
BioMed CentralBMC Bioinformatics

ss
Open AcceResearch
Fine-grained parallel RNAalifold algorithm for RNA secondary
structure prediction on FPGA
Fei Xia*, Yong Dou*, Xingming Zhou, Xuejun Yang, Jiaqing Xu and
Yang Zhang

Address: National Laboratory for Parallel&Distributed Processing, Department of Computer Science, National University of Defense Technology,
ChangSha, 410073, PR China

Email: Fei Xia* - xcyphoenix@nudt.edu.cn; Yong Dou* - yongdou@nudt.edu.cn; Xingming Zhou - xmzhou@nudt.edu.cn;
Xuejun Yang - yangxuejun@nudt.edu.cn; Jiaqing Xu - xjqanswer@hotmail.com; Yang Zhang - youngzhxm@gmail.com

* Corresponding authors

Abstract
Background: In the field of RNA secondary structure prediction, the RNAalifold algorithm is one
of the most popular methods using free energy minimization. However, general-purpose
computers including parallel computers or multi-core computers exhibit parallel efficiency of no
more than 50%. Field Programmable Gate-Array (FPGA) chips provide a new approach to
accelerate RNAalifold by exploiting fine-grained custom design.

Results: RNAalifold shows complicated data dependences, in which the dependence distance is
variable, and the dependence direction is also across two dimensions. We propose a systolic array
structure including one master Processing Element (PE) and multiple slave PEs for fine grain
hardware implementation on FPGA. We exploit data reuse schemes to reduce the need to load
energy matrices from external memory. We also propose several methods to reduce energy table
parameter size by 80%.

Conclusion: To our knowledge, our implementation with 16 PEs is the only FPGA accelerator
implementing the complete RNAalifold algorithm. The experimental results show a factor of 12.2
speedup over the RNAalifold (ViennaPackage – 1.6.5) software for a group of aligned RNA
sequences with 2981-residue running on a Personal Computer (PC) platform with Pentium 4 2.6
GHz CPU.

Background
Ribonucleic Acid (RNA) is an important molecule that
performs a wide range of functions in biological systems,
such as synthesizing proteins, catalyzing reactions, splic-

ing introns and regulating cellular activities. The function
of an RNA molecule generally can be derived from its sec-
ondary structure. Currently, the only completely accurate
method of determining the folded structure of an RNA

from The Seventh Asia Pacific Bioinformatics Conference (APBC 2009)
Beijing, China. 13–16 January 2009

Published: 30 January 2009

BMC Bioinformatics 2009, 10(Suppl 1):S37 doi:10.1186/1471-2105-10-S1-S37

<supplement> <title> <p>Selected papers from the Seventh Asia-Pacific Bioinformatics Conference (APBC 2009)</p> </title> <editor>Michael Q Zhang, Michael S Waterman and Xuegong Zhang</editor> <note>Research</note> </supplement>

This article is available from: http://www.biomedcentral.com/1471-2105/10/S1/S37

© 2009 Xia et al; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10/S1/S37
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
molecule is by X-ray crystallography and nuclear magnetic
resonance (NMR), however, those methods are time con-
suming and very expensive. Therefore, computational
methods have been widely used in the field of RNA sec-
ondary structures prediction, such as thermodynamic
energy minimization methods, homologous comparative
sequences, stochastic context-free grammar methods
(SCFG) and genetic algorithm and so on. Among which
the most popular structure prediction algorithm is the
Minimum Free Energy (MFE) method [1]. It was pre-
sented in 1981 by M. Zuker and has been implemented by
three famous programs: Mfold [2], RNAfold [3] and
RNAalifold [4] (the Vienna RNA package [5]).

Both Mfold and RNAfold implement the Zuker algorithm
for computing minimal free energy (MFE) structures by
folding a single sequence and employ the same thermody-
namic parameters [6]. The time complexity is O(n3) and
the spatial complexity is O(n2) by limiting the length of
interior loops, where n is the sequence length. RNAalifold
[4] implements an extension of the Zuker algorithm for
computing a consensus structure from RNA alignments.
The algorithm computes an averaged energy matrix and a
covariation score matrix, augmented with penalties for
inconsistent sequences. The algorithm requires extreme
computational resources O(m × n2 + n3) in time, and
O(n2) in space, where n is the sequence length and m is the
number of sequences in the alignment [7].

Free energy minimization is the most common method
for RNA secondary prediction. However, this method typ-
ically suffers two drawbacks. The first one is the limitation
of structure prediction accuracy. The reason is that the
thermodynamic rules are incomplete and the current
model itself is an estimate of the real physics of RNA fold-
ing [8]. In practice, benchmarks of prediction accuracy on
single RNA sequence show that current RNA folding pro-
grams get about 50–70% of base pairs correct on average
[9]. The second one is the extreme demand for computa-
tional resources. The cost is intolerable with the growth in
RNA database.

There are two kinds of parallel processing solutions based
on MFE method at present, but both of them only consid-
ered the application of single sequence folding, Mfold and
RNAfold, which are based on Zuke algorithm. High per-
formance parallel computers with shared or distributed
memory, such as SMP multiprocessor [10] or cluster sys-
tems [11] are widely used to accelerate Zuker algorithm
[12,13]. The main idea is to partition the matrix in a reg-
ular fashion and to distribute tasks to multiple processors.

Unfortunately, the simple coarse-grain zone blocking
method (1 million cells in a region) results in severe load
imbalance because the size of the computation for each

element is closely related with its position in the matrix.
In [14-16], the authors presented some parallel imple-
mentations of the Zuker algorithm and methods for load
balance. However, they did not consider communication
delays, which account for 50% of the execution time for a
sequence length 9212, due to fine grain data transfer. They
achieve a 19× speedup on a 32-processor system, DAWN-
ING 4000A [10], and 8× on a cluster with 16 Opteron
processors running at 2.2 GHz, each with 3 GB memory
[11]. The other solution to accelerate the Zuker algorithm
is using multi-core architecture. Based on the IBM
Cyclops64 simulator, G.M. Tan et al. [17] presented a par-
allel Zuker algorithm. They report a 30× speedup on 64
cores for an RNA sequence length of 2048. Parallel effi-
ciency is greatly limited by complicated data dependency
and tight synchronization. Thus, efficiently executing the
MFE algorithm on a general-purpose computer or a multi-
core architecture becomes very awkward.

Recently, the use of Field Programmable Gate-Array
(FPGA) coprocessors has become a promising approach
for accelerating bioinformatics applications. The compu-
tational capability of FPGAs is increasing rapidly. The top
level FPGA chip from Xilinx Virtex5 series contains 51840
slices and 10368 K bits storage. The reconfigurability of
FPGA chips also enables algorithms to be implemented
with different computing structures on the same hardware
platform.

Accelerating the MFE algorithm on FPGA chips is a chal-
lenging task. First, the non-uniform multi-dimensional
data dependences with variable dependence distance
make it difficult to find a well-behaved task assignment
for load balance. Second, the irregular spatial locality with
a great deal of small granularity access operations make it
difficult to optimize memory scheduling for efficient
external access. Third, multiple copies of free energy
parameters for parallel processing consume a large
amount of on-chip memory and memory ports limiting
the physical scale of parallel processing. Finally, the lim-
ited on-chip memory cannot hold all O(n2) matrices,
resulting in long-latency matrix loads from external
Dynamic Random Access Memory (DRAM). So far, the
algorithm accelerator based on MFE method is still under
research. G.M. Tan et al. [18] introduced a fine-grained
parallelization of the Zuker algorithm which considers
only the interior loop calculation rather than the whole
algorithm. A recent paper, Arpith Jacob et al. [19], imple-
mented the simplest RNA folding algorithm, Nussinov
algorithm [20], on a Virtex-II 6000 FPGA, but only input
sequences with 30 ~ 60 bases can be predicted. Both pre-
sented results from simulation only.

In this paper, we propose a systolic array structure includ-
ing one master PE and multiple slave PEs for fine grain
Page 2 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
hardware RNAalifold algorithm implementation on
FPGA. We optimize the nested loop structure and reorgan-
ize the computation order by analyzing the data depend-
ency in the original RNAalifold algorithm and improve
the spatial locality in folding process. For load balance, we
partition tasks by columns and assign tasks to PEs. We
aggressively exploit data reuse schemes to minimize the
need for loading energy matrices from external memory.
Specifically, we add a cache to buffer a triangular sliding
window of one of the matrices, most of which will be used
in computing the next element in the column. We also
transfer local elements directly to the next adjoining PE. In
our design, only the master PE loads energy matrices from
external DRAM. The remaining slave PEs simply wait for
data from the previous PE. We also propose several meth-
ods that collectively reduce the storage requirements of
the energy parameter tables by 80%-fitting curves with
piecewise linear function, replacing scattered points with
register constants and compressing the address space
while shortening data length. The whole array structure is
carefully pipelined in order to overlap multiple PE's col-
umn computations, master PE's load operations and mul-
tiple PE's write-back operations as much as possible. We
implemented an RNAalifold algorithm accelerator with
16 processing elements on a single FPGA chip. The exper-
imental results show a factor of 12× speedup over the
ViennaRNA-1.6.5 software for a group of aligned RNA

sequences with 2981-residue each running on a PC plat-
form with Pentium 4 2.6 GHz CPU. Moreover, the power
consumption is only about 1/8 of general-purpose micro-
processor.

Overview of the RNAalifold algorithm
Brief introduction
The RNAalifold algorithm predicts a consensus secondary
structure from a group of aligned RNA sequences by cal-
culating an averaged minimum free energy for the align-
ment, incorporating covariance information into the
energy model [21]. The essential idea of RNAalifold algo-
rithm is still the thermodynamic energy minimization
theory, which was first presented by M. Zuker in 1981. It
uses a "nearest neighbor" model and empirical estimates
of thermodynamic parameters for neighboring interac-
tions and loop entropies to score structures [7]. The data
input of RNAalifold is the result of multiple sequence
alignment and the common secondary structure (base
pairing result) will be generated through below three
processing phases.

Calculating co-variance bonus
The function of this stage is calculating the co-variance
bonus for each pair depending on compensatory or con-
sistent mutations. Then it uses the bonus to judge if the

An example of input sequencesFigure 1
An example of input sequences. S[0], S[1], ..., S[m] represent a group of aligned RNA sequences. Where i and j represent
the nucleotides' location in RNA sequence, k is the ID of current input sequence and n is the sequence length.

S[1]

S[2]

S[3]

S[m]

A C G A C G U A C

U C G A U C G A U C

A CG

U

U A CG U A G

U G C A U G C A U G

i
jk
Page 3 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
residues located on the two positions can consist a base-
pair and direct the energy filling process.

Filling energy matrices
Suppose S[0], S[1], ..., S[m] is a group of aligned RNA
sequences as shown in Figure 1. r1r2...ri...rj...rn is an RNA
sequence, which consists of four nucleotides: A, C, G, U
and a blank inserted by multiple sequence alignment tool,
where i and j represent the nucleotides' location in RNA
sequence, k is the ID of current input sequence and n is the
sequence length.

The core of energy matrices filling stage in RNAalifold is a
triple cycle operation as shown in Figure 2. The two con-
trol variables, i and j in surrounding loops, moves alone
the horizontal axis to pass through every place and search
for the potential base-pairs. The inner loop, control varia-
ble k, moves down and implements the free energy accu-
mulation of substructure located on (i, j) position in
different energy matrices. The value of V(i, j) equals the
minimum value among the four energy parameters that
four fundamental substructures corresponding respec-
tively, which stands for the energy of an consensus opti-
mal structure of the common subsequence ri...rj.

The vector W holds the minimal free energy for certain
structures of common subsequences. The element, W(j),
is the energy of a consensus optimal structure of the com-
mon subsequence r1r2...rj. Once the longest fragment, the
complete sequence, is considered, the lowest conforma-
tional free energy is calculated then the filling step ends
and W(n) stands for the energy of the most energetically
stable structure of the aligned RNA sequences. The calcu-
lation of W(j) depends on its left elements from W(1) to
W(j-1) and the jth column in matrix V, V (*, j).

As for one of the input RNA sequence, S[k], the energy
computing for each base-pair (ri·rj) involves four triangu-
lar matrices: V, VBI, VM, WM and three energy functions:
eS(i, j), eH(i, j), eL(i, j, i', j'). The recurrence relations as
shown in Figure 3.

V (i, j) is the energy of the optimal structure of the subse-
quence riri+1�rj where rirj comprises a base pair. VBI(i, j) is
the energy of the subsequence from ri through rj where rirj
closes a bulge or an internal loop. VM(i, j) is the energy of
the subsequence from ri through rj where rirj closes a multi-
branched loop. WM (i, j) is the energy of the subsequence
from ri through rj that constitutes part of a multi-branched

The RNAalifold algorithm descriptionFigure 2
The RNAalifold algorithm description. This figure describes the core of energy matrices filling stage in RNAalifold.

For (i=1, i≤n, i++) {
 For (j=i+1, j≤n, j++) {
 For (k=1, k≤m, k++){

CalculateeH (i,j), eS′(i,j), VBI(i,j), VM(i,j), WM(i,j), V(i,j);
 eH(i,j) ← eH(i,j) + eH(i,j)k ;

eS′(i,j) ← eS′(i,j) + eS′(i,j)k ;
VBI(i,j) ← VBI(i,j) + VBI(i,j)k ;
VM(i,j) ← VM(i,j) + VM(i,j)k ;

 } // eS′(i,j) = eS(i,j)k + V(i+1,j-1)k ;
V(i,j) ← min {eH(i,j), eS′(i,j), VBI(i,j), VM(i,j)} ;

 }
}
W(j) ← min {W(j-1), min[V(i,j) + W(i-1)]}, (1≤ i <j, j >0);
Page 4 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
loop structure. eS(i, j), eH(i, j) and eL(i, j, i', j') are free
energy functions, which are used to compute the energy of
stacked pair, hairpin loop and internal loop respectively.
In software folding solution, these free energy functions
are calculated by looking up tables of the standard free
energy parameters, which are detected by experimental
method. The storage requirement of those tables is about
1 M Byte.

Backtracking
When the corresponding energy matrices of all input
sequences have been filled out, the free energy for optimal
consensus structure is known, which is stored in the ele-
ment W(n), but the structure is unknown. The phase of
backtracking is performed to determine the structure lead-
ing to the lowest free energy, using the free energies calcu-
lated in the filling step to revivify the exact structure.
Experiments show that the energy matrices filling step
consumes more than 99% of the total execution time.
Thus, computing energy matrices quickly is critical.

Characteristics of RNAalifold
We make five observations about the characteristics of the
RNAalifold algorithm. These observations suggest details
of the parallel implementation.

Observation 1. The computation size of each element in an energy
matrix is variable and closely related with its position
Considering the most time-consuming calculation of
matrix V for each input sequence, which is an upper trian-
gle matrix as described in formula (1). The computation
size (the number of add operations) for each element, C(i,
j), is closely related with the indices i and j, as shown in
formula (5).

The computation size of jth column V(*, j), C(*, j), is the
sum of C(i, j) in the jth column:

Where, S = 1 + 3 + 6 + � + × (j - 1) × (j - 2). The differ-

ence in computation size between column j and column j

+ 1 is ΔC(j, j + 1):

We can find that the computation size gradually increases
with the matrix location moving up from bottom to top
in the same column and increases with the location mov-
ing right in the same row. Specifically, the workload of
V(1, n) is the heaviest one, it depends on the entire row
and column elements of WM matrix and the bottom-left

triangle region of V(1, n) with the maximum size × 30

× 31. This workload imbalance suggests a cyclic column
allocation scheme, in which each processing element (PE)
is assigned one column of matrix V. Each PE processes its
column from bottom to top.

C i j j i
j i

j i j i
j i

(,) ()
, ;

() ()
,

= − + +

× − >

− × − + − ≤

⎧

⎨
⎪⎪

⎩
⎪
⎪

1

30 31
2

30

1
2

30

(5)

C j
j j

S j

S
j

j
(,)

()
, ;

()
, ;

∗ = ⋅ − +
≤ ≤

+ × × − >

⎧
⎨
⎪

⎩⎪

1
2

3 30

30 31 30
2

30

(6)

1
2

ΔC j j j

j j
j

j
(,)

()
, ;

, ;
+ = +

× − ≤ ≤

× >

⎧

⎨
⎪⎪

⎩
⎪
⎪

1

1
2

3 30

30 31
2

30

(7)

1
2

The recurrence relations in RNAalifoldFigure 3
The recurrence relations in RNAalifold. The energy computing recurrence relations for each base-pair (ri·rj) in RNA
sequence.

() () () () () () ()
() () () ()
() () () ()

, min , , , 1, 1 , , , , ,

, min , , ', ' ', ' , ' '

, min 1, -1 , -1 , 1 -1

V i j eH i j eS i j V i j VBI i j VM i j i j

VBI i j eL i j i j V i j i i j j

VM i j a WM i h WM h j i h j

⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦
⎡ ⎤⎣ ⎦

= + + − < (1)

= + < < < (2)

 = + + + + < ≤

() () () (){ } (), min , , min , 1 , ,WM i j V i j b WM i h WM h j i h j

⎧
⎪
⎪
⎪
⎨
⎪
⎪

⎡ ⎤⎪ ⎣ ⎦⎩

 (3)

 = + − + < ≤ (4)
Page 5 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
Observation 2. Parallel computation of V requires multiple copies of
the free energy parameters
The calculation of each element of matrix V involves look-
ing up parameter tables to get the values of the free energy
functions eH, eS and eL, obtained from experimental
methods. The tables are addressed by pairs of RNA resi-
dues. To calculate V(i, j), we first find the residue pair
indexed by i and j in the RNA sequence, then lookup the
tables to obtain the energy values. The number of query
operations in RNAalifold for computing matrix V is
O(n3), n is the RNA sequence size. For parallel computing,
centralized tables will become the performance bottle-
neck. We have to distribute the parameter table to each PE
so that energy values can be read without memory con-
flict. But the storage requirement of entire free energy
parameter tables at 37°C is more than 128 KByte. In addi-
tion to other storage requirements for data buffers, the
total storage requirement will greatly exceed the capacity
of the current largest FPGA chip if the number of PEs is
over 4. As a result, for RNAalifold, the storage factor has a
major effect on the scalability of parallel processing.

We figured out several efficient compression approaches
to reduce the storage overhead of the free energy parame-
ters. First, we partition the loop destabilizing energies into
segmented linear functions. The transformation from
query operations to arithmetic operations reduces the
requirements for memory ports and storage capacity. The
linear functions are simple, require little logic, and have
no impact on accuracy. Second, we represent a few scat-
tered points using registers. Some parameters in free
energy tables are scattered too widely to be fitted by sim-
ple linear functions. Instead of using block RAM to hold
these parameters, we assign these parameters to registers.
Third, we compress the address space and shorten the data

length. Interior loop energy data occupies more than 80%
of the total parameter tables, when four nucleotides, A, C,
G, U are encoded directly. Instead, we encode the six base
pairs, AU, CG, CU, GC, UA and UC using 3 bits. The table
address length reduces from 16-bit occupying 64 K entries
to 14-bit for 16 K entries. The storage requirement is com-
pressed by 75%. Finally, we transform the raw data of free
energy parameter tables from signed decimal fraction into
complementary integer reducing data width from 16-bit
to 8-bit without affecting accuracy. With the above
schemes, the storage requirement of free energy parameter
tables drops by 80%. As a result, more processing ele-
ments can be fitted in FPGA chip.

Observation 3. We can use a sliding window to reuse data within a
column
From formula (2), we observe the element VBI(i, j), which
is used to calculate V (i, j), depends on the elements
located in the bottom-left triangle region of V (i, j). As
shown in Figure 4, the region is a triangle window with
the maximum size of 30 × 30 due to the limitation of the
interior loop length. In Figure 4, the blue triangle window
in matrix V, called window A, contains the necessary data
for computing the element A of VBI. With the computa-
tion traveling upward in the same column from A, A1, to
A2, the triangle window moves from bottom to top.

We observe that only one row of elements is updated
when the window slides from A to A1, the other elements
remain unchanged. We use a local buffer of 465 elements

(× 30 × 31) and prefetch 30 elements of V into it before

calculating each element of VBI, saving 435 elements. This

1
2

The data dependence in RNAalifoldFigure 4
The data dependence in RNAalifold. (a) shows the elements of matrix VBI depend on a triangle window of matrix V; (b)
shows the sliding window moving upward; (c) shows the data reusing between adjoining columns.

A

jMatrix V n

n

B

C

j

i

Matrix VBI n

n

A

D

PE1

PE2
PE3

PE4

B

C

D

L=30

A

jMatrix V n

n

A1

A2

A1

A2

L=30

 L=30

i i

(a) (b) (c)
Page 6 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
greatly reduces the memory bandwidth requirements for
loading elements of V from external DRAM.

Observation 4. We can use a sliding window to reuse data between
adjoining columns
The triangle windows in adjoining columns exhibit an
overlapped area which can be exploited for additional
data reuse. Assuming the four elements A, B, C and D
located in four adjoining columns in Figure 4(c), we
arrange four PEs, PE1, PE2, PE3 and PE4 for parallel com-
puting, respectively. In Figure 4(c), we observe that trian-
gle B contains two parts, one is a sub-triangle residing in
triangle A completely, and the other is a column of A with
a maximum size of 30 elements which becomes available
before element A is computed. The same overlapped area
can be found between B and C, C and D. This observation
implies that except that the first column PE1 has to hold
the entire triangle window, the other column PEs have to
wait only for the elements transferred from the previous
PE. A similar scenario is found in the computation of WM.
As a result, by transferring data between the adjoining col-
umns processing, we can greatly reduce the memory
bandwidth requirements for loading elements of V and
WM from external DRAM.

Observation 5. We can reorganize the computation order in
parameter accumulating among multiple energy matrices to improve
the spatial locality
In order to recover the consensus structure of the common
subsequences from position i to j in a group of aligned

RNA sequences, the sum of energy value of all fragments
located in the same position (i, j) must be figured out. In
the original RNAalifold algorithm, the sum-of-energy is
calculated by adding up the energy of the same position in
all input sequences one by one (the parameter k increases
from 1 to m in the inner loop as shown in Figure 5(a)).
According the recurrence relations (1)~(4) and the obser-
vations 3 and 4, the parameter V(i, j) of each sequence cor-
responding is depend on its energy matrices V and WM.

The jumping of current energy computing and accumula-
tion operand among the multiple energy matrices will
cause the high-frequency data exchanging (RNA
sequences and the elements located in sliding triangle
window in every energy matrix V) between FPGA and off-
chip memory. As a result the poor spatial locality and low
efficiency of external memory access will become the per-
formance bottleneck in FPGA implementation.

To address the problem, we improved the nest relation-
ship of the triple cycle operation in original algorithm. In
the original algorithm as shown in Figure 5(a), only the
current computing result, the four energy components on
position (i, j) (eH (i, j)k, eS' (i, j)k, VBI (i, j)k, VM (i, j)k),
can be reused.

However, in the optimized algorithm, the elements
located in the triangle region of V (i, j) and current row-
column of WM (i, j) can be reused for computing the next
elements V (i - 1, j) and V (i, j + 1). As a result, we can elim-

The contrast between original and optimized RNAalifold algorithmFigure 5
The contrast between original and optimized RNAalifold algorithm. (a) shows the kernel loops of energy filling stage
in the original RNAalifold algorithm; (b) shows those of energy filling stage in the optimized RNAalifold algorithm. The main dif-
ference lies in the inner loop (variable k) of RNAalifold, which is brought out and the free energy computation (the Calculate
statement, which implements the recurrence relations (1)~(4)) and accumulation (the 4 assignment statements) process are
separated. In optimized algorithm, the free energy matrices of each RNA sequence corresponding are calculated and stored by
executing the triple For-loop operations at first. Then, the independent For-loop statement implements the accumulation
operation for adding up the free energy parameters for all input sequences. At last, the matrices V and W are calculated for
backtracking.

For (i=1, i≤n, i++) {
 For (j=i+1, j≤n, j++) {
 For (k=1, k≤m, k++){

CalculateeH (i,j), eS′(i,j), VBI(i,j), VM(i,j), WM(i,j), V(i,j);
 eH(i,j) ← eH(i,j) + eH(i,j)k ;

eS′(i,j) ← eS′(i,j) + eS′(i,j)k ;
VBI(i,j) ← VBI(i,j) + VBI(i,j)k ;
VM(i,j) ← VM(i,j) + VM(i,j)k ;

 } // eS′(i,j) = eS(i,j)k + V(i+1,j-1)k ;
V(i,j) ← min {eH(i,j), eS′(i,j), VBI(i,j), VM(i,j)} ;

 }
}
W(j) ← min {W(j-1), min[V(i,j) + W(i-1)]}, (1≤ i <j, j >0);

For (k=1, k≤m, k++) {
 For (i=1, i≤n, i++) {
 For (j=i+1, j≤n, j++){

CalculateeH (i,j), eS′(i,j), VBI(i,j), VM(i,j), WM(i,j), V(i,j);
 }

Storethe energy matrixV k, WMk, eHk, eS′k, VBIk, VMk ;
 }
}
For (k=1, k≤m, k++){

Add upWM k, eHk, eSk, VBIk, VMk ; }

() () () () ()
1 1 1 1

, , ' , , , , ,, min
m m m m

k k k keH i j eS i j VBI i j VM i jV i j ⎧ ⎫
⎨ ⎬
⎩ ⎭

= ∑ ∑ ∑ ∑
W(j) ← min {W(j-1), min[V(i,j) + W(i-1)]}, (1≤ i <j, j >0);

(a) Original Algorithm (b) Optimized Algorithm
Page 7 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
inate the high-frequency data exchanging between FPGA
and off-chip memory and improve the access efficiency of
external memory.

Methods
System architecture
Our RNA folding computation platform consists of an
algorithm accelerator and a host processor. The accelera-
tor receives a group of aligned RNA sequences with a co-
variance bonus matrix, executes the energy matrices filling
and backtracking phases, and reports the consensus RNA
secondary structure represented in base pairs back to the
host for display. The structure is shown in Figure 6.

The accelerator engine comprises one FPGA chip, two
SDRAM modules, and one I/O channel to the host PC.
Two SDRAM DIMMs store the energy matrices of each
sequence for energy accumulating and backtracking, and
are connected to the FPGA pad directly. The host interface
channel is responsible for transferring initial RNA data,
co-variance bonus and final results between the accelera-
tor and the host. The core of the RNAalifold algorithm
accelerator is composed of a PE Array Controller, a PE
array, a Shared Memory Module, an Energy Matrices
Superposition Module and a Trace-back Module. The PE
Array Controller is responsible for assigning column tasks
to the PE array and switching from the filling phase to the
backtracking phase. The Shared Memory module contains

a V cache, which holds the triangular sliding window and
a WM column buffer, which stores the current p column
elements for writing back to SDRAM, where p is the
number of PEs. The PE array performs the free energy cal-
culation in parallel. The array consists of a series of PE
modules, in which the first one, PE1 is the master and the
others are slaves. Each PE is augmented with a local mem-
ory to store a copy of the current RNA sequence and a reg-
ister for the current column elements of matrix WM. The
registers between adjoining PEs, called the Trans Regs, are
used for delivering reusable data including WM row/col-
umn elements and the bottom-left elements of V(i, j). The
Energy Matrices Superposition Module is responsible for
energy accumulating and generating the energy matrices
(V, WM, W) for backtracking.

Master-slave PE array algorithm
Free energy computing (the Calculate statement in the tri-
ple For-loop as shown in Figure 5) is the kernel in the
RNAalifold algorithm. As implied by observation 1, the
upper-triangular shaped energy matrices are partitioned
into columns. Each PE holds one column cyclically in
turn. Every group of p contiguous columns forms a section
as shown in Figure 7. Figure 8 describes the parallel
RNAalifold algorithm in a Single-Program Multiple-Data
(SPMD) style.

The structure of RNAalifold algorithm acceleratorFigure 6
The structure of RNAalifold algorithm accelerator. This figure describes the structure of our RNAalifold algorithm
accelerator. The accelerator comprises one FPGA chip, two SDRAM modules, and one I/O channel to the host PC.

RNA
Sequence

Shared Memory
(including V Cache and WM column buffer)

Host
Interface

Host Interface

SD
R

AM

D
IM

M
 #

2

PE Array Controller

 PE #2
 (Slave)

P
E

Lo
cM

em PE #P-1
 (Slave)

P
E

Lo
cM

em PE #P
 (Slave)

P
E

Lo
cM

em PE #1
 (Master)

P
E

Lo
cM

em

SD
R

AM

D
IM

M
 #

1

RNA
Structure

Tr
ac

eb
ac

k
M

od
ul

e
S

ec
on

da
ry

S

tru
ct

ur
e

M
em

…

WMij

Vij

Tr
an

s
R

eg
s

Tr
an

s
R

eg
s

Tr
an

s
R

eg
s

Zuker Algorithm
Accelerator

Host

S
D

R
A

M
 In

te
rfa

ce
 C

on
tro

lle
r

load

Host
Processor

store

Backtracking start signal

Column index

Column index

Column index

Tr
an

s
R

eg
s

Page 8 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
Performance measures

The execution time of our parallel RNAalifold algorithm
can be predicted in cycles due to the tight synchronization
of the systolic array structure. The total execution time (T)
is the sum of matrices filling time (Tf), matrices accumu-

lating time (Ta) and the time for trace-back (Tt). Moreover,

the matrices filling time (Tf) equals the energy computa-

tion time (Tc) plus the external memory access time (Tm).

Assuming p is the number of PEs, n is the length of the
aligned RNA sequence, m is the number of input

sequences and s = , we have energy computation

time (Tc) in (8)

The time for accessing external memory (Tm) is Tm =

·Δt2. Thus, the filling time for all energy matrices

(Tf) is

The matrices accumulation time (Ta) is ·Δt1 and

the time for trace-back (Tt) is Tt = . Where Δt1 is the

time for each sum operation, which is one cycle in our

implementation, Δt2 is the average access overhead for

storing an element to external memory, which is 15 cycles
in the worst case. As a result, the total execution time (T) is

According to the formula (9) and (10), we can theoreti-

cally analyze the parallel efficiency (Ec =) of our

accelerator, where α is

In the general case that m = 100, p < 128 and n > 1024, the
parameter α is always less than 0.1. As a result, the parallel
efficiency can reach more than 90%, showing good paral-
lelism.

Results and discussion
Experiment environment
We implement the RNAalifold algorithm accelerator in an
FPGA testbed. The testbed is composed of one FPGA chip,
StratixII EP2S130C5 from Altera, two 1 GB SDRAM mod-
ules, MT16LSDT12864A from Micron and a USB2.0 inter-
face to the host computer. The folding software,
RNAalifold (ViennaPackage-1.6.5 download from Vienna
RNA web site [22]), runs on a desktop computer with
Intel Pentium4 2.60 GHz CPU and 1 GB Memory at level
O3 compiler optimization. Both the accelerator and soft-
ware use the same free energy parameters, RNA free ener-
gies at 37°C, Version 3.0 downloaded from M. Zuker's
homepage. We also measure software execution time on
AMD and Xeon platforms to verify the acceleration of our
approach.

N
p

⎢
⎣⎢

⎥
⎦⎥

T p t
s s s s s

pc = ⋅ ⋅ + + + +⎡
⎣⎢

⎤
⎦⎥

1
4

1
2

1 2 1
61Δ () ()() (8)

n n⋅ +()1
2

T
m p t s s sp s s

m n n tf = ⋅ ⋅ ⋅ + + + +⎡
⎣⎢

⎤
⎦⎥

+ ⋅ ⋅ ⋅ + ⋅Δ Δ1
4

1
2

1 2 1
6

1
2

1 2
() ()()

()

(9)

()m n− ⋅1 2

2

3 2

8
n

T
mp s s s s s

p
mn n m n= ⋅ + + + + ⋅⎡

⎣⎢
⎤
⎦⎥

+ ⋅ + + − ⋅ +
4

1
2

1 2 1
6

15 1
2

1 2

2
() ()() () () 33 2

8
⋅n

(10)

1
1+α

α = −
+ + + + +

3 2 4 1
1 2 3 180 1

n m
smp s sp p mn n

()
()() ()

(11)

The task partitioning and the computation order with 4-PE arrayFigure 7
The task partitioning and the computation order
with 4-PE array. There are 4 dark columns assigned to PE1
to PE4 in the middle area representing the current section.
The positions belonging to the same diagonal marked with
stars represent the current computation points of the 4 PEs.
The parallel RNAalifold algorithm is divided into three
phases, energy calculation, columns synchronization and sec-
tion advance.

j

i

MatrixV n

n

(Slave) PE3

Previous section Current section Next section

(Maste) PE1

(Slave) PE4

(Slave) PE2
Page 9 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37

Page 10 of 14
(page number not for citation purposes)

The master-slave PE array algorithmFigure 8
The master-slave PE array algorithm. The first part of Figure 8 shows the parameter and variable definitions. At the initial
phase, each PE assigns its PE identifier, PID, to the column index indicating the initial column assignment. Before the energy cal-
culation phase several data items are loaded into local memory as shown in S21. Only the master PE loads data from SDRAM
and the V cache, the other slave PEs only load data from Trans Regs of the previous adjoining PE. When the energy data are
ready in local memory, the free energy calculation is performed as shown in S22. From S23 to S25, all PEs transfer data
received from the previous adjoining PEs to their own Trans Regs, store results to local memory, and move the computation
point upward in the same column. When the computation point moves to the top of the current column, the PE enters the
column synchronization phase, during which it writes its local results to SDRAM. When all PEs arrive at the synchronization
points, indicating the end of the current section, the section advances by each PE adding p to its column index. The process
repeats until the column index is greater than the RNA sequence length.

Parallel RNAalifold Algorithm for Each PE (PE[PID], 1≤PID≤P)

Initial phase:
S1: i← PID; j ← PID; (1≤ PID ≤L) // the default position assigning for PE[PID]

S2: While (i > 1) // if the top element V(i,j) has not been calculated
 Do S21~S25 // calculating the minimum energy of current position (i,j)

S21: if (PID = 1 (the master PE)) && (j != 1)),
then load WM(i,*) from SDRAM;

 load WM(*,j-1) from PE[p]'s (the last PE) Trans Regs;
 load V(i',j') from the bottom-left region of V(i,j) in V Cache;

else load WM(i,*), WM(*,j-1), V(i',j') from PE[PID-1]'s Trans Regs;
S22: Free Energy Calculating {input: (Q, N, P, T, WM(i,*), WM(*,j-1), V(i',j');

output:(W(j), V(i,j), WM(i,j), WM(i,*), WM(*,j), V(i',j'))};
S23: send WM(i,*), WM(*,j), V(i',j'),WM(i,j) to PE[PID]'s Trans Regs and reused by PE[PID+1];
S24: register W(j),V(i,j),WM(i,j) in local memory;
S25: i ← i -1; j ← j // moving up to the next computing position

Energy Calculation:

Variables Defines
i,j: current element index;
PID: current PE number;

Column Synchronization:

Section Advance:

S3: store WM(*,j) and V(*,j) into SDRAM;// the back-writing operation is executed contemporarily
 // in synchronization state
S4: if (PE(P) computing finished =1) //waiting until the last PE (PE[p]) processing finished

 then Goto S5;
else Goto S4;

S5: i← s +P; j ← s +P; // move to the initial computing position in next section
S6: if (j > N) // if current column index exceed the RNA sequence length

then Stop;
 else Goto S2;

Input Parameters
Q: current RNA sequence; N: RNA sequence length; P: PE array size;
T: free energy parameter tables; WM(i,*): the ith row in Matrix WM;
WM(*,j-1): the (j-1)th column in Matrix WM;
V(i',j'): the bottom-left region of V(i,j);

Output Parameters
W(j): the energy of anoptimal structure of the subsequence r1r2…rj ;
V(i,j): the energy of an optimal structure of the subsequence rir2…rj ;
WM(i,j): the energy of an optimal structure of the subsequence from ri through rj,
 where riri+1…rj is a segment of a multi-branched loop;
WM(i+1,*): the (i+1)th row in Matrix WM; WM(*,j): the jth column in Matrix WM;

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
Verifying correctness
We verify the correctness of our implementation in three
steps. First, we ensure the correctness of the optimized
algorithm by comparing the software folding result. Sec-
ond, we implement hardware RNAalifold algorithm and
verify the function correctness of the hardware using soft-
ware emulation with ModelSim SE 6.2 h. Then, we run the
search in our testbed to compare the base-paring results
with the ones produced by software to verify the correct-
ness of the folding result generated by our accelerator. We
fold six group of RNA sequences (20 sequences in each
group) with the size from 83 bps to 2981 bps by using
hardware and software solutions respectively. The experi-
mental results show that the folding results of our acceler-
ator agree with the software version.

Resource usage
Besides implementing the accelerator on Altera FPGA
chips, we place different numbers of PEs on Xilinx FPGA
chips to evaluate the resource usages as well. As shown in
the last row of Table 1, in Altera FPGA chips, one PE con-
sumes 3817 ALUTs and 332 K bits of memory. It con-
sumes 2124 slices and 2013 slices in Xilinx XC4V and
XC5V FPGA chips respectively. At most 16 PEs fit on
EP2S130C5 because the storage requirement consumes
almost all of the memory resources. On XC5VLX330, the
latest FPGA from Xilinx, we can fit 20 PEs. All implemen-
tation can reach a clock frequency of over 130 MHz.

Scalability
To explore the scalability of the proposed accelerator
architecture, we folded six group of sequences on our
accelerator. As shown in Figure 9, the execution time of
input RNA sequences with varying length from 83-base to
2981-base on multiple PEs includes computation time,
trace-back time and the time for sending sequence query
and taking results back for display. Because execution
time greatly increases with the increase in sequence length
ranging from 0.15s for 83 bases to 199.8s for 2981 bases,
we show the execution time in different figures. Consider-
ing the longest sequence with 2981 bases, the execution

time is shortened sharply from 199.8s for one PE to 16.4s
for 16 PEs, a factor of 12.2 speedup. Performance with 20
PEs is estimated according to the formula (10). Figure 10
shows the speedup with different sequence lengths rang-
ing from 83 to 2981 exhibit similar linear features due to
the scalable parallel structure in the accelerator.

Performance compared to ViennaRNA
The original loops in RNAalifold are unrolled and the cal-
culation order in energy matrices filling stage is reorgan-
ized in our fine-grained parallel algorithm. However, the
time complexity is undiversified since the number of add
and compare operations are not change. In the original
algorithm, only two triangle matrices (V and WM) are
stored for each sequence in energy matrices filling stage.
In optimized algorithm, the other four substructure matri-
ces (eS, eH, V BI, VM) are also stored for energy accumu-
lation. Thus, the parallel algorithm needs triple storage
requirement compared to the original RNAalifold soft-
ware. In order to reduce the bandwidth requirements for
external memory access, the six triangle matrices are com-
pressed into two matrices by using component combined
strategy. Furthermore, the data reusing in PE array is well
exploited with the spatial locality improving. Therefore,
the increasing of storage requirements for off-chip mem-
ory will not become the bottleneck in FPGA implementa-
tion. Taking Pentium 4 as the base, we compare the
execution time and speedup among 4 different platforms,
including three general-purpose computers and our algo-
rithm accelerator. Despite the variation in CPU type, clock
frequency, main memory capacity, cache capacity and
software versions, the three general-purpose computers
exhibit similar performance. As shown in Table 2, Athlon
shows a little advantage over Pentium and Xeon, achiev-
ing at most 1.4× speedup. However, the FPGA accelerator
exhibits significant speedup ranging from 8.4 to 12.2.

Power consumption compared to general-purpose
microprocessor
FPGA accelerator is also energy-efficient relative to gen-
eral-purpose computers. Our RNAalifold algorithm accel-

Table 1: Resource usage on different FPGA platforms

FPGA EP2S130C5 XC4VLX200-11 XC5VLX330-2

PE Fitted 16 16 20

ALUTSlice (%) 75720 (71%) 46483 (52%) 42097 (80%)

Total Memory (%) 6328 Kb (96%) 6592 Kb (88%) 11828 Kb (89%)

Clock (MHz) 133 135 138

Single PE 3817 ALUTs332Kb 2124 Slices 2013 Slice
Page 11 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
erator with 16 PEs only consumes 9.2 W as simulated by
Xilinx ISE 9.2 XPower tool. General-purpose microproces-
sors consume between 80 W to 150 W on average [23].
Furthermore, considering the low clock frequency of 130
MHz in FPGA chips, we believe the application-specific
fine-grained schemes implemented in our accelerator pro-
vides significant advantage over the general-purpose
schemes.

Conclusion
The minimum free energy (MFE) method plays an impor-
tant role in the area of RNA secondary structures predic-
tion. Many parallel implementations on general purpose
multiprocessors exhibit parallel efficiency of no more
than 50%. In this paper, we explore the use of FPGAs to

accelerate the RNAalifold algorithm based on MFE
method.

After carefully studying the characteristics of the algo-
rithm, we make five observations to direct our design. We
optimize the nested loop structure in original RNAalifold
and reorganize the computation order to improve the spa-
tial locality. We propose task assignment in cyclic column
order to achieve load balance. We introduce two data
reuse schemes that use a sliding window cache and trans-
fer registers between adjoining PEs. We also presented sev-
eral methods to reduce the storage requirement for
holding multiple copies of energy parameter tables. The
experimental evaluation demonstrates that the perform-
ance of our algorithm accelerator is scalable with multiple
PEs and that the FPGA accelerator outperforms general-

The execution time (s) on different PE array size for different queriesFigure 9
The execution time (s) on different PE array size for different queries. The horizontal axis represents PE array size
and the vertical axis represents execution time of hardware accelerator. The six curves with different color represent input
RNA sequences with different length.

0 1 2 8 16
0

0.5

1.0

1.5

2.0

A
cc

el
er

at
or

 E
xe

cu
tio

n
Ti

m
e

(s
)

PE array size
3 4 20

2.5

(a)
0 1 2 8 16

0

25.0

50.0

75.0

100.0

A
cc

el
er

at
or

 E
xe

cu
tio

n
Ti

m
e

(s
)

PE array size
3 4 20

125.0

150.0

(b)

175.0

200.0

Homologous Seqs#3 (312bps)

Homologous Seqs#2 (154bps)

Homologous Seqs#1 (83bps)

Homologous Seqs#6 (2981bps)

Homologous Seqs#5 (1556bps)

Homologous Seqs#4 (774bps)

Table 2: Execution time(s) and speedup with different input on different platforms

Sequence Size (M = 20) N = 154 N = 387 N = 1556 N = 2981

Time Speedup Time Speedup Time Speedup Time Speedup

FPGA(16-PE) 0.05 8.4 0.19 8.7 5.1 9.8 16.4 12.2

Pentium(1) 0.42 1 1.65 1 49.5 1 199.8 1

Xeon(2) 0.38 1.1 1.38 1.2 45.1 1.1 178.5 1.1

Athlon(3) 0.31 1.4 1.18 1.4 37.8 1.3 141.6 1.4

The soft/hardware experimental environment of different platforms are listed as follows. Pentium(1): 2.6 G CPU, 1.0 GB memory, 512 KB Cache,
Linux 2.6.5, GCC 4.1.0; Xeon(2): 2.8 G CPU, 1.0 GB memory, 1024 KB Cache, Linux 2.4.2, GCC 3.2.3; Athlon(3): 2.0 G CPU, 2.0 GB memory, 512
KB Cache, Linux 2.6.18, GCC 4.1.1;
Page 12 of 14
(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
purpose computers with a speedup of more than 12× on
16 PEs.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
Fei Xia carried out the fine-grained parallel RNAalifold
algorithm, participated in the characteristics analysis of
the RNAalifold algorithm and drafted the manuscript.
Yong Dou conceived of the study, and participated in its
design and helped to draft the manuscript. Xingming
Zhou and Xuejun Yang participated in the discussion of
the study and performed the performance evaluation. Jia-
qing Xu participated in the sequence alignment and the
analysis of original RNAalifold algorithm. Yang Zhang
participated in hardware implementation and correctness
verification and power consumption analysis. All authors
read and approved the final manuscript.

Acknowledgements
The authors thank the researchers who provided access, documentation
and installation assistance for RNAalifold software. This work is partially
sponsored by the National High Technology Research and Development
Program (2007AA01Z106) and NSFC (60633050 and 60621003). We

would like to thank Prof. Amir Roth for his detailed revising directions and
we also thank the anonymous reviewers for their constructive comments.

This article has been published as part of BMC Bioinformatics Volume 10 Sup-
plement 1, 2009: Proceedings of The Seventh Asia Pacific Bioinformatics
Conference (APBC) 2009. The full contents of the supplement are available
online at http://www.biomedcentral.com/1471-2105/10?issue=S1

References
1. Mount DW: Bioinformatics: sequence and genome analysis New York:

Cold Spring Harbor Laborary Press; 2004.
2. Zuker M, Stiegler P: Optimal computer folding of large RNA

sequences using thermodynamics and auxiliary information.
Nucleic Acids Research 1981, 9:133-148.

3. Hofacker IL, Fontana W, Stadler P, Bonhoeffer L, M T, P S: Fast fold-
ing and comparison of RNA secondary structures. Monat-
shefte Chemie 1994, 125(2):167-188.

4. Hofacker IL, Fekete M, Stadler P: Secondary structure prediction
for aligned RNA sequences. Journal of Molecular Biology 2002,
319(5):1059-1066.

5. Hofacker IL: Vienna RNA secondary structure server. Nucleic
Acids Research 2003, 31(13):3429-3431.

6. Mathews DH, Sabina J, Zuker M, Turner DH: Expanded sequence
dependence of thermodynamic parameters provides robust
prediction of RNA secondary structure. Journal of Molecular Biol-
ogy 1999, 288(5):911-940.

7. Gardner P, Giegerich R: A comprehensive comparison of com-
parative RNA structure prediction approaches. BMC Bioinfor-
matics 2004, 5:140.

8. Mathews DH, Turner DH: Prediction of RNA secondary struc-
ture by free energy minimization. Current Opinion in Structural
Biology 2006, 16(3):270-278.

9. Eddy SR: How do RNA folding algorithms work? Nature Biotech-
nology 2004, 22(11):1457-1458.

10. Tan G, Feng S, Sun N: An optimized and efficiently parallelized
dynamic programming for RNA secondary structure predic-
tion. Journal of Software 2006, 17(7):1501-1509.

11. Tan G, Feng S, Sun N: Locality and parallelism optimization for
dynamic programming algorithm in bioinformatics. Proceed-
ings of the ACM/IEEE SuperComputing 2006 Conference: November 2006,
Tampa, Florida, USA 2006.

12. Lyngso RB, Zuker M, Pedersen CNS: Fast evaluation of internal
loops in RNA secondary structure prediction. Bioinformatics
1999, 15(6):440-445.

13. Lyngso RB, Zuker M, Pedersen CNS: Internal loops in RNA sec-
ondary structure prediction. In Proceedings of the third Annual
International Conference on Computational Molecular Biology: 1999 Lyon,
France; 1999:260-267.

14. Chen JH, Le SY, Shapiro BA, Maizel JV: Optimization of an RNA
folding algorithm for parallel architectures. Parallel Computing
1998, 24:1617-1634.

15. Fekete IHM, Stadler PF: Prediction of RNA base pairing posibil-
ities for RNA secondary structure. Biopolymers 1990,
9:1105-1119.

16. Shapiro BA, Wu JC, Bengali D, Potts MJ: The massively parallel
genetic algorithm for RNA folding: mimd implementation
and population variation. Bioinformatics 2001, 17(2):137-148.

17. Tan G, Sun N, Gao GR: A parallel dynamic programming algo-
rithm on a multi-core architecture. In Proceedings of the nine-
teenth Annual ACM Symposium on Parallel Algorithms and Architectures:
2007; San Diego, USA ACM; 2007:135-144.

18. Tan G, Xu L, Feng S, Sun N: An experimental study of optimiz-
ing bioinformatics applications. Proceedings of the 20th IEEE Inter-
national Parallel and Distributed Processing Symposium: April 2006; Rhodes
Island, Greece 2006:284.

19. Jacob A, Buhler J, Chamberlain RD: Accelerating Nussinov RNA
secondary structure prediction with systolic arrays on
FPGAs. Proceedings of the 19th IEEE International Conference on Appli-
cation-specific Systems, Architectures and Processors, 2008; Leuven, Bel-
gium 2008.

20. Nussinov R, Pieczenik G, Griggs JR, Kleitman DJ: Algorithms for
loop matchings. SIAM Journal on Applied mathematics 1978,
35:68-82.

The speedup on different PE array size for different queriesFigure 10
The speedup on different PE array size for different
queries. The horizontal coordinate represents PE array size
and the vertical coordinate represents the speedup of each
group of input RNA sequences.

2 8 16

2

4

8

S
pe

ed
up

PE array size

4 20

16

20

Homologous Seq#5 (1556bps)
Homologous Seq#6 (2981bps)
Linear speedup

Homologous Seq#3 (312bps)

Homologous Seq#2 (154bps)

Homologous Seq#4 (774bps)
Page 13 of 14
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6163133
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12079347
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10329189
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15458580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15458580
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713706
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15529172
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10383469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11238069

BMC Bioinformatics 2009, 10(Suppl 1):S37 http://www.biomedcentral.com/1471-2105/10/S1/S37
Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

21. Washietl S, Hofacker IL: Consensus folding of aligned sequences
as a new measure for the detection of functional RNAs by
comparative genomics. Journal of Molecular Biology 2004,
342:19-30.

22. RNAalifold (Vienna rna folding package) [http://rna.tbi.uni
vie.ac.at/~ivo/RNA/]

23. CPU power dissipation [http://en.wikipedia.org/wiki/
CPU_power_dissipation]
Page 14 of 14
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15313604
http://rna.tbi.univie.ac.at/~ivo/RNA/
http://rna.tbi.univie.ac.at/~ivo/RNA/
http://en.wikipedia.org/wiki/CPU_power_dissipation
http://en.wikipedia.org/wiki/CPU_power_dissipation
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Overview of the RNAalifold algorithm
	Brief introduction
	Calculating co-variance bonus
	Filling energy matrices
	Backtracking

	Characteristics of RNAalifold
	Observation 1. The computation size of each element in an energy matrix is variable and closely related with its position
	Observation 2. Parallel computation of V requires multiple copies of the free energy parameters
	Observation 3. We can use a sliding window to reuse data within a column
	Observation 4. We can use a sliding window to reuse data between adjoining columns
	Observation 5. We can reorganize the computation order in parameter accumulating among multiple energy matrices to improve the spatial locality

	Methods
	System architecture
	Master-slave PE array algorithm
	Performance measures

	Results and discussion
	Experiment environment
	Verifying correctness
	Resource usage
	Scalability
	Performance compared to ViennaRNA
	Power consumption compared to general-purpose microprocessor

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

