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Abstract

Background: A large amount of computational and experimental work has been devoted to
uncovering network motifs in gene regulatory networks. The leading hypothesis is that
evolutionary processes independently selected recurrent architectural relationships among
regulators and target genes (motifs) to produce characteristic expression patterns of its members.
However, even with the same architecture, the genes may still be differentially expressed.
Therefore, to define fully the expression of a group of genes, the strength of the connections in a
network motif must be specified, and the cis-promoter features that participate in the regulation
must be determined.

Results: We have developed a model-based approach to analyze proteobacterial genomes for
promoter features that is specifically designed to account for the variability in sequence, location
and topology intrinsic to differential gene expression. We provide methods for annotating
regulatory regions by detecting their subjacent cis-features. This includes identifying binding sites
for a transcriptional regulator, distinguishing between activation and repression sites, direct and
reverse orientation, and among sequences that weakly reflect a particular pattern; binding sites for
the RNA polymerase, characterizing different classes, and locations relative to the transcription
factor binding sites; the presence of riboswitches in the 5'UTR, and for other transcription factors.
We applied our approach to characterize network motifs controlled by the PhoP/PhoQ regulatory
system of Escherichia coli and Salmonella enterica serovar Typhimurium. We identified key features
that enable the PhoP protein to control its target genes, and distinct features may produce different
expression patterns even within the same network motif.

Conclusion: Global transcriptional regulators control multiple promoters by a variety of network
motifs. This is clearly the case for the regulatory protein PhoP. In this work, we studied this
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regulatory protein and demonstrated that understanding gene expression does not only require
identifying a set of connexions or network motif, but also the cis-acting elements participating in

each of these connexions.

Background

Transcription regulatory networks can be represented as
directed graphs in which a node stands for a gene (or an
operon in the case of bacteria) and an edge symbolizes a
direct transcriptional interaction. Recurrent patterns of
interactions, termed network motifs, occur far more often
than in randomized networks, forming elementary build-
ing blocks that carry out key functions. This is a conven-
ient representation of the architecture of a set of regulatory
Boolean (i.e. ON-OFF) networks, in which each gene is
either fully expressed or not expressed at all, or that it has
a binding site for a transcriptional regulator or lacks such
a site. However, this approach has serious limitations
because most genes are not expressed in a simple Boolean
fashion. Indeed, genes that are co-regulated by the same
transcription factor are often differently expressed with
characteristic expression levels and kinetics. Therefore, a
deeper understanding of regulatory networks demands
the identification of the key features used by a transcrip-
tional regulator to differentially control genes that display
distinct behaviours despite belonging to networks with
identical motifs.

The identification of the promoter features that determine
the distinct expression behavior of co-regulated genes is a
challenging task because: first, these features are often
short combinations of a constrained four-symbol DNA
alphabet. Therefore, it is not clear how to distinguish a
sequence pattern that could affect gene expression from a
just slightly different random sequence [1,2]. Second, the
sequences recognized by a transcription factor may differ
from promoter to promoter within and between genomes
and may be located at various distances from other cis-act-
ing features in different promoters [3,4]. Third, similar
expression patterns can be generated from different or a
mixture of multiple underlying features, thus, making it
more difficult to discern the causes of analogous regula-
tory effects.

In this study, we present a method specifically aimed at
handling the variability in sequence, location and topol-
ogy that characterize gene transcription. We decompose a
feature into a family of models or building blocks that
uncover important differences among observations that
are often concealed when using global patterns that tend
to average sequences between promoters and even across
species. This approach maximizes the sensitivity of detect-
ing those instances that weakly resemble a consensus
(e.g., binding site sequences) without decreasing the spe-

cificity. In addition, features are considered using fuzzy
assignments, which allow us to encode how well a partic-
ular sequence matches each of the multiple models for a
given promoter feature. Individual features can be linked
into more informative composite models that can be used
to explain the kinetic expression behavior of genes.

We applied our method to analyze promoters controlled
by the PhoP/PhoQ regulatory system of Escherichia coli
and Salmonella enterica serovar Typhimurium. This system
responds to the same inducing signal (i.e. low Mg?+) in
both species [4-7]. Moreover, the E. coli phoP gene could
complement a Salmonella phoP mutant [8]. The DNA-
binding PhoP protein appears to recognize a tandem
repeat sequence separated by 5 bp [4-6], consistent with
being a dimer [9]. The PhoP/PhoQ system is an excellent
test case because it controls the expression of a large
number of genes, amounting to ca. 3% of the genes in the
case of Salmonella [10]. Furthermore, the PhoP/PhoQ reg-
ulon has been shown to employ a variety of network
motifs including the single-input module (Fig. 1A), the
multi-input module (Fig. 1B), the bi-fan (Fig. 1C), the
chained (Fig. 1D), and the feedforward loop (Fig. 1E) [10-
12]. Our analysis uncovered the salient features that dis-
tinguish genes co-regulated by PhoP belonging to similar
networks. Gene transcription measurements provided
experimental support for the investigated predictions.

Results and discussion

Approach

We investigated five types of cis-acting promoter features
by extracting the maximal amount of useful information
from datasets and then creating models that describe pro-
moter regulatory regions. This entailed applying three key
strategies: first, we conducted an initial survey of the data
provided from different available sources, capturing and
distinguishing between broad and easily discernable pat-
terns. We then used these patterns as models to re-visit the
data with greater sensitivity and specificity. This allowed
us not only to recognize those instances with a low resem-
blance to consensus models, but also to reflect and anno-
tate the diversity of the observations (i.e., when distances
between the transcription factor binding site and RNA
polymerase are unusual). Second, we utilized fuzzy clus-
tering methods [13,14] to encode promoter matching to
multiple models for a given promoter feature, which
avoided having to make premature categorical assign-
ments, and producing an initial classification of the pro-
moters into multiple subsets. Finally, we applied fuzzy
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The PhoP/PhoQ system employs a variety of network motifs to regulate gene transcription. (A) In the single-
input module, PhoP as a single transcription factor regulates a set of genes (i.e. mgtA, phoP and pmrD). (B) In the multi-input
module, two or more transcription factors (e.g., PhoP and RcsB) regulate a target gene (i.e. ugd). (C) In the bi-fan module, a set

of genes (i.e. pmrD and yrbl) are each regulated by a combination

of transcription factors (i.e. PhoP and PmrA). (D) In the

chained motif, genes are regulated in an ordered cascade. (E) In the feedforward loop, a transcription factor (i.e. PhoP) regu-
lates the expression of a second transcription factor (i.e. YhiW), and both jointly regulate one or more genes (i.e. hdeA/D).

logic [15] to relate some basic features into more inform-
ative composite models that may explain the distinct
expression behavior of genes belonging to similar net-
works (Fig. 2). A distinguishing characteristic of our
approach is that promoters for orthologous genes are con-
sidered individually. This is in contrast to some phyloge-
netic footprinting methods [16] that often ignore
regulatory differences among closely-related organisms
due to their strict reliance on the conservation of regula-
tory motifs across bacterial species.

Activated/repressed promoters

Gene expression data normally allow clear separation of
genes into those that are activated and those that are
repressed by a regulatory protein. Because the expression
signal is sometimes absent or too low to be informative,
we considered the location of a transcription factor bind-
ing site relative to that of the RNA polymerase to separate
promoters into activated and repressed subsets (Fig. 3A,
B) [17].

We determined that the location of binding sites function-
ing in activation is different from that corresponding to
sites functioning in repression (Fig. 3A, B), being centered
~40 and ~20 bp upstream of the transcription start site,
respectively. This allowed us to distinguish among PhoP-
regulated promoters that have apparently similar network
motifs (Fig. 2). For example, we identified a PhoP binding
site at a relative distance to the RNA polymerase consist-
ent with repression in the promoter region of the hilA
gene, which encodes a master regulator of Salmonella inva-

sion and had been known to be under transcriptional
repression by the PhoP/PhoQ system [18,19]. Several pro-
moters, including those of the Salmonella pipD and nmpC
genes, were classified as candidates for being both acti-
vated and repressed, because the distance between the
predicted transcription start site and the PhoP box is con-
sistent with either activation or repression. Gene expres-
sion experiments conducted in E. coli indicate that nmpC
is a PhoP-repressed gene [4-6]. Other promoters were pre-
dicted to have more than one PhoP box (e.g., those of the
PhoP-activated mgtC and pagC genes), where by their
location one could correspond to an activation site and
the other to a repression site [20].

Transcription factor binding site orientation

Functional binding sites for a transcription factor may be
present in either orientation relative to the RNA polymer-
ase binding site [21]. This is due to the possibility of DNA
looping and to the flexibility of the alpha subunit of the
bacterial RNA polymerase in its interactions with tran-
scriptional regulators [22,23]. Yet, promoters harboring
binding boxes in different orientation can be controlled
by PhoP using the same network motif. That is the case of
the yobG, and slyB (direct), compared to pagK and pagC
(opposite) Salmonella promoters (Fig. 4A). Analysis of
PhoP-regulated promoters revealed that the PhoP box
could be found with the same probability in either orien-
tation in the intergenic regions of the E. coli and Salmo-
nella genomes (Fig. 5). For example, the E. coli ompT and
yhiW promoters and the Salmonella mig-14, pipD, pagC
and pagK promoters harbor putative PhoP binding sites in
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PhoP-regulated promoters are described on the basis of five types of features. We conform a database including
whether the position of the PhoP box suggests that a promoter is activated or repressed (activated/repressed); the orientation
of the PhoP box (orientation); distinct PhoP box patterns (motif patterns); the distance of the PhoP box relative to the RNA
polymerase site and the class of sigma 70 promoter (RNA polymerase sites); and the presence of potential binding sites for 24
transcription factors in the PhoP-regulated promoters (Other TFBs). The identification of a feature in a promoter is based on
measuring the degree of match between a promoter instance and a model that represents that feature, which results in a vec-
tor of [0, 1] values where | (red) corresponds to maximum matching and 0 (green) corresponds to the absence of the feature.
Individual genes are allowed to have more than one promoter because more than one candidate PhoP box can be identified in
an intergenic region. In addition, promoters for the same gene in different genomes are considered separately in the E. coli and
Salmonella genomes. Activated/repressed analysis discriminates among three groups (A,-A,) corresponding to activated, and
repressed genes, respectively. The PhoP box could be present in the opposite (O,) or the same (O,) orientation as the regu-
lated open reading frame. Pattern analysis of the PhoP box resulted in four preliminary groups (M,-M,). RNA polymerase sites
analysis revealed six groups (P,-P;) corresponding to types and location of sigma 70 promoters: (1) close class II, (2) close class I,
(3) medium class Il, (4) medium class |, (5) remote class Il and (6) remote class I. The presence of other transcription factor binding
sites in PhoP-regulated promoters includes: (1) OxyR, (2) FruR, (3) DeoR, (4) MalT, (5) MelR, (6) CytR, (7) GIpR, (8) ArcA, (9)
FNR, (10) ResB, (11) Fur, (12) ArgR, (13) RhaS, (14) AraC, (15) CRP, (16) DnaA, (17) YhiW, (18) Lrp, (19) NarL, (20) FIS, (21)
IHF, (22) OmpR, (23) PmrA and (24) SIyA.

Page 4 of 14

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 4):S1 http://www.biomedcentral.com/1471-2105/10/S4/S1

A B
>
o
c >
() o
= c
(o Qo
2 2
[T
- 2
[} Y
o
o o
E -t
5 o
b €
o o
1SS
o
0 \
-200 -150 -100 -50 0 -100 -50 0 50 100 150 200
distance from distance from
binding sites to +1 binding sites to +1
c D
>
o fry
< c
o o
S =]
o o
o )
1.
= -
1SS
S
3 °
o °
£ £
o o
1
o a
-80 -70 -60 -50 -40 -30 - 09 20 40 60 80 100 120 140 160 180 200
distance from distances among transcription factor
binding sites to +1 binding sites
Figure 3

Learning promoter features. Promoter features were learned as models from examples in databases (e.g., RegulonDB) and
then used to describe the intergenic regions of the E. coli and S. enterica genomes. (A, B) Promoters were classified into acti-
vated (A), repressed (B) or both, based on the location and the distance of a regulatory protein binding site to the RNA
polymerase site. Different distributions are observed for activated, repressed and activated/repressed genes. The property that
characterizes activated genes was learned from distances between the transcription start sites (+1) and the binding sites of dif-
ferent transcription factors. These distances were grouped in histograms and codified as elastic (fuzzy) functions, which can be
interpreted as the membership degrees (in a unit interval) by which subsets of the dataset can embrace this property. (B) The
histogram and membership function corresponding to repressed promoters. | is maximal at much closer distances. Thus, the
promoter distances can be probabilistically interpreted as the posterior probability p(close/activated) that given an activated
gene, the regulator binding site is at a close distance from the transcription start site, following Bayes' rule. (C) The distances
between transcription start sites (+1) and the binding sites of regulators were grouped into a histogram and codified as elastic
(fuzzy)unit-interval functions. This process is analogous to fitting data from a parametric or non-parametric distribution and
then assigning probabilities of membership to such distributions. We used these models to characterize the relationships
between binding sites for the PhoP protein and the RNA polymerase binding site in the genome. Relationships were classified
according to their similarity (fuzzy membership) with the prototypes to obtain a similarity vector of expression values. (D) The
histogram illustrates the distances for binding sites of different regulators sharing the same promoter regions. The resulting
membership functions, which were learned from such distributions, allows evaluating the putative relationship between a tran-
scription factor motif and a PhoP box based both on motif quality and physical location.
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Figure 4

The PhoP protein exhibits different cis-features for genes within the same network motif. (A) PhoP-regulated pro-
moters that differ in the orientation of the PhoP-binding site. PhoP regulates a set of promoters including those of the Salmo-
nella yobG, slyB, pagK and pagC genes using a single-input network motif. We established that when Salmonella experiences low
Mg2*, the PhoP protein binds to both the archetypal directly oriented yobG and slyB promoters as well as the oppositely ori-
ented pagK and pagC promoters using chromatin immunoprecipitation (ChlP) in vivo [56]. (B) The PhoP protein uses the single-
input network motif to control genes that differ in their binding site pattern. The PhoP protein recognizes a binding site motif
consisting of a hexameric direct repeat separated by 5 bp, but distinguishes between different patterns with different specifici-
ties (i.e. phoP and pmrD). (C) PhoP regulates the phoP and mgtA Salmonella genes using the same network motif, however, mgtA
harbors a riboswitch pattern in its 5’UTR region. (D) PhoP-regulated promoters differ in the RNA polymerase sites. The PhoP-
activated ugtl and pagC promoters share the orientation of the PhoP-binding site as well as the class | sigma 70 promoter, but
differ in the distance between the PhoP box and the RNA polymerase site. (E) Expression of PhoP-regulated promoters that
use the bi-fan network motif. The Salmonella pmrD, and ugd promoters harbor experimentally verified PhoP- and PmrA-binding
sites that can be described by the bi-fan network motif. The distance between the PhoP and PmrA boxes in the Salmonella
pmrD and ugd promoters are also different (~38 bp and ~65 bp, respectively).

the opposite relative orientation to that described for the
prototypical PhoP-activated mgtA promoter [4] (Fig. 2).
Yet other promoters (i.e. those of the ybjX, slyB, yeaF genes
in E. coli and the virK, ybjX, and mgtC genes in Salmonella)
contain sequences resembling the PhoP box in both ori-
entations. The demonstration that PhoP does bind to the
mgtC, mig-14 and pagC promoters [4], which harbor the
PhoP binding site in the opposite orientation as in the
mgtA promoter, validates our predictions and argues
against alternative network designs where these promot-
ers would be regulated by PhoP only indirectly [24].

Transcription factor binding site patterns

Many genes are controlled by a single-input network
motif where the affinity of a transcription factor for its
promoter sequences is a major determinant of gene
expression. Thus, co-regulated genes displaying distinct
expression patterns are likely to differ in the binding site
for such a transcription factor (Fig. 4B). Methods that look
for matching to a sequence motif have been successfully
used to identify promoters controlled by particular tran-
scription factors [25-27]. However, the strict cutoffs used
by such methods increase specificity but decrease sensitiv-
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Statistical significance of PhoP-binding site orienta-
tion. (A) PhoP-binding sites were discovered in both possi-
ble orientations relative to the open reading frame, even
though all published PhoP-binding sites are reportedly only in
one (i.e. direct) orientation. To test the hypothesis that the
genome harbors the PhoP-binding site in either orientation,
we collected the number of PhoP-binding sites both in inter-
genic and coding regions of the Salmonella and E. coli genomes
at different specificity levels. % indicates the relationship with
the maximum score obtained by the Consensus/Patser pro-
gram with a single consensus motif. Using a 95% confidence
interval, we could not reject the null hypothesis using one-
way ANOVA. (B) Multiple tests illustrates that we did not find
significant differences in pairwise comparisons among six sets
generated by splitting the data by regions, motif scores and
genomes (we use Matlab multicompare routine with correc-
tions for multiple tests). The horizontal axis corresponds to
rows in (A), and the vertical axis illustrates the group means
of the columns in (B).

ity [26,28], which makes it difficult to detect binding sites
with weak resemblance to a global sequence pattern [29].

We decomposed set of binding site sequences correspond-
ing to a transcription factor into several patterns and then
combined them to increased the sensitivity to weak sites
without losing specificity (a detailed sensitivity perform-
ance analysis and evolutionary effects of these patters are
described in O.H. et al, manuscript in preparation). In the
case of PhoP, we used this approach to search both
strands of the intergenic regions of the E. coli and Salmo-
nella genomes (Fig. 2). This allowed the recovery of pro-

http://www.biomedcentral.com/1471-2105/10/S4/S1

moters, such as that corresponding to the E. coli hdeA gene
or the Salmonella pmrD, that had not been detected by the
single position weight matrix model [26,28] despite being
footprinted by the PhoP protein [4-6,10-12]. The use of
four patterns instead of a single consensus increased the
sensitivity for PhoP binding sites from 46% to 74%; yet,
the specificity remained essentially the same (i.e., 98% in
a consensus model versus 97%). Importantly, this
approach is not exclusive to binding sites recognized by
the PhoP protein, but for other transcription factors
reported in the RegulonDB database [30], where we could
increase the sensitivity in an average of 35%, while retain
almost the same sensitivity than a single position weight
matrix (O.H. et al, manuscript in preparation).

Riboswitch site patterns

Riboswitches are structured domains that usually reside in
the non-coding regions of mRNAs (UTRs), where they
bind specific metabolites and control gene expression.
The most common effects occur at the level of premature
termination of transcription (cis-acting) or translation ini-
tiation. Upstream regions of PhoP regulated genes were
screened for riboswitches by analyzing the presence of
segments with conserved secondary structure across
genomes and thermodynamic stability; because Rfam
http://www.sanger.ac.uk/Software/Rfam searches did not
produce significant hits. Then, we evaluate if these candi-
date segments could be either small non-coding RNA or
riboswitches, depending on their relative location to the
beginning of the gene. Those candidates with conserved
helixes, stable thermodynamically energy, and located
close (<5 bp) to the translation start site of the closest
gene, were further inspected as possible riboswitches. We
found several genes with a long UTR region as possible
candidates (see http://gps-tools2.wustl.edu/data/ribos
witch xls). One of these genes is the Salmonella mgtA pro-
moter, which has been experimentally validated (Fig. 4C)
[31] showing that the DNA corresponding to a 264 nucle-
otide riboswitch confers Mg2+ regulation when cloned in
front of a reporter gene and behind a derivative of the lac
promoter. Again, PhoP uses a similar network architecture
to control promoters with differentially arranged regula-
tory regions (Fig. 4C).

RNA polymerase binding site patterns and location

The distance of a transcription factor binding site to the
RNA polymerase binding site(s) and the class of sigma 70
promoter are critical determinants of gene expression
[22]. These classes correspond to the different types of
contacts that can be established between a transcription
factor and RNA polymerase. We identified six patterns
among PhoP-regulated promoters of E. coli and Salmonella
(Fig. 2) that combine promoter class and distance
between the PhoP box and the RNA polymerase site (Fig.
3C). These patterns may correspond to a similar network
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motif, as it is the case of the ugtlL and pagC promoters,
which share the orientation of the PhoP box but differ in
the distance of the PhoP box to the RNA polymerase bind-
ing site [22] (Fig. 4D).

Some PhoP-regulated promoters (e.g. the hemL and phoP
promoters of E. coli) contain several putative RNA
polymerase binding sites located at different positions
and belonging to different classes, suggesting that such
promoters may be regulated by additional signals and/or
transcription factors [6]. The RNA polymerase site feature
was evaluated using 721 RNA polymerase sites from Reg-
ulonDB as positive examples and 7210 random sequences
as negative examples. We obtained an 82% sensitivity and
95% specificity for detecting RNA polymerase sites. These
values provide a false discovery rate <0.001 and a correla-
tion coefficient of 82%. In addition, we selected 34 exam-
ples of RNA polymerase sites reported to be of class II,
which all differ from the typical class I promoter by exhib-
iting a degenerate -35 sequence motif [6,22,32], and
obtained 74% sensitivity and 95% specificity.

Binding sites for other transcription factors

Certain promoters harbor binding sites for more than one
transcription factor. This could be because transcription
requires the concerted action of such proteins, or because
the promoter is independently activated by individual
transcription factors, each responding to a distinct signal.

We analyzed the intergenic regions of the E. coli and Sal-
monella genomes for the presence of binding sites for 54
transcription factors [30]. We then investigated the co-
occurrence of 24 sites with the binding site of the PhoP
protein in an effort to uncover different types of network
motifs involving PhoP-regulated promoters. For example,
the Salmonella pmrD, ugd and yrbL promoters and the E.
coli yrbL promoter harbor PhoP- and PmrA-binding sites,
consistent with the experimentally-verified regulation by
both the PhoP and PmrA proteins that can be described by
the bi-fan network motif [4,33] (Fig. 4E). In addition, the
relative position of transcription factor binding sites (Fig.
3D) can play a critical role because the PmrA-box in the
Salmonella pmrD and yrbL promoters is located closer to
the PhoP-box (~38 bp and ~24 bp, respectively) than in
the udg promoter (~65 bp). By analyzing both the binding
site quality and the location of transcription factor bind-
ing sites, we increase the chances of identifying co-regu-
lated promoters.

By considering the presence of binding sites for multiple
transcription factors, it is possible to generate hypotheses
about potential network motifs. For example, the promot-
ers of the PhoP-activated gadA, dps, hdeA, yhiE and yhiW
genes of E. coli also have binding sites for the regulatory
proteins YhiX and YhiE [4], raising the possibility that
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some of these genes might be regulated by feedforward
loops where both the PhoP protein and either the YhiW or
the YhiE proteins would bind to the same promoter to
activate transcription. This notion was experimentally ver-
ified [4], validating our prediction.

Evaluating the effect of distinct cis-regulatory features
within a network motif

Gene expression is often measured by binary assays that
evaluate differentials between wild-type and mutant
strains (e.g., typical microarrays). These experiments
always help to differentiate activated from repressed
genes, and sometimes very low from very highly expressed
genes. However, these approaches often conceal quantita-
tive differences between true expressed genes. We hypoth-
esize that distinct promoter features may affect gene
expression even in similarly arranged network motifs. To
test this notion, we compared the gene expression pat-
terns of wild-type Salmonella harboring plasmids with a
transcriptional fusion between a promoterless gfp gene to
different PhoP-activated promoters (Fig. 6).

We found that promoters that differ in the orientation of
the PhoP binding site and are arranged in a similar net-
work motif such as slyB and pagC produce a complete dif-
ferent patterns of expression (Fig. 4A, 6). Moreover,
single-output network motif including the phoP and the
pmrD genes (Fig. 4B), which exhibit different PhoP box
patterns, reveal a substantial different levels of promoter
activity as measured by GFP kinetics (Fig. 6). Within the
same network motif, we also evaluated the mgtA promoter
and found that without specific primers for the 5'-UTR
region the gene is unable to transcribe (Fig. 4C, 6). This
suggests that the riboswitch located in the promoter
region of mgtA is a critical feature that distinguishes pro-
moters within the similar network (Fig. 4C). The ugtL and
pagC promoters share the orientation and the PhoP box
but differ in the distance of the PhoP box to the RNA
polymerase binding site (Fig. 4D). This may account for
the different kinetic behavior of these promoters when
tested in a wild-type strain harboring plasmids with pro-
moter fusions to the promoterless gfp gene (Fig. 6).

We also realized that the expression patterns differ in
other types of network motifs such as the bi-fan. The Sal-
monella pmrD and ugd promoters harbour experimentally
validated PhoP- and PmrA-boxes [10,34] (Fig. 4E), and
both promoters confer distinct levels of expression as well
as kinetic patterns (Fig. 6). Although it is hard to discern
the specific and individual influence of each type of cis-
feature, the preliminary results obtained by gfp experi-
ments suggest that those regulatory elements described
above can effectively produce differential gene expression
even within similar network motifs.
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Figure 6

Measurements of promoter activity and growth
kinetics for GFP reporter strains with high-temporal
resolution. Transcriptional activity of wild-type Salmonella
harboring plasmids with a transcriptional fusion between a
promoterless gfp gene and the Salmonella promoters including
phoP (blue), pmrd(green), slyB (red), pagC (cyan),
ugd(magenta), ugtL (yellow) and mgtA (orange). Each experi-
ment was conducted independently at least twice, and shown
after preprocessing. The activity of each promoter is propor-
tional to the number of GFP molecules produced per unit
time per cell [dG(t)/dt]/OD(t)], where G/(t) is GFP fluores-
cence from wild-type Salmonella strain 14028s culture and
conditions described in Methods, and ODj(t) is the optical
density. The activity signal was smoothed by a polynomial fit
(sixth order).

Conclusion

We demonstrated that a transcription factor could medi-
ate differential expression of genes described by the same
network motif. This is because of the functional signifi-
cance of variability in sequence, location and topology
that exists among promoters that are co-regulated by a
given transcription factor. We developed methods that
encode and combine these promoter features, which
allows matching of cis-observations to multiple models
for a given promoter feature, into flexible databases con-
stituting annotations of genome regulatory regions. These
annotations cannot be uncovered by simpler sequence
analysis approaches (Fig. 7). Indeed, the developed meth-
ods can be used to search and predict regulatory features
even in incompletely characterized organism. Notably,
these features do not constitute a computational artifact,
but reflect different kinetic behaviours of co-regulated
genes.

http://www.biomedcentral.com/1471-2105/10/S4/S1

Global transcriptional regulators control multiple pro-
moters by a variety of network motifs [27]. This is clearly
the case for the regulatory protein PhoP (Fig. 1). In this
work, we studied this regulatory protein and demon-
strated that understanding gene expression does not only
require identifying a set of connexions or network motif,
but also the cis-acting elements participating in each of
these connexions.

Materials and methods

Our method consists of three phases: first, encoding the
available information into preliminary model-based fea-
tures, which includes identifying cis-features from DNA
sequences and information from available databases; per-
forming initial modeling of each individual feature,
allowing the process of multiple occurrences of a feature
and using relaxed thresholds and permitting missing val-
ues. A model-based feature is generated by the identifica-
tion of a feature in a subset of observations (F) in the
dataset, based on measuring the degree of match (Q)
between an observation and a model, or a family of mod-
els (M = {M,}), atsome degree () defined in a unit-inter-
val scale (i.e., fuzzy values, Q(F, M,)) [35,36]. Second,
grouping the results into subsets, thus, decomposing the
preliminary models into a family of models or building
blocks by using fuzzy clustering (see Additional file 1).
Third, composing the building blocks by either combin-
ing the same or different types of features by using fuzzy
logic expressions (see Additional file 1). And fourth,
describing new promoters using the resulting models.

Network motifs

In theory, the term "network motifs" is related to a statis-
tical significant subgraph; however, in practice, they are
treated as an over represented subgraph [37,38]. For
example, a motif termed "single input motif " of three/
four nodes in the E. coli (e.g., mfinder1.2 p-value < 34.7+-
8.5) or Saccharomyces cerevisiae network [39] is not recog-
nized as significant, while the only motif that exceeds the
standard threshold is the "feed forward motif".

Activated/repressed

We modeled PhoP-regulated promoters as activated or
repressed based on examples reported in the RegulonDB
database [30]. (1) We separately grouped activated and
repressed promoters, and plotted histograms for each
group corresponding to the distances between transcrip-
tion factor binding sites and the transcription initiation
(+1) site. (2) We distinguished two non-disjoint distribu-
tions in each group and built models for these distances
by fitting histograms with fuzzy membership functions
[15] (Fig. 3A, B) (see Additional file 1), which do not force
promoters to be exclusively Activated or Repressed. (3)
Finally, we connected (2) and sigma 70 promoters previ-
ously detected to select the most representative candidate

Page 9 of 14

(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 4):S1

http://www.biomedcentral.com/1471-2105/10/S4/S1

12
1
s =11 1 N A LA NN A
0 Wi AW I W \/ L]
0t 1 [ | [ VR | ]
02 11 | | | VY \[
0 T 1 | | |
rrrrrrrrrrrrr o rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr1r1rrrrrr i1t rrrrrrrrrr
1357911131517 192123252729313335373941434547495153
PhoP box -10
—p
mgtA S GGCAAAGTCTGGTTTATCGTTGGTTTAATTACGTAACGG-~TATGATACCGCCATAATTGCCACAAAACTTATGGATTT
mgtA C GGTAAAGTCTGGTTTATCGTTGGTTTAGT TGTCAGCAGG--TATTATATCGCCATAGATGCTACGAATATTATTGGATT
yrbL S TAAAAAATTTCGTTTAGGTTTTGTTTAAG-TTCTTTGTC-—-CATACTAAATTTATG-TGAAT-—--AATTTTTCCAGGA
yrbL C TAAGAGGCATTGTTTAGGTTTTGTTTAAG-TTAATC——-—~ GACCATACTGGAGAT-CG-TCAGAAAATATTTCCAGGA
slyB S CTTCCGACTTCGTTTAAGATTGGTTAATTAACTTCTGAT-~TATGATTTTCACATTCTTTCGGCAGAAGATATGACCTT
ybcU C TTCAACTCATTGTTTAGGGTTTGTTTAA--TTTTCTACACATACGATTCTGCGAACTTCAAAAAGCATCGGGAATAACA
phoP C CCTCCCCGCTGGTTTATTTAATGTTTACCCCCATAAC--CACATAATCGCGTTACACTATTTTAATAATTAAGACAGGG
1.2
p
08 | | TN AT [T
06 I h | | [WiW| | ] | ] W 1]
0.4 1] | ] L[] Wi Wi | 1]
0.2 VAW (I TR |/ 1/ |/ (Y
0 [ 1] |1 [l I I | WA
173579111315171921232527293133353739414345474951535557596163656769717
PhoP box -35 -10
pagC S TTTTGGAATGTAAATTCTCTCTAAACACAGGTGATATTTATGTTGG-AATTG-TGGTGTTGATTCTATTCTTATAA-———— TATAACAAGAAAT
pagk S TTATTTAAGTTAAATATTTTATAAATG-————— GTTTTTATTTACTCACCTGA-—-—— TGGTAATGAATAACGTT—————— TAATATCTATAGT
mig-14 S TGTTAACCATTAAATACAAGCTAAACA-————— TTTGTCACATTTTTATTTGG-———~ TTAAGCAAAAAAATAATACAAAATAGCATTTTCAGT
mgtC S AGAAAAAATATCAAACAAACTTAAACAGAACG-TCACTAAACCCGCC-TTTGCAC---TTTACGGAACATATTGGCTGAC-TATAATAAGCGCA
Figure 7

Using promoter cis-features to annotate regulatory regions. We recognized different PhoP binding box orientations

and patterns, and RNA polymerase close class Il and medium class | sites, and isolated the corresponding regions of promoters
with similar features. Then, we described the similarity among DNA sequences in terms of the entropy of the frequency of the
dominant base. This allowed us to visualize the variability of the promoter DNA sequences in terms of useful information (low
values). These alignments with maximum information content could not be identified without using distinct cis-features harbor-
ing different patterns. This is clearly shown when the plain alignment of the intergenic region of all || promoters is performed

(not shown).

for each promoter condition (e.g., best promoter that
characterize the activated condition) by using fuzzy logic-
based operations (see Additional file 1), which also have
a probabilistic interpretation (e.g., p(activated/sigma 70)),
to characterize relationships between predicted PhoP and
RNA polymerase binding sites detected in candidate pro-
moters (see below). Simple features, such as activated and
repressed can be combined in more complex composite
models to represent divergently transcribed genes (e.g.,
two adjacent genes, one repressed, the other activated,
both sharing the same putative PhoP box in different ori-
entations) using fuzzy logic expressions (see Additional

file 1).

Binding site patterns and orientation

(1) We built an initial model for the PhoP binding site by
learning a position weight matrix [28] (E-value < 10E-12)
based on the upstream sequences of genes corresponding
to the training set of the E. coli and Salmonella genomes
(Table S1, Additional file 1). (2) We searched the inter-
genic regions of the genes in both orientations, using low

thresholds corresponding to two standard deviations
below the mean score obtained with the initial model
[40]. Multiple PhoP binding site candidates were allowed
in a given promoter operator region. (3) After transform-
ing nucleotides into dummy variables [41], we grouped
sequences matching the PhoP position weight matrix
using the fuzzy C-means clustering method with the Xie-
Beni validity index (see Additional file 1) to estimate the
number of clusters [13,42]. (4) We built models for these
clusters using position weight matrices (E-value < 10E-22)
and searched the E. coli and Salmonella genomes to char-
acterize each gene according to its similarity to each
model as a fuzzy partition (Fig. 2).

Riboswitch site patterns

(1) We employed upstream regions of PhoP regulated
genes to create conserved sequence aligments by compar-
isons against representative proteobacterial genomes. We
used WU BLAST 2.0 http://blast.wustl.edu[43] with a
word hit of eight, and using default parameters otherwise.
(2) We selected alignments with an E-value <0.00001 and
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a length > 50 nt; and divided alignments longer than 300
bp into windows of 300 bp with 50 bp of overlap. (3)
These windows fed the programs eQRNA and RNAz fol-
lowing the protocol described in [44] using a window size
of 200 nucleotides and a window slide increment of 50
nucleotides. QRNA analysis was performed with eQRNA
version 2.0.3c.  (ftp://selab.janelia.org/pub/software/
garna/). (3.1) We classified the alignment as RNA, coding,
or other, according to the Bayesian posterior probability
of each model. RNAz was used with its version 0.1.1 http:/
[www.tbi.univie.ac.at/~wash/RNAz. We only considered
overlapping eQRNA and RNAz predictions for the
upstream regions of PhoP regulated genes as candidates
for small non-coding RNA or riboswitches. (4) We
encoded the conservation identity of the segments and
their distance to the translation start site of the closest
gene as fuzzy sets; and aggregated them using fuzzy
expressions (see Additional file 1). (5) All fuzzy expres-
sions of a single gene were combined using the Maximum
T-conorm (see Additional file 1).

RNA polymerase sites

(1) We gathered sigma 70 class I and class II promoters
[32,45] from the RegulonDB database and [46]. Then, we
built models of the RNA polymerase site using a neuro-
fuzzy  method (see @ HPAM in  http://gps-
tools2.wustl.edu[47]), and used the resulting models to
perform genome-wide descriptions of the intergenic
regions of the E. coli and Salmonella genomes with a false
discovery rate <0.001 (see Promoter search in http://gps-
tools2.wustl.edu). (2) We used an intelligent parser to dif-
ferentiate class I and class II promoters that evaluate the
quality of the -35 motif [22,32], based on fuzzy logic (see
Additional file 1) and genetic algorithms techniques (see
MOSS in gps-tools2.wustl.edu [48]). (3) To characterize
the distance relationship between transcription factors
binding sites and RNA polymerase binding sites, we built
models of such distances from the examples reported in
the RegulonDB database. (3.1) We modeled activated and
repressed promoters (see below Activated or repressed fea-
ture). (3.2) We re-built histograms for each group of dis-
tances (i.e. activated and repressed), distinguishing three
overlapping distributions for each of them.(3.3) We built
models for distances by fitting their distributions into
models based on fuzzy membership functions [15] (see
Additional file 1), which were termed close, medium and
remote distances for each set of activated and repressed
genes (Fig. 3C). Finally, to characterize the distance rela-
tionship between the PhoP box and putative RNA
polymerase binding site, we connected (2) and (3) by
using fuzzy logic-based operations (see Additional file 1).

This process allowed us to retrieve the most representative
RNA polymerase binding site candidates for each pro-
moter region relative to the PhoP binding site (e.g., best
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class I RNA polymerase site, which is located close to the
PhoP box in an activated promoter), which were arrayed
and constituted the value of the RNA polymerase site fea-
ture in Fig. 2. The probabilistic interpretation of the
former process is usually the posterior probability (e.g.,
p(class 1I/close) that, given a close promoter, it comes from
class "class II" by following Bayes' rule [13,41,42]). This
process is analogous to classification methods termed
Naive Bayes [49] if the T-norm and the T-conorm (see
Additional file 1) are restricted to the Product and the
Maximum.

Binding sites for other transcription factors

We developed models for different transcription factor
binding sites from the RegulonDB database as follows:
(1) We built position weight matrices for each transcrip-
tion factor using the Consensus/Patser program, choosing
the best final matrix for motif lengths between 14-30 bps
if the corresponding length had not been previously spec-
ified (see "Consensus matrices" in http://gps-
tools2.wustl.edu). We accounted for the motif symmetry
(e.g., asymmetric, direct, inverted [45]) if available (see
"Search known transcription factor motifs" in http: S-
tools2.wustl.edu). (2) We searched the intergenic regions
of the E. coli and Salmonella genomes with these models,
using the correlation coefficient measure (see Additional
file 1) and additional 772 promoters from the RegulonDB
database [30] to establish a threshold (average E-value <
10E-10) for each matrix [50] (see "Thresholded consen-
sus" in http://gps-tools2.wustl.edu). (3) We accounted for
the distances between distinct transcription factors bind-
ing sites occurring in the same promoter region (e.g., the
distance between the CRP and FIS sites in the proP pro-
moter [51]) in promoters reported in RegulonDB data-
base and built a histogram with the obtained results (Fig.
3D). (4) We fitted the histogram using a fuzzy member-
ship function (see Additional file 1) and used this model
as a fuzzy cluster to characterize the distances between a
putative PhoP box and another putative transcription fac-
tor binding site detected in the same region. (5) Finally,
we connected (2) and (4) by using fuzzy logic-based oper-
ations (see Additional file 1), which can also have a prob-
abilistic interpretation (e.g., p(CRP, FIS/appropriate
distance) upstream of the proP open reading frame of E.
coli), to characterize PhoP regulated candidates
promoters.

Dataset

We initially used the intergenic regions of E. coli and Sal-
monella operons from -800 to +50 because > 5% are larger
than 800 bp in bacterial genomes (as described in the Reg-
ulonDB database or generously provided by H. Salgado)
[49]; however, predictions have been performed in whole
coding and non coding regions (see http://gps-
tools2.wustl.edu). The promoter and transcription factor
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information was taken from RegulonDB database. We
compiled from the literature and our own lab information
(Table S1, Additional file 1) genes whose expression
(using microarrays) differed statistically between wild-
type and phoP E. coli strains experiencing inducing condi-
tions for the PhoP/PhoQ regulatory system [4], as well as
a list of genes known/assumed to be PhoP regulated [52].
However, this information did not explicitly indicate
whether these genes were regulated directly or indirectly
by the PhoP protein. The learned features were used to
make genome-wide predictions in the E. coli and Salmo-
nella genomes.

Programming resources

The scripts and programs used in this work, some of
which are accessible from http://gps-tools2.wustl.edu web
site, were based on Perl, Matlab r2006a and C++ interpret-
ers/languages, and the visualization routines were per-
formed on Spotfire DecisionSite software 8.2. Data and
predictions for E. coli and Salmonella genomes are availa-
ble at supplemental table S1 in Additional file 1 and at
http://gps-tools2.wustl.edu.

Bacterial strains, plasmids and growth conditions
Bacterial strains and plasmids used in this study are listed
in Table S2, Additional file 1. Salmonella enterica serovar
Typhimurium strains used in this study are derived from
strain 14028s. Bacteria were grown at 37°C in Luria-Ber-
tani broth (LB) [53] or N-minimal medium pH 7.7 [54]
supplemented with 0.1% Casamino Acids, 38 mM glyc-
erol, MgCl,. Kanamycin was used at 25 ug/ml.

Constructions of GFP reporter plasmids

Promoter regions (i.e. the intergenic region between two
ORFs) were amplified using PCR. A list of the promoter-
specific primers used in the PCR reactions is shown in
Table S3, Additional file 1. The PCR fragment was digested
with BamHI and Xhol, purified, then introduced to the
cloning site of pMS201 (GFP reporter vector plasmid, a
gift from Alon, U. [55]). Sequences of promoter region
were verified by nucleotide sequencing.

Measurements of promoter activity and growth kinetics
for GFP reporter strains

Promoter activity and growth kinetics of wild-type Salmo-
nella strain harboring GFP reporter plasmid was measured
in parallel using automated microplate reader (VICTOR3,
Perkin Elmer) [55]. Overnight cultures of strains in N-
minimal medium with 10 mM MgCl, and 25 pg/ml of
kanamycin were washed with the same medium without
MgCl, then diluted (1:100) to 96-well plate (Packard)
containing 150 pl of N-minimal media supplemented 50
puM MgCl,. After overlaying the wells with 50 pl of mineral
oil (Sigma) to prevent evaporation of media, the plate was
inserted in the VICTOR3 machine pre-warmed to 37°C.

http://www.biomedcentral.com/1471-2105/10/S4/S1

The fluorescence and optical density (600 nm) of cells
were recorded with shaking of the plate (1 min with 0.1
mm diameter), and this protocol was repeated every 6
min for 99 times. The background fluorescence was meas-
ured using a strain carrying empty vector and subtracted
from the test values. Each experiment was conducted
independently twice, and a representative is shown in the
figures.

Data preprocessing

The raw GFP and OD signals were used to calculate the
promoter activity as [dG;(t)/dt]/OD;(t). The activity signal
was then smoothed by a shape-preserving interpolant
(Piecewise Cubic Hermite Interpolating Polynomial, Mat-
lab r2006a) fitting algorithm that finds values of an
underlying interpolating function at intermediate points
that are not described in the experimental assays. Then,
we applied a polynomial fit (sixth order, Matlab r2006a)
on each expression signal. This smoothing procedure cap-
tures the dynamics well, while removing the noise inher-
ent in the differentiation of noisy signals.
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