Skip to main content

Development of tools for the automated analysis of spectra generated by tandem mass spectrometry

Background

While multiple tools exist for the analysis and identification of spectra generated in shotgun proteomics experiments, few easily implemented tools exist that allow for the automated analysis of the quality of spectra. A researcher’s knowledge of the quality of a spectra from an experiment can be helpful in determining possible reasons for misidentification or lack of identification of spectra in a sample.

Materials and methods

We are developing a automated high throughput method that analyses spectra from 2d-LC-MS/MS datasets to determine their quality and overall determines the quality of the run. We will then compare our programs to existing programs that perform a similar function. Our program calculates a quality score based on the following metrics: signal/noise ratio, absolute signal intensity, peak number, predicted mass distances between peak, and percent of incoming mass accounted for by peaks. These scores are then graphed against the outputs of common database search algorithms in order to display the following four categories: High-quality/Identified, High-quality/Unidentified, Low-quality/Identified, and Low-quality/Unidentified. We are currently testing the algorithm against 2d-LC-MS/MS runs of a mixed protein standard and blanks with no peptide spectra. The application samples are a time series of metaproteomes collected from environmental ground waters after biostimulation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dylan Storey.

Rights and permissions

Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Ellingson, S., Hughes, J., Storey, D. et al. Development of tools for the automated analysis of spectra generated by tandem mass spectrometry. BMC Bioinformatics 11, P27 (2010). https://0-doi-org.brum.beds.ac.uk/10.1186/1471-2105-11-S4-P27

Download citation

Keywords

  • Automate Analysis
  • High Throughput Method
  • Proteomics Experiment
  • Shotgun Proteomics
  • Common Database