Rodríguez-Navarro S, Hurt E. Linking gene regulation to mRNA production and export. Curr Opin Cell Biol. 2011;23(3):302–9.

Article
PubMed
Google Scholar

Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(3):245–54.

Article
CAS
PubMed
Google Scholar

Li D, Yang Y, Li Y, Zhu X, Li Z. Epigenetic regulation of gene expression in response to environmental exposures: from bench to model. Sci Total Environ. 2021;776: 145998.

Article
CAS
Google Scholar

Woo H, Ha SD, Lee SB, Buratowski S, Kim T. Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp Mol Med. 2017;49(4):326–326.

Article
Google Scholar

Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42.

Article
CAS
PubMed
Google Scholar

Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205.

Article
CAS
PubMed
Google Scholar

Metallo CM, Vander Heiden MG. Understanding metabolic regulation and its influence on cell physiology. Mol Cell. 2013;49(3):388–98.

Article
CAS
PubMed
PubMed Central
Google Scholar

Carthew RW. Gene regulation and cellular metabolism: an essential partnership. Trends Genet. 2021;37(4):389–400.

Article
CAS
PubMed
Google Scholar

Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–32.

Article
CAS
PubMed
PubMed Central
Google Scholar

Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18(2):90–101.

Article
CAS
PubMed
Google Scholar

Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights. 2020;14:1–24.

Article
Google Scholar

Ma T, Zhang A. Integrate multi-omics data with biological interaction networks using multi-view factorization autoencoder (MAE). BMC Genomics. 2019;20(11):1–11.

Google Scholar

Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S, Huang Y, Lin SM, Zhang W, Zhang P, Sun H. Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics. 2020;36(4):1241–51.

CAS
PubMed
Google Scholar

Huber W, Carey VJ, Long L, Falcon S, Gentleman R. Graphs in molecular biology. BMC Bioinform. 2007;8(S8):1–14.

Google Scholar

Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: methods and applications. IEEE Data Eng Bull. 2017;40(3):52–74.

Google Scholar

Ietswaart R, Gyori BM, Bachman JA, Sorger PK, Churchman LS. Genewalk identifies relevant gene functions for a biological context using network representation learning. Genome Biol. 2021;22(1):1–35.

Article
Google Scholar

Kc K, Li R, Cui F, Yu Q, Haake AR. GNE: a deep learning framework for gene network inference by aggregating biological information. BMC Syst Biol. 2019;13(2):1–14.

Google Scholar

Perozzi, B, Al-Rfou, R, Skiena, S. Deepwalk: online learning of social representations. In: Proceedings of 20th ACM SIGKDD international conference on knowledge discovery and data mining; 2014. p. 701–10.

Grover, A, Leskovec, J. node2vec: scalable feature learning for networks. In: Proceedings of 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016. p. 855–64.

Kuang, D, Ding, C, Park, H. Symmetric nonnegative matrix factorization for graph clustering. In: Proceedings of 2012 SIAM international conference on data mining; 2012. p. 106–17. SIAM.

Zitnik M, Leskovec J. Predicting multicellular function through multi-layer tissue networks. Bioinformatics. 2017;33(14):190–8.

Article
Google Scholar

Bagavathi, A, Krishnan, S. Multi-Net: a scalable multiplex network embedding framework. In: Proceedings of international conference on complex networks and their applications; 2018. p. 119–31.

Gligorijević V, Barot M, Bonneau R. deepNF: deep network fusion for protein function prediction. Bioinformatics. 2018;34(22):3873–81.

Article
PubMed
PubMed Central
Google Scholar

Jagtap S, Çelikkanat A, Pirayre A, Bidard F, Duval L, Malliaros FD. Multiomics data integration for gene regulatory network inference with exponential family embeddings. In: 29th European signal processing conference (EUSIPCO); 2021. p. 1221–5.

Rudolph M, Ruiz F, Mandt S, Blei D. Exponential family embeddings. In: Proceedings of 30th conference on neural information processing systems; 2016. p. 478–86.

Çelikkanat A, Malliaros FD. Exponential family graph embeddings. In: Proceedings of AAAI conference on artificial intelligence, vol 34; 2020. p. 3357–64.

Gonzalez-Reymundez A, Grueneberg A, Lu G, Alves FC, Rincon G, Vazquez AI. Moss: multi-omic integration with sparse value decomposition. Bioinformatics. 2022;38(10):2956–8.

Article
CAS
PubMed
PubMed Central
Google Scholar

Nuño-Cabanes C, Ugidos M, Tarazona S, Martín-Expósito M, Ferrer A, Rodríguez-Navarro S, Conesa A. A multi-omics dataset of heat-shock response in the yeast RNA binding protein Mip6. Sci Data. 2020;7(69):1–10.

Google Scholar

Dalman MR, Deeter A, Nimishakavi G, Duan Z-H. Fold change and *p* value cutoffs significantly alter microarray interpretations. BMC Bioinform. 2012;13:1–4.

Article
Google Scholar

Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4(1):17.

Article
Google Scholar

Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, et al. SGD: saccharomyces genome database. Nucleic Acids Res. 1998;26(1):73–9.

Article
CAS
PubMed
PubMed Central
Google Scholar

Teixeira MC, Monteiro PT, Palma M, Costa C, Godinho CP, Pais P, Cavalheiro M, Antunes M, Lemos A, Pedreira T, et al. YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in *Saccharomyces cerevisiae*. Nucleic Acids Res. 2018;46(D1):348–53.

Article
Google Scholar

Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, Keseler IM, Krummenacker M, Midford PE, Ong Q, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2019;20(4):1085–93.

Article
CAS
PubMed
Google Scholar

Chen H, Perozzi B, Hu Y, Skiena S. Harp: hierarchical representation learning for networks. In: Proceedings of the AAAI conference on artificial intelligence, vol 32; 2018.

Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of 11th ACM international conference on web search and data mining; 2018. p. 459–67.

Levy O, Goldberg Y. Neural word embedding as implicit matrix factorization. Adv Neural Inf Process Syst. 2014;27:2177–85.

Google Scholar

Xie Y, Qiu J, Yu W, Feng X, Chen Y, Tang J. Netmf+: network embedding based on fast and effective single-pass randomized matrix factorization. arXiv preprint arXiv:2110.12782 (2021).

Bisgard J. Analysis and linear algebra: the singular value decomposition and applications, 1st edn. Student Mathematical Library. Providence: American Mathematical Society; 2020. p. 217.

Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. J Am Soc Inf Sci Technol. 2007;58(7):1019–31.

Article
Google Scholar

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Vanderplas J. scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Google Scholar

Flach P, Kull M. Precision–recall–gain curves: PR analysis done right. In: Advances in neural information processing systems, vol 28; 2015.

Oughtred R, Rust J, Chang C, Breitkreutz B-J, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, et al. The biogrid database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30(1):187–200.

Article
CAS
PubMed
Google Scholar

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020;49(D1):605–12.

Article
Google Scholar

Monteiro PT, Oliveira J, Pais P, Antunes M, Palma M, Cavalheiro M, Galocha M, Godinho CP, Martins LC, Bourbon N, et al. YEASTRACT+: a portal for cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids Res. 2020;48(D1):642–9.

Article
Google Scholar

Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(6):1–13.

Google Scholar

Clauset A, Newman ME, Moore C. Finding community structure in very large networks. Phys Rev E. 2004;70(6): 066111.

Article
Google Scholar

Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. David: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(9):1–11.

Article
Google Scholar

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, Pagès F, Trajanoski Z, Galon J. Cluego: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.

Article
CAS
PubMed
PubMed Central
Google Scholar

Gligorijevic V, Barot M, Bonneau R. deepNF: deep network fusion for protein function prediction. Bioinformatics. 2018;34(22):3873–81.

Article
CAS
PubMed
PubMed Central
Google Scholar

Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In: Proceedings of the eleventh ACM international conference on web search and data mining; 2018. p. 459–67.

Castells-Roca L, García-Martínez J, Moreno J, Herrero E, Bellí G, Pérez-Ortín JE. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS ONE. 2011;6(2):17272.

Article
Google Scholar

Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 2004;70(6): 066111.

Article
Google Scholar

Morano KA, Grant CM, Moye-Rowley WS. The response to heat shock and oxidative stress in *Saccharomyces cerevisiae*. Genetics. 2012;190(4):1157–95.

Article
CAS
PubMed
PubMed Central
Google Scholar

Verghese J, Abrams J, Wang Y, Morano KA. Biology of the heat shock response and protein chaperones: budding yeast (*Saccharomyces cerevisiae*) as a model system. Microbiol Mol Biol Rev. 2012;76(2):115–58.

Article
CAS
PubMed
PubMed Central
Google Scholar

Lee D, Redfern O, Orengo C. Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol. 2007;8(12):995–1005.

Article
CAS
PubMed
Google Scholar

Pastor-Flores D, Ferrer-Dalmau J, Bahí A, Boleda M, Biondi RM, Casamayor A. Depletion of yeast PDK1 orthologs triggers a stress-like transcriptional response. BMC Genomics. 2015;16(1):1–21.

Article
Google Scholar

Oromendia AB, Dodgson SE, Amon A. Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 2012;26(24):2696–708.

Article
CAS
PubMed
PubMed Central
Google Scholar

Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003;34(2):166–76.

Article
CAS
PubMed
Google Scholar

Yamamoto A, Mizukami Y, Sakurai H. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in *Saccharomyces cerevisiae*. J Biol Chem. 2005;280(12):11911–9.

Article
CAS
PubMed
Google Scholar

Matsumoto R, Akama K, Rakwal R, Iwahashi H. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in *Saccharomyces cerevisiae*. BMC Genomics. 2005;6(1):1–15.

Article
Google Scholar

Düvel K, Santhanam A, Garrett S, Schneper L, Broach JR. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol Cell. 2003;11(6):1467–78.

Article
PubMed
Google Scholar

Berry DB, Gasch AP. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell. 2008;19(11):4580–7.

Article
CAS
PubMed
PubMed Central
Google Scholar

O’Duibhir E, Lijnzaad P, Benschop JJ, Lenstra TL, van Leenen D, Groot Koerkamp MJ, Margaritis T, Brok MO, Kemmeren P, Holstege FC. Cell cycle population effects in perturbation studies. Mol Syst Biol. 2014;10(6):732.

Article
PubMed
PubMed Central
Google Scholar

Shivaswamy S, Iyer VR. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol. 2008;28(7):2221–34.

Article
CAS
PubMed
PubMed Central
Google Scholar

Spedale G, Meddens CA, Koster MJ, Ko CW, van Hooff SR, Holstege FC, Timmers HTM, Pijnappel WP. Tight cooperation between Mot1p and NC2*β* in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA. Nucleic Acids Res. 2012;40(3):996–1008.

Article
CAS
PubMed
Google Scholar

Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–57.

Article
CAS
PubMed
PubMed Central
Google Scholar