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Abstract

Background: Although microarray gene expression analysis has become popular, it remains
difficult to interpret the biological changes caused by stimuli or variation of conditions. Clustering
of genes and associating each group with biological functions are often used methods. However,
such methods only detect partial changes within cell processes. Herein, we propose a method for
discovering global changes within a cell by associating observed conditions of gene expression with
gene functions.

Results: To elucidate the association, we introduce a novel feature selection method called Least-
Squares Mutual Information (LSMI), which computes mutual information without density estimaion,
and therefore LSMI can detect nonlinear associations within a cell. We demonstrate the
effectiveness of LSMI through comparison with existing methods. The results of the application to
yeast microarray datasets reveal that non-natural stimuli affect various biological processes,
whereas others are no significant relation to specific cell processes. Furthermore, we discover that
biological processes can be categorized into four types according to the responses of various
stimuli: DNA/RNA metabolism, gene expression, protein metabolism, and protein localization.

Conclusion: We proposed a novel feature selection method called LSMI, and applied LSMI to
mining the association between conditions of yeast and biological processes through microarray
datasets. In fact, LSMI allows us to elucidate the global organization of cellular process control.

Background cell. The current problem is to extract useful information
Advances in microarray technologies enable us to explore ~ from a massive dataset. The primarily used approach is
the comprehensive dynamics of transcription within a  clustering. Cluster analysis reveals variations of gene

Page 1 of 12

(page number not for citation purposes)


http://www.biomedcentral.com/1471-2105/10/S1/S52
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10(Suppl 1):S52

expression and reduces the complexity of large datasets.
However, additional methods are necessary to associate
genes in each cluster with genetic function using GO term
finder [1], or to understand stimuli related to specific cel-
lular status.

However, these clustering-association strategies cannot
detect global cell status changes because of the division of
clusters. Some stimuli activate a specific pathway,
although others might change overall cellular processes.
Understanding the effect of stimuli in cellular processes
directly, in this paper, we introduce a novel feature selec-
tion method called Least-Squares Mutual Information
(LSMI), which selects features using mutual information
without density estimation. Mutual information has been
utilized to measure distances between gene expressions
[2]. To compute the mutual information in existing meth-
ods, density estimation or discritization is required. How-
ever, the estimation of gene expression is difficult because
we have little knowledge about density function of gene
expression profile. LSMI offers an analytic-form solution
and avoid the estimation.

Feature selection techniques are often used in gene expres-
sion analysis [3]. Actually, LSMI has three advantages
compared to existing methods: capability of avoiding
density estimation which is known to be a hard problem
[4], availability of model selection, and freedom from a
strong model assumption. To evaluate the reliability of
ranked features using LSMI, we compare receiver operat-
ing characteristic (ROC) curves [5] to those of existing
methods: kernel density estimation (KDE) [6,7], k-nearest
neighbor (KNN) [8], Edgeworth expansion (EDGE) [9],
and Pearson correlation coefficient (PCC). Thereby, we
certify that our method has better performance than the
existing methods in prediction of gene functions about
biological processes. This fact implies that features
selected using our method reflect biological processes.

Using the ranked features, we illustrate the associations
between stimuli and biological processes according to
gene expressions. Results show that stimuli damage essen-
tial processes within a cell, causing association with some
cellular processes. From the response to stimuli, biologi-
cal processes are divisible into four categories: DNA/RNA
metabolic processes, gene expression, protein metabolic
processes, and protein localization.

Results

Approach — mutual information detection

In this study, we detect underlying dependencies between
gene expressions obtained by groups of stimuli and gene
functions. The dependencies are studied in various
machine learning problems such as feature selection
[10,11] and independent component analysis [12].
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Although classical correlation analysis would be useful for
these problems, it cannot detect nonlinear dependencies
with no correlation. On the other hand, mutual informa-
tion (MI), which plays an important role in information
theory [13], enables us to detect general nonlinear
dependencies. Let x and y be a set of gene expressions and
a set of known gene functions. A variant of MI based on
the squared loss is defined by
px(x)Py(Y)

1L(X,Y) = J'J'
xpy(x)py (y)dxdy.

Note that I, vanishes if and only if x and y are independ-
ent. The use of MI allows us to detect no correlation stim-
ulus with a specific gene function or process.

pr(x Y)

Estimating MI is known to be a difficult problem in prac-
tice [8,9,11]. Herein, we propose LSMI, which does not
involve density estimation but directly models the density
ratio:

— Pxy(%.¥)
)= )

Given a density ratio estimator w (x, y), squared loss MI
can be simply estimated by

Z(w(xl,y )-

i,j=1

I(X,Y)=

Mathematical definitions related to LSMI are provided in
the Methods section. LSMI offers an analytic-form solu-
tion, which allows us to estimate MI in a computationally
very efficiently manner. It is noteworthy that x includes a
multi-dimensional vector. In fact, LSMI can handle a
group of stimuli, although generic correlation indices
such as Pearson correlation between parameters and tar-
get value are calculated independently. Therefore, we can
elucidate which type of stimulus has no dependency to
biological processes using LSMI.

Datasets and feature selection

In this section, we first prepare datasets to show the asso-
ciation between stimuli and biological process, and intro-
duce feature selection using the datasets.

Biological process

We compute mutual information between gene expres-
sion values grouped by stimuli and class of genes' biolog-
ical processes. As the class, we use biological process terms
in Gene Ontology (GO) categorization [14]. We select GO
terms associated with more than 800 and less than 2,000
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genes because terms having a small number of genes only
describe a fraction of the cell status, whereas terms having
a large number of genes indicate functions associated with
almost all genes in yeast. Actually, GO has a directed acy-
clic graph (DAG) structure, and each term has child terms.
The GO terms are classified into three categories; we use
only biological process terms to identify the changes
within a cell. Using this method, we select 12 GO terms.

Gene expression profiles

The gene expression profile is the best comprehensive
dataset to associate stimuli and biological processes. We
use two different microarray datasets. One is of 173
microarray data under stress conditions of various types
[15]. We categorize the 173 stress conditions into 29
groups based on the type of condition such as heat shock,
oxidizing condition, etc. The other is of 300 microarray
data under gene-mutated conditions [16]. We categorize
the genes into 146 groups based on associated GO terms.
We use only the GO terms which are associated with
1,500 genes or fewer. We also use child terms on a GO lay-
ered structure if the term has more than 1,200 genes.
When one gene belongs to multiple GO terms, we classify
the gene into the the classification whose number of asso-
ciated genes is smallest. In both profiles, we remove genes
whose expression values are obtained from fewer than
30% of all observed conditions. All missing values are
filled out by the average of all the expression values.

Feature selection using LSMI

We use a novel feature selection method called LSM],
which is based on M], to associate stimuli with cellular
processes. Here we consider the forward feature-group
addition strategy, i.e., a feature-group score between each
input feature-group and output cellular process is com-
puted. The top m feature-groups are used for training a
classifier. We predict 12 GO terms independently. We ran-
domly choose 500 genes from among 6, 116 genes on the
stress condition dataset for feature-group selection and for
training a classifier; the rest are used for evaluating the
generalization performance. For using the gene-mutated
expression dataset, we select 500 genes from among 6,
210 genes. We repeat this trial 10 times. For classification,
we use a Gaussian kernel support vector machine (GK-
SVM) [4], where the kernel width is set at the median dis-
tance among all samples and the regularization parameter
is fixed at C = 10. We explain the efficiency of feature selec-
tion of LSMI in the Discussion section.

Results

The association between stress conditions and biological
processes in GO terms is shown in Fig. 1. Each row and
column respectively indicate a group of conditions and a
GO term. Row and column dendrograms are clustering
results by the Ward method according to cell values. Each
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cell contains an average ranking over 10 trials by LSMI.
The red cell denotes that the parameter has a higher rank;
that is, the parameter has association with the target GO
term. A blue cell denotes that the parameter has a lower
rank.

As shown in this figure, conditions are divided into two
groups. Almost all conditions in the upper cluster have
higher rank, whereas those in a lower cluster have higher
rank only under specific conditions. The conditions in the
upper cluster include strong heat shocks, dithiothreitol
(DTIT) exposure, nitrogen depletion, and diamide treat-
ments, which are non-natural conditions. The result
reveals that non-natural conditions change overall cellu-
lar processes.

The GO term clusters are divided into three groups: DNA/
RNA metabolism (right), localization of protein (mid-
dle), and others (left). The leftmost cluster contains bio
synthesis, gene expression process, and protein metabolic
process. From this figure, nucleic acid metabolism proc-
esses are inferred to be independent from amino acid
metabolism processes. We will confirm the independence
and consider the division of clusters by using other dataset
later.

We herein investigate the details of difference among
DNA metabolic process, protein metabolic process and
localization of proteins. Under an overexpression condi-
tion indicated by sign (A) in Fig. 1, DNA/RNA metabo-
lisms show no correlation with expressions of genes
belonging to over-expression genes. This finding of no
correlation is one advantage of LSMI. The menadione
(vitamin K) exposure condition indicated by (B) in Fig. 1
is associated with localization of proteins. Menadione
supplementation causes high toxicity; such toxicity might
result from the violation of protein localizations.

Next, we compute the association using expressions of
gene mutants. The results are shown in Fig. 2. The stimu-
lus can be categorized into two parts: high association
under almost all processes and under particular condi-
tions. The division is the same because of stress condition
associations. The GO terms also categorize three parts:
DNA/RNA metabolic processes, protein metabolic proc-
esses, and localization. In this experiment, GO terms
"gene expression" (G0O:0010467) and "organelle organi-
zation and biogenesis" (GO:0006996) are in the DNA/
RNA metabolic process cluster, although they are classi-
fied in protein metabolic processes cluster under stress
conditions in Fig. 1. Because the both divisions are close
to ancestor division, we can conclude that the cluster
about gene expression exists. From these results, GO terms
are divisible into four categories: DNA/RNA metabolic
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Stress conditions versus biological processes. Matrix of stress conditions (rows) versus biological processes (columns).

Red cells have higher correlation.

process, protein metabolic process, localization, and gene
expression.

In Fig. 3, we present details of three clusters in Fig. 2. In
fact, Fig. 3(I) presents a cluster whose members are corre-
lated with any biological process. Furthermore, the func-
tions of the mutated genes are essential processes for
living cells, such as cellular localization, cell cycle, and

growth. This result might indicate that the upper half
stimulus in Fig. 1 destroys the functions of these essential
genes. Furthermore, Fig. 3(II) includes the groups of genes
associated with DNA/RNA metabolic processes. In this
cluster, YEL0O33W/MTC1 is a gene with unknown function
and is predicted to have a metabolic role using protein-
protein interaction [17]. Our clustering result indicates
that YELO33W would have some relation with metabo-
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Mutated gene sets

Mutated gene groups versus biological processes. Overview: a matrix of mutated gene groups (rows) versus biological

processes (columns).

lism, especially methylation (methylation is an important
part of the one-carbon compound metabolic process). We
show genes which have no significant association with
DNA/RNA metabolic processes in Fig. 3(III). In the clus-
ter, all genes except AQY2 are of unknown function. No
correlation clusters cannot be found by existing methods.
Our result might provide clues to elucidate these genes'
functions.

Discussion

A common analytical flow of the expression data is first
clustering and then associating clusters with GO terms or
pathways. Although clustering reduces the complexity of
large datasets, the strategy might fail to detect changes of
entire genes within a cell such as metabolic processes.

To interpret such gene expression changes, gene set
enrichment analysis [18] has been proposed. This method
treats microarrays independently. Therefore, housekeep-
ing genes are often ranked highly. When gene expressions
under various conditions are available, our method
would show us the better changes of cellular processes
because of the comparison between groups of conditions.
The module map [19] gives a global association between
a set of genes and a set of conditions. However, this
method requires important changes of gene expressions
because it uses hypergeometric distributions to compute
correlations. Our correlation index is based on MI. There-

fore, we can detect nonlinear dependencies with no corre-
lation. An example is depicted in Fig. 3(III).

The characteristics of LSMI and existing MI estimators are
presented in Table 1. Detail comparisons are described in
the Methods section. The kernel density estimator (KDE)
[6,7] is distribution-free. Model selection is possible by
likelihood cross-validation (LCV). However, a hard task
of density estimation is involved. Estimation of the entro-
pies using k-nearest neighbor (KNN) samples [8] is distri-
bution-free and does not involve density estimation
directly. However, no model selection method exists for
determining the number of nearest neighbors. Edgeworth
expansion (EDGE) [9] does not involve density estima-
tion or any tuning parameters. However, it is based on the
assumption that the target distribution is close to the nor-
mal distribution. On the other hand, LSMI is distribution-
free; it involves no density estimation, and model selec-
tion is possible by cross-validation (CV). Therefore, LSMI
overcomes limitations of the existing approaches. Within
a cell, most processes have a nonlinear relation such as
enzyme effects and feedback loops. The lack of one advan-
tage might cause difficulty of application to biological
datasets. By virtue of these advantages, LSMI can detect
correlation or independence between features of complex
cellular processes.
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Table I: Relation between existing and proposed Ml estimators.
If the order of the Edgeworth expansion is regarded as a tuning
parameter, model selection of EDGE is expected to be 'Not
available'.

Density estimation Model selection Distribution
KDE Involved Available Free
KNN Not involved Not available Free
EDGE Not involved Not necessary  Nearly normal
LSMI Not involved Available Free

To investigate the efficiency of feature selection, we com-
pare areas under the curve (AUCs) with LSMI (CV),
KDE(LCV), KNN(k) for k = 1, 5, EDGE, and PCC. Details
of these methods are described in the Methods section.
Fig. 4 depicts AUCs for 12 GO term classifications. The x-
axis shows the number of stimulus groups used for the
prediction. The y-axis means averaged AUC over 10 trials,
where AUCs are calculated as the area under the receiver
operating characteristic (ROC) curve, which is often used
for diagnostic tests. Each figure shows AUC curves calcu-
lated using the six methods.

In the AUC figures, the higher curves represent better pre-
dictions. For example, Fig. 4(a) shows that LSMI is the
highest position, which means that LSMI achieves the best
performance among the six methods. In Figs. 4(b) and
4(d), KNN(1) and KNN(5), which are denoted by the
light blue and dotted light blue lines, have the best per-
formance. However, in Figs. 4(i), (j) and 4(1), averaged
AUCs of KNN using numerous groups are high, whereas
the AUCs using small and few groups are low. No system-
atic model selection strategies exist for KNN and therefore
KNN would be unreliable in practice. Fig. 4(c) depicts that
EDGE, which is indicated by the light green line, has the
highest AUC. In fact, EDGE presumes the normal distribu-
tion. Consequently, it works well only on a few datasets.
From these figures, LSMI indicated by the blue line
appears to be the best feature selection method.

Conclusion

We provided a global view of the associations between
stimuli and changes of biological processes based on gene
expression profiles. The association is generally difficult to
use for making models because of nonlinear correlation.
To cope with this problem, we introduced a novel feature
selection method called LSMI, which uses MI and can be
computed efficiently. In comparison to other feature
selection methods, LSMI showed better AUCs in predic-
tion of biological process functions. Consequently, our
feature selection results would be more reliable than those
obtained using the other methods. We calculated the asso-
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ciation between stimuli and GO biological process terms
using gene expression profiles. The result revealed that the
stimuli are categorized into four types: related to DNA/
RNA metabolic process, gene expression, protein meta-
bolic process, and protein localization. LSMI enabled us
to reveal the global regulation of cellular processes from
comprehensive transcription datasets.

Methods

Mutual information estimation

A naive approach to estimating MI is to use a KDE [6,7],
Le., the densities p,(x, y), px(x), and py(y) are separately
estimated from samples and the estimated densities are
used for computing MI. The band-width of the kernel
functions could be optimized based on likelihood cross-
validation (LCV) [20], so there remains no open tuning
parameter in this approach. However, density estimation
is known to be a hard problem [4] and therefore the KDE-
based method may not be so effective in practice.

An alternative method involves estimation of entropies
using KNN. The KNN-based approach was shown to per-
form better than KDE [21], given that the number k is cho-
sen appropriately — a small (large) k yields an estimator
with small (large) bias and large (small) variance. How-
ever, appropriately determining the value of k is not
straightforward in the context of MI estimation.

Here, we propose a new MI estimator that can overcome
the limitations of the existing approaches. Our method,
which we call Least-Squares Mutual Information (LSMI),
does not involve density estimation and directly models
the density ratio:

ny(xf}’)
Px(x)py ()

The solution of LSMI can be computed by simply solving
a system of linear equations. Therefore, LSMI is computa-
tionally very efficient. Furthermore, a variant of cross-val-
idation (CV) is available for model selection, so the values
of tuning parameters such as the regularization parameter
and the kernel width can be adaptively determined in an
objective manner.

w(x,y) =

A new MI estimator

In this section, we formulate the MI inference problem as
density ratio estimation and propose a new method of
estimating the density ratio.

Ml inference via density ratio estimation

Let Dy(c R%) and Dy(c ]Rdy) be the data domains

and suppose we are given n independent and identically
distributed (i.i.d.) paired samples
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Classification error. Classification error against the number of feature groups for the yeast cell datasets.

{(x;,7))|x;€Dx,y; €Dy},

drawn from a joint distribution with density p(x, y). Let
us denote the marginal densities of x; and y; by p,(x) and
py(y), respectively. The goal is to estimate squared-loss MI
defined by Eq.(1).

Our key constraint is that we want to avoid density esti-
mation when estimating MI. To this end, we estimate the
density ratio w(x, y) defined by Eq.(2). Given a density ratio

estimator w (x, y), MI can be simply estimated by

LO0Y) =5 ) (e y) 1)
n

i,j=1

We model the density ratio function w(x, y) by the follow-
ing linear model:

Wo(x,y) =a @(x,y),

where o = (¢, @,, ..., @) <are parameters to be learned
from samples, «denotes the transpose of a matrix or a vec-
tor, and
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#(x ) = (41(xy), $(x,Y), - B(xY)) <

are basis functions such that

o(x,y) =20, forall (x,y)eDyxDy.

0, denotes the b-dimensional vector with all zeros. Note

that ¢(x, y) could be dependent on the samples {x;,y;}1,,
i.e., kernel models are also allowed. We explain how the
basis functions ¢(x, y) are chosen in the later section.

A least-squares approach to direct density ratio estimation
We determine the parameter « in the model w, (x, y) so

that the following squared error J,, is minimized:

Jo(@) = [[ (walr) = (s )0, 5)p, (r)isdy
= [ wate ) om, (r)asay

_” W (%, Y)Py (%, y)dxdy + C,

where Cz%”w(x,y)PXy(x,y)dxdy is a constant and

therefore can be safely ignored. Let us denote the first two
terms by J:

J(@)=Jo(@)-C=_a"Ha~h"a,
where
H = H o(x,)o(x,y) " px(x)py (y)dxdy,

= [ ot 1)psy (o yxisdy.

Approximating the expectations in H and h by empirical
averages, we obtain the following optimization problem:

~ . 1
a = arg mln[aTHa -h'a+la'a :I,
aeR? 2

where we included a regularization term Aa<a and

H

n
1
?Zw(xi,yj)fp(xi,yj)i

i,j=1

n
1
52(1}(%7,-)
i=1

h:
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Differentiating the objective function (3) with respect to a
and equating it to zero, we can obtain an analytic-form
solution:

a=(H+AI,)™"h,

where I, is the b-dimensional identity matrix.

We call the above method Least-Squares Mutual Informa-
tion (LSMI). Thanks to the analytic-form solution, the
LSMI solution can be computed very efficiently.

Convergence bound

Here, we show a non-parametric convergence rate of the
solution of the optimization problem (3).

Let G be a general set of functions on D yxD, . For a

function g (e @), let us consider a non-negative function
R(g) such that

sup(g(x, ¥) < R(g)]-
XY

Then the problem (3) can be generalized as
1\ 1\
W := arg min —2ng]- - —Zgi/i +A,R(2)* |,
86 | 2nT 5 e

where g; ;:= g(x; ¥;). We assume that the true density ratio

function w(x, y) is contained in model G and satisfies
w(x, y) <M, for all (x, y) € Dy x Dy.
We also assume that there exists y (0 <y < 2) such that
H(G a1 La(pxpy)) = O(M/ 1)),
where
G m=1{8€GI R(g) < M}

and H; is the bracketing entropy of G, with respect to

the L,(pp,)-norm [22,23]. This means the function class

G is not too much complex.

Then we have the following theorem. Its proof is omitted
due to lack of space.

Theorem 1 Under the above setting, if A, — 0 and A" =

0(n2/(2+7) then

Page 9 of 12
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"’2’ - “’"z :Op(li/z)'

where ||-||, means the L,(pspy)-norm and O, denotes the

asymptotic order in probability.

This theorem is closely related to [24,25]. [24] considers
least squares estimators for nonparametric regression, and
related topics can be found in Section 10 of [23].

CV for model selection and basis function design

The performance of LSMI depends on the choice of the
model, i.e., the basis functions ¢(x, y) and the regulariza-
tion parameter 4. Here we show that model selection can
be carried out based on a variant of CV.

First, the samples {z; | z; = (x;,¥;)} 1, are divided into K
disjoint subsets {Z,}X . Then a density ratio estimator

wy, (%, y) is obtained using {;}, ., and the cost J is approx-

imated using the held-out samples ; as

~ 7 ,2 A ’ 7
j-on) 2 Wk(xrz)’) _ z We(xy)

.7 o n
xyezy 2nk (x"y)e 2 ke

where n;,is the number of pairs in the set . X,z is the
’ R

summation over all combinations of x' and y' (i.e, nj
terms), while X ez is the summation over all pairs

(x', y") (i.e., n, terms). This procedure is repeated for k = 1,

jK=Cv)

2, ..., Kand its average is used as an estimate of J:

K
jK=CV) _ %Z jlk-cv),
k=1

JE=Y) is an almost unbiased estimate

We can show that
of the true cost J, where the 'almost'-ness comes from the
fact that the number of samples is reduced in the CV pro-
cedure due to data splitting [4]. A good model may be
chosen by CV, given that a family of promising model
candidates is prepared. As model candidates, we propose

using a Gaussian kernel model:

e ),

¢/ (x,y)=exp 7 [Ply=v)
20

Where

http://www.biomedcentral.com/1471-2105/10/S1/S52

{(W/W)};zj:l

are 'center' points randomly chosen from

{(x;v) Y

d(y = v€) is a indicator function, which is 1 ify =v€and 0
otherwise.

In the experiments, we fix the number of basis functions at
b = min(100, n),

and choose the Gaussian width o and the regularization
parameter A by CV with grid search.

Relation to existing methods
In this section, we discuss the characteristics of existing
and proposed approaches.

Kernel density estimator (KDE)

KDE [6,7] is a non-parametric technique to estimate a
probability density function p(x) from its i.i.d. samples

{x;}, . For the Gaussian kernel, KDE is expressed as

n 2

. 1 [|x—x; ||

p(x) = d 22@‘1’ 2 |
n 27:02) / i=1 20

The performance of KDE depends on the choice of the ker-
nel width oand it can be optimized by likelihood CV as fol-

lows [20]: First, divide the samples {x;}!; into K disjoint
subsets {X},}X_, . Then obtain a density estimate p x, (%)
from {X;},., and compute its hold-out log-likelihood
for X, :

1
|X7k| 2 logpy, (x).

xe X,

This procedure is repeated fork = 1, 2, ..., Kand choose the
value of o such that the average of the hold-out log-likeli-
hood over all k is maximized. Note that the average hold-
out log-likelihood is an almost unbiased estimate of the

Kullback-Leibler divergence from p(x) to p (x), up to an

irrelevant constant.
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Based on KDE, MI can be approximated by separately esti-
mating the densities p,(x, y), pi(x) and py(y) using
{x;,y:}, . However, density estimation is known to be a

hard problem and therefore the KDE-based approach may
not be so effective in practice.

k-nearest neighbor method (KNN)
Let N, (i) be the set of k-nearest neighbor samples of (x;

v;), and let
Tx(z)=max{||x,——x,—»|||(x,-—y,-r)eNk(i)},
ty (i) = max{ly; = ye || (xe = ve ) eNu(i)},
ny (i):=#{zy || % - 2] < 1, (i)},

"y(i)¢="‘*‘{zi'|||1’i_?’i’"S Ty(i)}'

Then the KNN-based MI estimator is given as follows 8:

H(XY)=y(k)+w(n)-

where w is the digamma function.

A practical drawback of the KNN-based approach is that
the estimation accuracy depends on the value of k and
there seems no systematic strategy to choose the value of
k appropriately.

Edgeworth expansion (EDGE)
MI can be expressed in terms of the entropies as

I(X, Y) = H(X) + H(Y) - H(X, Y),

where H(X) denotes the entropy of X:

H(X):=—Jpx(x)1ogpx(x)dx

Thus MI can be approximated if the entropies above are
estimated.

In the paper [9], an entropy approximation method based
on the Edgeworth expansion is proposed, where the entropy
of a distribution is approximated by that of the normal
distribution and some additional higher-order correction
terms. More specifically, for a d-dimensional distribution,
the entropy is approximated by

http://www.biomedcentral.com/1471-2105/10/S1/S52

1 : 1 e
2
H=H normal — EE Ki,i,i_z E 11,]
i=1 ,Jj=1i
d
1 2
T72 L W
i,j.k=1,i<j<k

where H, ... is the entropy of the normal distribution
with covariance matrix equal to the target distribution and
«;;% (1 <1, j, k <d) is the standardized third cumulant of
the target distribution. In practice, all the cumulants are
estimated from samples.

If the underlying distribution is close to the normal distri-
bution, the above approximation is quite accurate and the
EDGE method works very well. However, if the distribu-
tion is far from the normal distribution, the approxima-
tion error gets large and therefore the EDGE method may
be unreliable. In principle, it is possible to include the
fourth and even higher cumulants for further reducing the
estimation bias. However, this in turn increases the esti-
mation variance; the expansion up to the third cumulants
would be reasonable.
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