Rodríguez-Navarro S, Hurt E. Linking gene regulation to mRNA production and export. Curr Opin Cell Biol. 2011;23(3):302–9.
Article
PubMed
Google Scholar
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(3):245–54.
Article
CAS
PubMed
Google Scholar
Li D, Yang Y, Li Y, Zhu X, Li Z. Epigenetic regulation of gene expression in response to environmental exposures: from bench to model. Sci Total Environ. 2021;776: 145998.
Article
CAS
Google Scholar
Woo H, Ha SD, Lee SB, Buratowski S, Kim T. Modulation of gene expression dynamics by co-transcriptional histone methylations. Exp Mol Med. 2017;49(4):326–326.
Article
Google Scholar
Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2017;18(1):31–42.
Article
CAS
PubMed
Google Scholar
Dreyfuss G, Kim VN, Kataoka N. Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002;3:195–205.
Article
CAS
PubMed
Google Scholar
Metallo CM, Vander Heiden MG. Understanding metabolic regulation and its influence on cell physiology. Mol Cell. 2013;49(3):388–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Carthew RW. Gene regulation and cellular metabolism: an essential partnership. Trends Genet. 2021;37(4):389–400.
Article
CAS
PubMed
Google Scholar
Du J, Johnson LM, Jacobsen SE, Patel DJ. DNA methylation pathways and their crosstalk with histone methylation. Nat Rev Mol Cell Biol. 2015;16(9):519–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sabari BR, Zhang D, Allis CD, Zhao Y. Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol. 2017;18(2):90–101.
Article
CAS
PubMed
Google Scholar
Subramanian I, Verma S, Kumar S, Jere A, Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform Biol Insights. 2020;14:1–24.
Article
Google Scholar
Ma T, Zhang A. Integrate multi-omics data with biological interaction networks using multi-view factorization autoencoder (MAE). BMC Genomics. 2019;20(11):1–11.
Google Scholar
Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S, Huang Y, Lin SM, Zhang W, Zhang P, Sun H. Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics. 2020;36(4):1241–51.
CAS
PubMed
Google Scholar
Huber W, Carey VJ, Long L, Falcon S, Gentleman R. Graphs in molecular biology. BMC Bioinform. 2007;8(S8):1–14.
Google Scholar
Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: methods and applications. IEEE Data Eng Bull. 2017;40(3):52–74.
Google Scholar
Ietswaart R, Gyori BM, Bachman JA, Sorger PK, Churchman LS. Genewalk identifies relevant gene functions for a biological context using network representation learning. Genome Biol. 2021;22(1):1–35.
Article
Google Scholar
Kc K, Li R, Cui F, Yu Q, Haake AR. GNE: a deep learning framework for gene network inference by aggregating biological information. BMC Syst Biol. 2019;13(2):1–14.
Google Scholar
Perozzi, B, Al-Rfou, R, Skiena, S. Deepwalk: online learning of social representations. In: Proceedings of 20th ACM SIGKDD international conference on knowledge discovery and data mining; 2014. p. 701–10.
Grover, A, Leskovec, J. node2vec: scalable feature learning for networks. In: Proceedings of 22nd ACM SIGKDD international conference on knowledge discovery and data mining; 2016. p. 855–64.
Kuang, D, Ding, C, Park, H. Symmetric nonnegative matrix factorization for graph clustering. In: Proceedings of 2012 SIAM international conference on data mining; 2012. p. 106–17. SIAM.
Zitnik M, Leskovec J. Predicting multicellular function through multi-layer tissue networks. Bioinformatics. 2017;33(14):190–8.
Article
Google Scholar
Bagavathi, A, Krishnan, S. Multi-Net: a scalable multiplex network embedding framework. In: Proceedings of international conference on complex networks and their applications; 2018. p. 119–31.
Gligorijević V, Barot M, Bonneau R. deepNF: deep network fusion for protein function prediction. Bioinformatics. 2018;34(22):3873–81.
Article
PubMed
PubMed Central
Google Scholar
Jagtap S, Çelikkanat A, Pirayre A, Bidard F, Duval L, Malliaros FD. Multiomics data integration for gene regulatory network inference with exponential family embeddings. In: 29th European signal processing conference (EUSIPCO); 2021. p. 1221–5.
Rudolph M, Ruiz F, Mandt S, Blei D. Exponential family embeddings. In: Proceedings of 30th conference on neural information processing systems; 2016. p. 478–86.
Çelikkanat A, Malliaros FD. Exponential family graph embeddings. In: Proceedings of AAAI conference on artificial intelligence, vol 34; 2020. p. 3357–64.
Gonzalez-Reymundez A, Grueneberg A, Lu G, Alves FC, Rincon G, Vazquez AI. Moss: multi-omic integration with sparse value decomposition. Bioinformatics. 2022;38(10):2956–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuño-Cabanes C, Ugidos M, Tarazona S, Martín-Expósito M, Ferrer A, Rodríguez-Navarro S, Conesa A. A multi-omics dataset of heat-shock response in the yeast RNA binding protein Mip6. Sci Data. 2020;7(69):1–10.
Google Scholar
Dalman MR, Deeter A, Nimishakavi G, Duan Z-H. Fold change and p value cutoffs significantly alter microarray interpretations. BMC Bioinform. 2012;13:1–4.
Article
Google Scholar
Zhang B, Horvath S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 2005;4(1):17.
Article
Google Scholar
Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, et al. SGD: saccharomyces genome database. Nucleic Acids Res. 1998;26(1):73–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Teixeira MC, Monteiro PT, Palma M, Costa C, Godinho CP, Pais P, Cavalheiro M, Antunes M, Lemos A, Pedreira T, et al. YEASTRACT: an upgraded database for the analysis of transcription regulatory networks in Saccharomyces cerevisiae. Nucleic Acids Res. 2018;46(D1):348–53.
Article
Google Scholar
Karp PD, Billington R, Caspi R, Fulcher CA, Latendresse M, Kothari A, Keseler IM, Krummenacker M, Midford PE, Ong Q, et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2019;20(4):1085–93.
Article
CAS
PubMed
Google Scholar
Chen H, Perozzi B, Hu Y, Skiena S. Harp: hierarchical representation learning for networks. In: Proceedings of the AAAI conference on artificial intelligence, vol 32; 2018.
Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J. Network embedding as matrix factorization: unifying DeepWalk, LINE, PTE, and node2vec. In: Proceedings of 11th ACM international conference on web search and data mining; 2018. p. 459–67.
Levy O, Goldberg Y. Neural word embedding as implicit matrix factorization. Adv Neural Inf Process Syst. 2014;27:2177–85.
Google Scholar
Xie Y, Qiu J, Yu W, Feng X, Chen Y, Tang J. Netmf+: network embedding based on fast and effective single-pass randomized matrix factorization. arXiv preprint arXiv:2110.12782 (2021).
Bisgard J. Analysis and linear algebra: the singular value decomposition and applications, 1st edn. Student Mathematical Library. Providence: American Mathematical Society; 2020. p. 217.
Liben-Nowell D, Kleinberg J. The link-prediction problem for social networks. J Am Soc Inf Sci Technol. 2007;58(7):1019–31.
Article
Google Scholar
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Vanderplas J. scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Google Scholar
Flach P, Kull M. Precision–recall–gain curves: PR analysis done right. In: Advances in neural information processing systems, vol 28; 2015.
Oughtred R, Rust J, Chang C, Breitkreutz B-J, Stark C, Willems A, Boucher L, Leung G, Kolas N, Zhang F, et al. The biogrid database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30(1):187–200.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2020;49(D1):605–12.
Article
Google Scholar
Monteiro PT, Oliveira J, Pais P, Antunes M, Palma M, Cavalheiro M, Galocha M, Godinho CP, Martins LC, Bourbon N, et al. YEASTRACT+: a portal for cross-species comparative genomics of transcription regulation in yeasts. Nucleic Acids Res. 2020;48(D1):642–9.
Article
Google Scholar
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics. 2020;21(6):1–13.
Google Scholar
Clauset A, Newman ME, Moore C. Finding community structure in very large networks. Phys Rev E. 2004;70(6): 066111.
Article
Google Scholar
Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. David: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(9):1–11.
Article
Google Scholar
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, Pagès F, Trajanoski Z, Galon J. Cluego: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gligorijevic V, Barot M, Bonneau R. deepNF: deep network fusion for protein function prediction. Bioinformatics. 2018;34(22):3873–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qiu J, Dong Y, Ma H, Li J, Wang K, Tang J. Network embedding as matrix factorization: unifying deepwalk, line, pte, and node2vec. In: Proceedings of the eleventh ACM international conference on web search and data mining; 2018. p. 459–67.
Castells-Roca L, García-Martínez J, Moreno J, Herrero E, Bellí G, Pérez-Ortín JE. Heat shock response in yeast involves changes in both transcription rates and mRNA stabilities. PLoS ONE. 2011;6(2):17272.
Article
Google Scholar
Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 2004;70(6): 066111.
Article
Google Scholar
Morano KA, Grant CM, Moye-Rowley WS. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics. 2012;190(4):1157–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verghese J, Abrams J, Wang Y, Morano KA. Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev. 2012;76(2):115–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee D, Redfern O, Orengo C. Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol. 2007;8(12):995–1005.
Article
CAS
PubMed
Google Scholar
Pastor-Flores D, Ferrer-Dalmau J, Bahí A, Boleda M, Biondi RM, Casamayor A. Depletion of yeast PDK1 orthologs triggers a stress-like transcriptional response. BMC Genomics. 2015;16(1):1–21.
Article
Google Scholar
Oromendia AB, Dodgson SE, Amon A. Aneuploidy causes proteotoxic stress in yeast. Genes Dev. 2012;26(24):2696–708.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet. 2003;34(2):166–76.
Article
CAS
PubMed
Google Scholar
Yamamoto A, Mizukami Y, Sakurai H. Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. J Biol Chem. 2005;280(12):11911–9.
Article
CAS
PubMed
Google Scholar
Matsumoto R, Akama K, Rakwal R, Iwahashi H. The stress response against denatured proteins in the deletion of cytosolic chaperones SSA1/2 is different from heat-shock response in Saccharomyces cerevisiae. BMC Genomics. 2005;6(1):1–15.
Article
Google Scholar
Düvel K, Santhanam A, Garrett S, Schneper L, Broach JR. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast. Mol Cell. 2003;11(6):1467–78.
Article
PubMed
Google Scholar
Berry DB, Gasch AP. Stress-activated genomic expression changes serve a preparative role for impending stress in yeast. Mol Biol Cell. 2008;19(11):4580–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Duibhir E, Lijnzaad P, Benschop JJ, Lenstra TL, van Leenen D, Groot Koerkamp MJ, Margaritis T, Brok MO, Kemmeren P, Holstege FC. Cell cycle population effects in perturbation studies. Mol Syst Biol. 2014;10(6):732.
Article
PubMed
PubMed Central
Google Scholar
Shivaswamy S, Iyer VR. Stress-dependent dynamics of global chromatin remodeling in yeast: dual role for SWI/SNF in the heat shock stress response. Mol Cell Biol. 2008;28(7):2221–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Spedale G, Meddens CA, Koster MJ, Ko CW, van Hooff SR, Holstege FC, Timmers HTM, Pijnappel WP. Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA. Nucleic Acids Res. 2012;40(3):996–1008.
Article
CAS
PubMed
Google Scholar
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO. Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–57.
Article
CAS
PubMed
PubMed Central
Google Scholar