appropriate module implementing a
modified version of the ASTALAVISTA algorithm [34].
According to this methodology, all pairwise comparisons
between overlapping ESTs of each cluster are initially con-
sidered. Subsequently, taking into account the genomic
coordinates of mapped ESTs, variations of the splicing
structure are detected every time some splice sites are not
used in both sequences. Such variations are finally
exploited to build a code describing the corresponding
alternative splicing events. EasyCluster reads this code and
returns basic statistics about the impact of alternative
splicing both globally and for each genomic region or
cluster.

6. Report and clustering results
The presentation of results is a crucial consideration for all
bioinformatics tools and user friendly and widespread
formats are generally desirable. In order to make Easy-
Cluster results useful for subsequent computational anal-
yses, the program generates two text files, one in tabular
format with a cluster per line and the other in the general
feature format (see GFF standards at [35]) with mapping
details for each EST of a cluster. Moreover, EasyCluster
provides a main report page in HTML format to simplify
the interpretation of results and to explore different steps
of the clustering procedure. Specific tables are generated
to view input parameters, examine the time taken to com-
plete each algorithm step, obtain main GMAP statistics
and graphical distributions of EST percent identity and
coverage. EasyCluster also provides graphical overviews
for each generated cluster, giving the opportunity to rigor-
ously browse individual EST groups in their genomic con-
test and off-line. All result web pages are readable by
standard browsers. However, FireFox 1.5.x or superior is
recommended since cluster graphs are drawn using CSS

code optimized for FireFox that might not be stable with
all web browsers.

Datasets
Three main datasets have been used to test EasyCluster:
B1) the UniGene cluster Hs.122986 corresponding to the
TPTE gene; B2) the full set of transcripts/ESTs mapping on
the region of human chromosome 7 that contains the
HOXA gene family; B3) a manually curated benchmark of
human gene-oriented transcript clusters. The UniGene
cluster was directly retrieved from the NCBI web site
through the Entrez system. For the human HOXA gene
family, human spliced ESTs, FL-cDNAs and RefSeqs were
downloaded from UCSC genome browser [36]. The
curated benchmark was generated using 17,733 human
ESTs (including RefSeqs and alternative transcripts)
related to 111 genes spread over almost all human chro-
mosomes. Only ESTs mapping onto the corresponding
genomic locus with a minimum percentage of alignment
identity and coverage higher then 80 have been included
in the benchmark. This benchmark also includes cases of
overlapping and nested genes and can be downloaded at
[37]. For each gene we provide the Hugo gene name, the
chromosome, the strand, the number of related ESTs and
corresponding Genbank accessions.

EasyCluster has been also applied to the complete
genome of Ricinus communis. In this case, the 4× genome
assembly has been downloaded from the JCVI Institute at
the following project web page [38]. Ricinus ESTs were
retrieved from Genbank using the query (txid3988 [orgn]
AND gbdiv_est [prop]).

Comparative evaluation of EasyCluster
In the comparison with ASmodeler carried out with B1
and B2, EasyCluster was used setting the minimum per-
centage of alignment identity to 95 and the minimum per-
centage of alignment coverage to 90. The same settings
were used in ASmodeler through the corresponding web
page [39].

In the case of benchmark dataset B3, previous EasyCluster
settings were both set to 80. The wcd program was down-
loaded from author's web page and the ClustDB executa-
ble for Mac OS X was kindly provided by J. Kleffe. TGICL
was retrieved from the Computational Biology and Func-
tional Genomic Laboratory [40] whereas BLASTClust was
downloaded from NCBI web site. All tested programs
were used with default parameters except for BLASTClust
in which the option for the type of input sequences has
been switched to nucleic acids.

Evaluation on benchmark datasets has been conducted
calculating sensitivity and Jaccard index for each program
outcome. Sensitivity is defined as Tp/(Tp+Fn) (Tp = true
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positives, Fn = false negatives) and gives us an indication
of the proportion of true ESTs that has been correctly
placed in the correct reference clusters. The Jaccard index
instead is defined as Tp/(Tp+Fn+Fp) (Fp = false positives)
and measures the similarity between predicted and refer-
ence clusters. Type I and Type II error rates have been cal-
culated according to Wang et al. [41].

For the complete genome of Ricinus communis, EasyClus-
ter was used setting the minimum percentage of align-
ment identity to 70 and the minimum percentage of
alignment coverage to 50. These less stringent criteria were
used because of the lower quality of this dataset exclu-
sively made by EST sequences. Moreover, the alternative
splicing option was in effect.

Implementation
EasyCluster is implemented in the python programming
language and can be used on any platform running the
python interpreter (at least version 2.4) and GMAP soft-
ware. For very large EST datasets EasyCluster requires the
external DNA_Stat library through the ctypes module and,
thus, version 2.5 of python is strongly recommended.
After the installation, EasyCluster can be used by com-
mand line or interactively. In the last case, parameters and
input file names are entered in response to step by step
prompts. Moreover, EasyCluster does not require complex
parameters to be set. The user must only provide two
multi-fasta files containing genomic and EST sequences
and eventually set the minimum percentage of alignment
identity and coverage. HTML results can be directly
inspected using any web browser although the imple-
mented CSS code has been optimized for FireFox 1.5.X or
superior.

Results
General features of EasyCluster
Limitations in available software for genome-based EST
clustering prompted us to develop a simple new algo-
rithm, implemented in the EasyCluster program. The glo-
bal procedure is similar to ASmodeler although a number
of novelties have been introduced in order to improve the
clustering process, provide efficient stand-alone software
to analyse own data and make results available for gene
prediction and alternative splicing analyses (algorithmic
details are provided in Methods section).

A direct comparison between these two systems, there-
fore, should reveal the effect of novelties introduced in
our strategy. Unfortunately, such comparison is not feasi-
ble because ASmodeler is implemented in a web service
and unable to handle a large number of ESTs. We there-
fore analysed the same cluster (Hs.122986) considered by
Kim et al. [31] in the evaluation of ASmodeler perform-
ances. This UniGene entry contains 105 sequences com-

prising 12 mRNAs and 93 ESTs. We fixed the minimum
percentage of alignment identity and coverage to 80% for
both programs. ASmodeler detected four clusters includ-
ing a singleton. The largest group contains 38 sequences
mapping in the expected region on chromosome 21. The
remaining clusters contain a total of 8 unspliced ESTs and
map on the opposing strand in the same genomic region.
Only 47 of 105 sequences passed the filtering and were
included in the clustering process. EasyCluster generated
a single large cluster of 92 sequences in the expected
genomic region. Seven unspliced ESTs were discarded
because the correct orientation could not be reliably
inferred.

We note that EasyCluster not only reconstructed the
expected single cluster, but also used a much larger pro-
portion of the input sequences (87%) while using the
same filtering criteria. This result, although limited, sug-
gests that our strategy of using GMAP instead of a combi-
nation of Blat and sim4 and the subsequent cluster
refinement notably improves the cluster quality and
incorporates a larger fraction of the available data.

EST Clustering of human HOXA family
EST clustering is particularly challenging for overlapping,
nested and paralogous genes. Genome based EST cluster-
ing strategies perform better than similarity based EST
clustering tools in such cases. We used EasyCluster to
build gene-oriented clusters for the human HOXA gene
family (11 related homeobox genes located on the minus
strand of the human chromosome 7). EST, mRNA and
RefSeq sequences related to the HOXA genomic region
were downloaded from UCSC genome browser.

After less then 7 seconds on a desktop computer EasyClus-
ter returned 20 EST clusters including 2 singletons. As
expected 11 out of 20 clusters corresponded to HOXA
genes. We then carried out a careful analysis of extra clus-
ters. In particular, excluding 2 singletons, 5 clusters were
located on the plus strand and related to UCSC and puta-
tive Gencode protein-coding genes. Another cluster, also
located on the plus strand, corresponds to HOXA11AS, a
non protein-coding gene. Moreover, EasyCluster gener-
ated an additional cluster of 13 ESTs on the minus strand
upstream of the HOXA13 gene. ESTs of this cluster were
generated by 5' RACE and might be associated with the
promoter region of the HOXA13 gene. Finally, singletons
though not reliable include 5' ESTs potentially expressed
from alternative promoters.

ESTs from HOXA family were also clustered by ASmodeler
which obtained 22 groups. Major differences between the
methods included the presence of 2 additional singletons
with ASmodeler, which also places the HOXA2 cluster on
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the wrong strand and the cluster containing 5' RACE ESTs
on the opposite strand to EasyCluster.

Assessment of EasyCluster performance
EasyCluster has been tested on a variety of datasets from
different organisms including Homo sapiens, Mus musculus,
Arabidopsis thaliana and Vitis vinifera (data not shown).
However the reliability and quality of the program can
only be evaluated using well-established benchmark data-
sets in which real EST and cDNA sequences are reliably
known to be part of a same grouping. At the moment only
a limited number of benchmark datasets are available for
evaluation purposes even though none are effectively
unbiased. For example, the widespread dataset
Benchmark10000 generated for the STACK_PACK system
at SAMBI Institute and containing the first 10,000 ESTs
from the human eye tissue subset has been successfully
used to assess the clustering performance of different sys-
tems based only on similarity. In this dataset most ESTs
are unspliced when mapped onto the current human
genome release and thus of limited interest for evaluating
genome-based EST clustering systems.

Hazelhurst et al. [24] recently introduced two new bench-
mark datasets to evaluate the performance and assess the
quality of the wcd program, an improved version of the
d2_cluster software [25]. The first dataset called A076941
consists of 76,941 ESTs from A. thaliana where reference
clusters were generated by assigning ESTs to tentative con-
sensus (TC) sequences of the Arabidopsis Gene Index. The
second dataset, is a curated set of 2,294 EST sequences
belonging to 34 non-overlapping genes randomly
selected from mouse chromosome 4. Unfortunately, nei-
ther dataset is suitable for unbiased testing of genome-
based EST clustering tools. In the case of the Arabidopsis
dataset the reference clusters were generated using TC
sequences and could lead to false "real" clusters. On the
other hand, the mouse dataset contains many singletons
and reference clusters could be more than the 34 indicated
due to the BLAST strategy used to generate the set. An
obvious drawback of this benchmark is that a similarity-
based approach has been used for its construction aimed
at the evaluation of a method adopting a similarity-based
strategy.

We therefore created a reliable and manually cured bench-
mark dataset consisting of 17,733 human ESTs and FL-
cDNAs from 111 different genes spread on almost all
chromosomes. The smallest cluster contains 5 ESTs and
the largest 1,090 ESTs (mean 160). Our reference set has
been established including for each gene only spliced EST
and cDNA sequences showing a minimum percentage of
alignment identity and coverage of 80 with the related
genomic region. Moreover, the set includes overlapping
and nested genes. Our benchmark, therefore, possesses
desirable features such as a reliable gene to EST relation-
ship, the inclusion of interesting cases that normally are
problematic to cluster and suitability for use to evaluate
both genome based and similarity based EST clustering
tools.

The quality and global performance of EasyCluster has
been so evaluated on our human benchmark dataset by
calculating sensitivity and Jaccard index (JI).

The size of our dataset, however, preculdes the use of
ASmodeler and BIPASS. Hence, a comparative evaluation
with EasyCluster has been restricted to EST clustering
tools based on similarity and including wcd, ClustDB,
BLASTClust and TGICL. The results of the comparison are
shown in Table 1 and indicate that EasyCluster is the most
sensitive program even though wcd and TGICL obtained
similar levels of sensitivity values. However, in term of
similarity to the benchmark, as calculated by JI index,
EasyCluster outperforms all other programs.

BLASTClust generated the worst results, with a high
number of singletons (70% of all clusters) generated.
Results were not substantially improved when sensitivity
and JI index were calculated excluding singletons (Sn =
0.085; JI = 0.085).

Taking into account the number of clusters generated and
the mean number of ESTs per cluster, wcd and EasyCluster
returned the same values even though wcd included 15
singletons.

In Table 1 we report also the Type I and Type II error rates
per each program calculated according to Wang et al. [41].

Table 1: Evaluation of different EST clustering tools on our benchmark dataset.

Program SN JI # Clusters # ESTs per cluster α β

EasyCluster 0.995 0.995 112 (0) 158.3 0.009 0
wcd 0.926 0.797 112 (15) 158.3 0.018 0.045
TGICL 0.906 0.875 125 (0) 141.3 0.144 0.036
ClustDB 0.562 0.424 201 (0) 87.8 0.765 0.009
BLASTClust 0.037 0.037 8255 (7304) 2.1 0.792 0

Sensitivity (Sn), Jaccard Index (JI), number of generated clusters and average number of ESTs per cluster based on our human benchmark dataset. 
The number of singletons is shown in brackets. Moreover, α and β represents Type I and Type II error rates, respectively.
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Type I error is a mis-separation error where ESTs from the
same gene are erroneously split in two or more clusters
(including sigletons). Type II error is, instead, a mis-join-
ing error where two or more non-related ESTs are clus-
tered together. Both error types are very low or absent for
EasyCluster. It is clear that for all programs the Type II
error rate is not particularly significant. On the contrary,
the Type I is instead the most relevant error. This behav-
iour is probably due to the nature of the benchmark set
which does not include paralogous genes – the principal
cause of Type II errors. The low Type I error rate in Easy-
Cluster is due to a mis-separation error occurring at the
human HMGB4 gene currently annotated on the forward
strand of the chromosome 1. This gene is nested in an
intron of the CSMD2 gene annotated on the opposite
strand and included in our benchmark. EasyCluster cor-
rectly distinguishes ESTs belonging to CSMD2 but gener-
ates two clusters for HMGB4. A cluster contains 20 ESTs
and the RefSeq NM_001008728 whereas the second clus-
ter includes 5 ESTs and the RefSeq NM_145205. Both Ref-
Seqs corresponds to HMGB4 gene and harbour one intron
in the 5' UTR region but no splice site is in common. This
clearly leads to two separated clusters. For the same gene,
also UniGene provides two clusters Hs.568628 and
Hs.667683 even if using additional evidence with respect
to EasyCluster (e.g. similarity at protein level).

EST clustering in Ricinus communis
EST clustering is a basic pre-requirement for newly
sequenced genomes as groups of related ESTs are typically
used in the annotation process. In particular, EST clusters
are valuable for gene prediction and detection of alterna-
tive splicing events. The contribution to gene finding is
manifold as EST clusters can be used to create gene models
for the training of ab initio systems or as principal evidence
sources in different ab initio or combined gene prediction
tools. Unfortunately, EST clustering for newly sequenced
genomes is yet not feasible using available genome-based
strategies. The alternative is to switch to similarity-based
methods with obvious restrictions, including the parame-
ter setting to optimize the clustering. Moreover, for newly
sequenced genomes UniGene entries are often not imme-
diately available. EasyCluster overcomes these limitations
providing valuable support to the annotation of any new
genome for which a significant number of ESTs has been
produced. Recently, the JCVI Institute (J. Craig Venter

Institute) released a 4× genome draft of the plant Ricinus
communis. This plant is significant for the production of
oil and there is thus a direct interest in the characteriza-
tion of its genetic resources. The genome draft of Ricinus
(estimated to be 320 Mb) was downloaded from the JCVI
Institute and more than 57,000 ESTs were retrieved from
GenBank. EasyCluster was used to build the first compila-
tion of EST gene-oriented clusters for Ricinus communis.
Main results summarizing our analysis are reported in
Table 2. EasyCluster generated 5,879 clusters in 32 min-
utes (including GMAP run and database building) using
57,690 ESTs mapping onto 803 different contigs. As
expected, 50% of all generated clusters were singletons
and more than 32% contained at least 3 ESTs. In diverse
cases, clusters were partially overlapping and could repre-
sent unique transcribed loci. The lack of additional evi-
dence, however, prevents more accurate cluster
refinement.

Despite the relatively low number of available ESTs, Easy-
Cluster was also able to predict 918 alternative splicing
events. An exon skipping example is shown in Figure 2
and the number of events per alternative splicing category
is in Table 3. According to EasyCluster results, the intron
retention event is the most frequent accounting for 30%
of all detected events. The alternative acceptor is the sec-
ond most common event. Our results are in line with cur-
rent findings about the impact of alternative splicing in
plants, in which intron retention is generally considered
the most frequent event [42].

Discussion
ESTs represent an invaluable resource for gene discovery,
gene mapping, genome annotation, SNP discovery and
alternative splicing detection. Over the last few years, great
efforts have been made in clustering EST data in order to
group together sequences deriving from the same gene.
Currently, similarity-based methods represent the main
approach to address this task, especially when no addi-
tional genomic evidence is available. Such methods, how-
ever, suffer from notable limitations. Indeed, ESTs from
paralogous genes or from nested and overlapping genes
may not be correctly clustered. These problematic cases
can be partially or completely resolved unsing genome-
based EST clustering tools. Unfortunately, a very limited
number of these programs have been yet developed. Uni-

Table 2: EasyCluster statistics and results for Ricinus communis

#ESTs #Ex_ESTs #Unique ESTs #Unspliced ESTs #Used ESTs #Clusters #Singletons

57690 482 33907 19921 35272 5879 2944

For EST clustering in Ricinus communis, EasyCluster used 57,690 ESTs. A reduced number of ESTs (Ex_ESTs) have been excluded due to poor 
genomic mapping and 19,921 ESTs have been filtered out since unspliced and with no defined orientation. Finally, 5,879 clusters have been 
generated using 35,272 high quality ESTs.
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Gene, for example, is only available as database and no
software has been released publicly until now [21]. Prob-
ably the complex pipeline behind the UniGene method-
ology precludes the implementation of a stand-alone
program. On the other hand, ASmodeler [31] and BIPASS
[28] are two web services devised with the aim to provide
tools to analyse the alternative splicing pattern. Therefore,
they implement EST clustering procedures even though
the clustering process is not the goal but an intermediate
pipeline step to study alternative splicing. The lack of ded-
icated software to generate gene-oriented EST clusters
using genomic information stimulated to develop a spe-
cialized tool in this direction. Reliable EST clusters can be
used for a variety of purposes including alternative splic-
ing analysis and gene annotation. This last task is mainly
true for newly sequenced genomes where limited training
sets cannot provide a solid support to ab initio gene predic-
tion. Clusters of genomically aligned ESTs, instead, can be
used as strong evidence sources significantly improving
gene-finding procedures. Given the nature of ESTs, tissue
specific sequences can also be clustered to discover pecu-
liar transcript variants providing fruitful insights in gene
expression.

The EasyCluster program described here has been devised
to take advantage of genomic mapping. ESTs and FL-
cDNAs are first aligned to a reference genome by the state-
of-the-art tool GMAP supplying mapping information
and splice site detection at the same time [32]. Genomi-

cally aligned ESTs are subsequently clustered according to
the reasonable biological assumption that two or more
ESTs are part of the same transcribed locus if they share at
least one splice site. We maintain that in absence of addi-
tional evidence this criterion is the most biologically plau-
sible and meaningful: it is also in line with recently
proposed operational definitions of genes [43,44]. Obvi-
ous limitations can be inferred considering the error
prone nature of ESTs and their limited lengths. Such
sequences can partially cover transcribed loci leading to
multiple clusters per gene. In the plant Ricinus communis,
for instance, we obtained EST clusters that are overlapping
at their ends but without common splice sites. These clus-
ters could represent single genes and should be merged.
However, the overlap could involve untranslated regions
of different neighbour genes and thus the merging could
introduce clustering errors. In order to reduce this kind of
errors EasyCluster provides unmerged clusters in absence
potentially relevant biological evidence. A limiting issue
of the methodology, through not so obvious, concerns the

Example of EasyCluster graphical report per clusterFigure 2
Example of EasyCluster graphical report per cluster. This figure shows a graphical overview of an EST cluster gener-
ated by EasyCluster on Ricinus communis genome. The cluster comprises 7 ESTs mapping on the Ricinus contig number 29848 
and 3440 bp long. For each EST the exon/intron structure is shown in green squares joined to black lines. The red circle under-
lines an exon skipping event occurring in the first two ESTs.

 

Table 3: Alternative splicing events in Ricinus communis.

All events Alt_acc Alt_don Skip IR Others

918 254 187 92 277 108

Distribution of the 918 alternative splicing events deduced in Ricinus 
communis. Alt_acc: alternative acceptor; Alt_don: alternative donor; 
Skip: exon skipping; IR: intron retention; Others: combination of 
simple events (ex.: cassette exons).
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managing of ESTs mapping with multiple and/or identical
paths onto a reference genome. These multiple hits due to
paralogous genes from recent duplication events are diffi-
cult to handle and in all cases in which discerning the
most significant alignment is not feasible, all detected
paths are included in the clustering procedure. As a conse-
quence, alternative paths tend to increase singletons that
could be recognized as in a meaningless post-processing
phase. Clusters containing only one EST, can be due to
mapping errors (especially if the EST quality is low) or to
a low number of available expressed sequences. Both situ-
ations could explain the high number of singletons
obtained in Ricinus for which only 57,690 EST sequences
of different quality are stored in the public dbEST data-
base [4].

EasyCluster comes with valuable benefits for users giving
the opportunity to evaluate the effect of adding or remov-
ing specific ESTs and graphically explore generated clus-
ters supplying extra facilities not implemented in other
tools as UniGene. EasyCluster is not web-limited and the
whole clustering procedure can be completed on desktop
computers or on any computer in which GMAP can be
installed. Moreover, the interactive modality facilitates the
use of the program to people not completely familiar with
command-line based software.

As shown in Results section, EasyCluster can be used for
distinct purposes. Interested users, for example, use the
program to refine and/or visualize UniGene clusters, gen-
erate EST clusters in organisms where UniGene informa-
tion are not available or to build EST groups for
paralogous genes. In the HOXA locus example, we demon-
strate that our clustering procedure can also provide relia-
ble genomic annotations predicting the presence of
transcribed units compatible with available ENCODE
findings [45].

Previous works on EST clustering addressed the reliability
and performance of proposed methodologies using very
large EST datasets or comparing the clustering with the
corresponding obtained by other systems. Large datasets
are useful to assess the performance of a method in terms
of speed and code stability. However, the comparison
strategies used are questionable. For these large datasets,
the true coposition of clusters is unknown and thus the
resulting comparisons and evaluations lead to mere spec-
ulations. To assess the quality of EasyCluster, we intro-
duced a new benchmark dataset consisting of 17,733
human ESTs derived from 111 different genes including
overlapping and nested examples. This benchmark repre-
sents a valid test to demonstrate the reliability of the
method and the basic requirement that ESTs directly
derived from a given gene have to be addressed only
towards that specific gene. Moreover, by using available

clustering software we show that genomic information
can lead better results than similarity-based methods,
reducing Type I (mis-separation) and Type II (mis-join-
ing) errors. At the moment only the wcd program [24] is
able to provide results comparable with ours. However, it
should be considered that BLASTClust [18] and ClustDB
[27] are not specifically designed to cluster ESTs, though
they can handle this kind of data and run in a very effi-
cient way. ClustDB, for instance, was able to cluster our
benchmark data in only 20 seconds. EasyCluster, instead,
completed the clustering (including the mapping step) in
less then 6 min like TGICL [19], whereas wcd took 7 min
and 6 sec. All programs were run on a Linux server using
only one CPU. It should also be considered that run
parameters can have a significant impact on results and in
our tests all programs were used with default options and
thus running sub-optimally. However, the choice of opti-
mal parameters is not a trivial task and in similarity-based
EST clustering tools they should be optimized according
to species-specific test sets. In EasyCluster, instead, only
two simple and intuitive parameters must be set to filter
out unwanted ESTs according to the percentage of align-
ment identity and coverage. For each generated cluster,
EasyCluster can also provide the prediction of alternative
splicing events taking into account genomic coordinates
of mapped ESTs and thanks to the implementation of an
ASTALAVISTA-like algorithm [34].

The flexibility of EasyCluster, coupled with the possibility
of handling large numbers of ESTs, makes our software
ready for genome-wide applications and a valid alterna-
tive to the clustering of transcriptome data from the next
generation of pyrosequencing reads. Moreover, the organ-
ization and structure of our python code in modules
makes simple the implementation of new or existing algo-
rithms to improve cluster refinement or assemble full-
length transcripts per cluster. A final advantage of Easy-
Cluster is the output format consistent with the standard
GFF format [35], easy to parse and use in a variety of com-
putational programs such as the Cluster_merge script by
Eyras et al. [46]. Lists of ESTs per cluster can also be
extracted in Fasta format using the additional getFastas.py
script (currently part of EasyCluster release) enabling the
use of assembling software such as CAP3 [16].

Conclusion
To our knowledge, EasyCluster is the first free available
software to generate gene-oriented clusters of ESTs using
genomic information. It uses GMAP to efficiently map
ESTs onto a reference genomic sequence. The clustering
procedure is based on the biological assumption that ESTs
related to a specific spliced gene share at least one splice
site. EasyCluster avoids and overcomes existing clustering
limitations due to nested and overlapping genes. Depend-
ing on mapping, it can also reliably distinguish paralo-
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gous genes. EasyCluster also implements the detection of
alternative splicing. Since it represents a hot topic in
genomics as well as transcriptomics analysis, EasyCluster
will be improved in order to assemble full-length tran-
scripts per cluster and provide provisional functional
annotation. The use of additional external evidence will
also be permitted in the cluster refinement phase. Moreo-
ver, graphical overviews will be created by SVG in order to
make the HTML code more stable for all available web
browsers.
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