
Using entropy‑driven amplifier circuit 
response to build nonlinear model 
under the influence of Lévy jump
Hao Fu1, Hui Lv1,2*   and Qiang Zhang1,3* 

From The International Conference on Data Science, Analytics, and Engineering (IDSAE) 2020/2021 
Virtual. 24-25 January 2021

Background
Bioinformatics is a discipline produced by the combination of life science and computer 
science, which mainly uses computer technology to study the laws of biological sys-
tems. DNA circuit reaction is one of the important research objects of bioinformatics, 
which is applied to biological systems [1] and other fields. Researchers have designed 
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and provided research subjects for various types of DNA circuits, and the study of DNA 
circuit reactions can facilitate the development of information biology.

DNA circuits play a key role in signal amplification and information regulation of 
biomolecular engineering systems. In recent years, more and more advanced and more 
complex synthesis circuits have been designed to build more and more reliable, efficient 
and complex molecular signal pathways. The purpose of many bioinformatics studies is 
to identify markers or characteristics, which can be used to distinguish different groups 
[2, 3]. Fluorescence labeling is often used in DNA circuit reaction [4], and fluorescence 
is more expensive. Using ThT instead of fluorescence as a reporter can save cost and 
make it easier to achieve. Synthetic DNA circuits transmit complex information through 
two main catalytic mechanisms: enzyme-dependent DNA cascades [5, 6] and entropy-
driven DNA catalytic reactions [7–10]. Especially entropy-driven circuit is attractive due 
to its catalytic ability, signal amplification and programmable network [11]. Zhang et al. 
[12] first propose entropy-driven circuit, which provides a simple, fast, modular, com-
binable and robust amplifying circuit element. Entropy-driven DNA circuits have been 
widely used in logic operations [13, 14], nanostructure formation [11], DNA comput-
ing[15, 16], molecular detection [17] and molecular engineering [18]. Zhang et al. [19] 
implement a cutting-assisted recovery strategy for reactants in an entropy-driven DNA 
circuit. In [20], a molecular engineering, entropy-driven 3D DNA amplifier is developed, 
which can work in response to specific intracellular mRNA targets in living cells. In [21], 
a DNA amplifier functionalized MOF particle is developed, which can be used to detect 
and image intracellular mRNAs. Damase et al. [22] design an EDA circuit mechanism 
with Thioflavin T detection. Therefore, entropy-driven circuit plays an important role in 
bioinformation system.

In nature, most systems are nonlinear. Therefore, in order to better analyze nonlin-
ear systems, it is necessary to establish mathematical models of nonlinear systems. 
Many nonlinear system modeling methods [23–28] have been proposed. Based on 
the above methods, nonlinear system models can be established [29, 30], and sensi-
tivity analysis [31, 32], stability analysis [30, 33, 34] and bifurcation analysis [35–37] 
can be performed on them. A parametric model of dosetime response is proposed in 
[38], demonstrating the effectiveness of our model for all available anticancer com-
pounds. In real life, it is full of randomness, and random disturbance is inevitable. 
Many scholars have studied the infectious disease system and population system 
affected by Lévy noise. In biochemical reaction, it is often subjected to sudden and 
severe disturbances, such as pressure shock, thermal shock, and sudden addition of 
catalyst, etc. These factors will cause the reaction to jump. Lévy jump is often used in 
infectious disease models [39–42], proving that the influence of Lévy noise can lead 
to the extinction of diseases. Lévy jumps are also used in epidemic models [43] and 
virus dynamics models [44]. [45] and [46] introduce the introduction of Lévy jump 
in the predator system, and analyze the sufficient conditions for the species’ contin-
ued survival and extinction. Lu et al. [47] introduce Lévy jump in the Lotka-Volterra 
competition model and analyze the conditions of system stability. In [48], Lévy jump 
is added to the symbiosis model and analyzed the sufficient conditions for the stabil-
ity of the system distribution. Gao et  al. [49] add Lévy jump to the multi-molecule 
biochemical reaction model, and prove the conditions for the end and duration of the 
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system reaction. Gaussian white noise is only the idealization of all kinds of random 
noise in reality. It can only describe the small disturbance near the mean value, but 
cannot simulate the large-scale random disturbance, while Lévy noise can describe 
the large-scale random disturbance. In biochemical reaction system, there are few 
studies with Lévy noise. Therefore, adding disturbance such as Lévy jump into the 
system can better understand the properties of the system.

In biological information system, external noise often has a greater impact on the 
system. Since the temperature will change during the reaction of EDA circuit, result-
ing in a large-scale random disturbance, this phenomenon needs to be described by 
a stochastic differential equation driven by Lévy jump. Focusing on the above-men-
tioned problems, this paper discusses nonlinear biochemical reaction system model 
with Lévy jump based on EDA circuit reaction. For the first time, Lévy jump is intro-
duced into DNA strand replacement system to study the properties of the system. 
First, nonlinear biochemical reaction system model based on EDA circuit reaction is 
established according to the law of conservation of mass and mathematical modeling. 
Considering the influence of random disturbance on EDA circuit reaction system, a 
nonlinear biochemical reaction system model with Lévy jumps is established. Then, 
considering the influence of Lévy jump on the response of EDA circuit, the sufficient 
conditions for the end and the continuation of EDA response are analyzed. When 
noise intensity is large enough or meets the appropriate conditions, Lévy jump will 
force EDA circuit reaction to end. At this time, the concentration of reactants in EDA 
circuit reaction decreases to the lowest, the reaction activity of ThTSignal reaches the 
maximum, and the fluorescence intensity of EDA circuit reaction reaches the maxi-
mum. When noise intensity is small enough, Lévy jump makes the reaction continue. 
At this point, the concentration of reactants in EDA circuit reaction reaches dynamic 
equilibrium and is not completely consumed. The low reaction activity of ThTSignal 
leads to the decrease of fluorescence intensity of EDA circuit reaction. Finally, the 
accuracy of the theoretical results is verified by numerical simulation.

The main contributions of this research are as follows: 

(1)	 For the first time, Lévy jymp is introduced into DNA strand displacement reac-
tion of EDA circuit reaction, and the stochastic differential equation system model 
driven by Lévy jump is analyzed.

(2)	 The nonlinear biochemical reaction system with Lévy jump is established, which 
transforms EDA circuit reaction process into nonlinear mathematical model, and 
provides a theoretical basis for further research on EDA circuit reaction.

(3)	 The sufficient conditions for the end and continuation of EDA circuit reaction 
under the influence of Lévy jump are analyzed, and the influence of noise intensity 
on ThTSignal reaction activity in EDA circuit reaction is studied.

The rest of this article is organized as follows: in section two, based on EDA reaction, 
nonlinear biochemical reaction model is established, and the disturbance factor is 
considered, Lévy jump is introduced into the system, and nonlinear biochemical reac-
tion system model with Lévy jump is built. In section three, the existence and unique-
ness of the positive solution of the system is analyzed. In section four, the sufficient 
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conditions for the end and continuation of EDA circuit reaction are certified, and the 
reactivity of ThTSignal under different noise intensity is attested. In section five, the 
above conclusions are verified by numerical simulation.

Methods
In this part, the modeling method of stochastic differential equations with Lévy jumps 
will be introduced. In EDA circuit reaction, it often suffers from sudden and severe dis-
turbances, such as pressure shock, thermal shock, and sudden addition of catalyst. These 
factors will cause a jump in the response of EDA circuit. However, Gaussian white noise 
can only describe small disturbances, but cannot simulate large random disturbances. 
Therefore, in order to describe this type of noise, it is reasonable and necessary to intro-
duce Lévy jump process in EDA circuit reaction model and use the stochastic differential 
equation driven by jump process to explain these phenomena in EDA circuit reaction.

Modeling of nonlinear biochemical reaction system based on EDA reaction

In this section, a mathematical model of nonlinear biochemical reaction system based 
on EDA circuit reaction [22] will be established. Among them, the schematic diagram of 
EDA circuit response is shown in Fig. 1.

In EDA circuit reaction, ThTSignal is used as the unlabeled reporter of DNA-DNA 
reaction activity by using the fluorescence characteristic of ThT binding with DNA 
sequence. In order to further study the activity of ThTSignal reaction, we establish non-
linear biochemical reaction system model based on EDA circuit reaction. The reaction 
equation of EDA circuit is as follows

Fig. 1  EDA circuit reaction diagram
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where k1 , k−1 and k2 represent the reaction rate. For convenience, the reactants Spine-
ThTSignal-Block, Catalyst, the intermediate product Spine-ThTSignal-Catalyst, waste 
Block, Fuel, the product Spine-Fuel, and the fluorescent product ThTSignal are respec-
tively used as x, a, y, b, c, d and e. Then the net reaction equation of EDA circuit reaction 
can be obtained as

According to the net reaction equation of EDA circuit reaction, nonlinear mathemati-
cal model of EDA circuit response can be established by using mathematical modeling 
method.

where x(t) , a(t) , y(t) , b(t) , c(t) , d(t) and e(t) respectively represent the concentration of 
reactant x, catalyst a, intermediate product y, waste b, fuel c, product d and fluorescent 
product e at time t.

Based on the net reaction equation (2) of EDA circuit reaction, according to the law of 
conservation of mass, the relationship between the initial concentration of the reactant and 
the concentration of the product can be obtained as

where x0 , a0 and c0 respectively represent the initial concentration of reactants x, a and c.
On the basis of the mathematical model of nonlinear biochemical reaction system based 

on EDA circuit reaction (3) and the initial concentration relationship of the reactants of 
EDA reaction (4), the following nonlinear biochemical reaction system model can be 
obtained

(1)











Spine− ThTSignal − Block + Catalyst
k1
⇋
k−1

Spine− ThTSignal − Catalyst + Block

Spine− ThTSignal − Catalyst + Fuel
k2
→ Spine− Fuel + ThTSignal + Catalyst,

(2)











x + a
k1
⇋
k−1

y+ b

y+ c
k2
→ d + e + a,

(3)



















































ẋ(t) = k−1b(t)y(t)− k1a(t)x(t)

ȧ(t) = k−1b(t)y(t)− k1a(t)x(t)+ k2c(t)y(t)

ẏ(t) = k1a(t)x(t)− k−1b(t)y(t)− k2c(t)y(t)

ḃ(t) = k1a(t)x(t)− k−1b(t)y(t)

ċ(t) = −k2c(t)y(t)

ḋ(t) = k2c(t)y(t)

ė(t) = k2c(t)y(t),

(4)







x0 = x(t)+ y(t)+ e(t) = x(t)+ b(t)

a0 = a(t)+ y(t)

c0 = c(t)+ e(t),

(5)















dx

dt
= −a1x(t)+ b1y(t)+ c1x(t)y(t)

dy

dt
= a1x(t)− b2y(t)+ c2x(t)y(t)− k2y

2(t),
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where a1 = k1a0 , b1 = k−1x0 , c1 = k−1 − k1 , b2 = k−1x0 + k2(c0 − x0) , 
c2 = k−1 − k1 − k2.

Remark 1
In view of the complex calculation process and large amount of calculation when analyz-
ing system characteristics, the dimensionality reduction of the system according to the law 
of conservation of mass can not only simplify EDA circuit reaction system, but also reduce 
the difficulty of calculation.

Remark 2
The use of mathematical modeling methods to model EDA circuit reaction system can 
more intuitively describe biological information system and make the abstract problems 
concrete, so that mathematical methods can be used to solve biological information sys-
tem problems.

Modeling of nonlinear biochemical reaction system with Lévy jumps based on EDA 

reaction

In real life, EDA circuit reactions may suffer sudden and severe disturbances, such as sud-
den addition of catalysts, changes in temperature, and so on. These factors will cause EDA 
circuit reactions to produce large random disturbances, and the resulting phenomenon 
cannot be accurately described by model (5). Therefore, Lévy jump is added to EDA cir-
cuit response model, so that the model can more accurately describe the reaction activity of 
ThTSignal in EDA circuit response. The following is nonlinear biochemical reaction model 
with Lévy jump based on EDA circuit reaction.

where x
(

t−
)

 and y
(

t−
)

 are the left limits of x(t) and y(t) respectively, B(t) is the standard 
one-dimensional Brownian motion, B(0) = 0 , σ 2 > 0 are the intensity of white noise, 
Ñ  is the compensated random measure defined by Ñ (dt, du) = N (dt, du)− �(du)dt , 
N is the Poisson counting measure, and � is the characteristic measure of N, which is 
defined on the finite measurable subset Y of (0,+∞) , �(Y) < ∞ , γ (u) : Y×� → R are 
bounded continuous functions, and |γ (u)| < l , l > 0 are constants. Assume that B and N 
are independent.

Remark 3
Using mathematical model with Lévy jumps to describe the response of EDA circuit can 
more realistically show the situation of biological information system in the real environ-
ment, thereby reducing the deviation and being closer to the real situation.

(6)











































dx =
�

−a1x
�

t−
�

+ b1y
�

t−
�

+ c1x
�

t−
�

y
�

t−
��

dt

− x
�

t−
�

y
�

t−
�

�

σdB(t)+

�

Y

γ (u)Ñ (dt, du)

�

dy =
�

a1x
�

t−
�

− b2y
�

t−
�

+ c2x
�

t−
�

y
�

t−
�

− k2y
2
�

t−
�

�

dt

+ x
�

t−
�

y
�

t−
�

�

σdB(t)+

�

Y

γ (u)Ñ (dt, du)

�

,



Page 7 of 20Fu et al. BMC Bioinformatics  2022, 22(Suppl 12):437	

Assumption 1 
∣

∣

∣

(

k2(x0−c0)
2k−1−k2

)

γ (u)
∣

∣

∣
≤ δ < 1 for any u ∈ Y.

Assuming that 
(

�,F, {Ft}t≥0,P
)

 be a complete probability space and it’s filtration {Ft}t≥0 
satisfies the general conditions (i.e. it’s right continuous and F0 contains all P-null sets).

Define

In addition, 
〈

f (t)
〉

 is the mean value of the function f (t) on [0, ∞) , that is 
〈

f (t)
〉

= 1
t

∫ t
0 f (s)ds.

Existence and uniqueness of positive solutions
In this section, it is proved that system (6) has a unique global positive solution for 
any initial value.

Theorem 1  Let Assumption 1 holds, then for any given initial value 
(

x(0), y(0)
)

∈ R
2
+ , 

the model has a unique solution 
(

x(t), y(t)
)

 at t ≥ 0 , and the solution will remain in R2
+ 

with probability 1, that is, 
(

x(t), y(t)
)

∈ R
2
+ is almost surely (a.s.) for all t ≥ 0.

Proof
Since the coefficients of model (6) satisfy the local Lipschitz condition, for any given initial 
value 

(

x(0), y(0)
)

∈ R
2
+ , there exists a unique local solution 

(

x(t), y(t)
)

 on t ∈ [0, τe) , 
where τe is the explosion time. To prove that the solution is global, we only need to prove 
τe = ∞ a.s. Therefore, let m0 ≥ 1 be large enough that 

(

x(t), y(t)
)

 is in the interval 
[

1
m0

,m0

]

 . For each integer of m ≥ m0 , the stop time is defined as follows

where assuming that inf φ = ∞ ( φ be an empty set). Obviously, τ increases with m → ∞ . 
Let τ∞ = lim

m→+∞
τm , thus τ∞ ≤ τe a.s. if τ∞ = ∞ a.s. is true, then τe = ∞ a.s. and for any 

t ≥ 0 , there is 
(

x(t), y(t)
)

∈ R
+
2 a.s. In other words, in order to prove the conclusion, we 

only need to explain τ∞ = ∞ a.s. On the contrary, there is a pair of constants T > 0 and 
ε ∈ (0, 1) such that P{t∞ ≤ T } > ε , therefore, there is an integer m1 ≥ m0 , such that

Define a non-negative C2 function V : R2
+ → R̄+ as follows

R
d
+ =

{

x ∈ R
d : xi > 0 for all 1 ≤ i ≤ d

}

,

R̄
d
+ =

{

x ∈ R
d : xi ≥ 0 for all 1 ≤ i ≤ d

}

.

(7)τm = inf

{

t ∈ [0, τe] : min
{

x(t), y(t)
}

≤
1

m
ormax

{

x(t), y(t)
}

≥ m

}

,

(8)P{tm ≤ T } ≥ ε for all m ≥ m1.

(9)
(

x, y
)

= (x − 1− ln x)+
(

y− 1− ln y
)

.
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Assuming that m ≥ m1 and T > 0 be arbitrary. For any 0 ≤ t ≤ min {τm, T } , by using It’s 
formula,

where LV : R2
+ → R is defined by

in which

According @@to Assumption 1, we have 1− γ (u)y > 0 for any u ∈ Y . On the basis of 
Taylor’s formula and Assumption 1, we can get the following conclusion

where θ ∈ (0, 1) is an arbitrary number.

In the same way, it can be concluded that

(10)

dV
(

x, y
)

:= LV
(

x, y
)

+ σydB(t)− σxdB(t)

−

∫

Y

[

γ (u)xy+ ln
(

1− γ (u)y
)]

Ñ (dt, du)

+

∫

Y

[γ (u)xy− ln (1+ γ (u)x)]Ñ (dt, du),

LV
(

x, y
)

=

(

1−
1

x

)

(

−a1x + b1y+ c1xy
)

+

(

1−
1

y

)

(

a1x − b2y+ c2xy− k2y
2
)

−

∫

Y

[

ln
(

1− γ (u)y
)

+ γ (u)y
]

�(du)+
σ 2

2
x2

−

∫

Y

[ln (1+ γ (u)x)− γ (u)x]�(du)+
σ 2

2
y2

≤ k1a0 + k−1x0 + k2(c0 − x0)+ (k−1 + k1 + k2)
(

x + y
)

+
σ 2

2

(

x2 + y2
)

−

∫

Y

[

ln
(

1− γ (u)y
)

+ γ (u)y
]

�(du)

−

∫

Y

[ln (1+ γ (u)x)− γ (u)x]�(du)

≤ k1a0 + k−1x0 + k2(c0 − x0)+ k

(

k2(x0 − c0)

2k−1 − k2

)

+ σ 2

(

k2(x0 − c0)

2k−1 − k2

)2

+H1 +H2,

H1 = −

∫

Y

[

ln
(

1− γ (u)y
)

+ γ (u)y
]

�(du),

H2 = −

∫

Y

[ln (1+ γ (u)x)− γ (u)x]�(du),

k = k1 + k−1 + k2.

H1 =

∫

Y

[

γ (u)y− γ (u)y+
γ 2(u)y2

2!
(

1− γ (u)
(

0+ θ
(

y− 0
)))2

]

�(du)

=

∫

Y

[

γ 2(u)y2

2
(

1− γ (u)yθ
)2

]

�(du)

≤
δ2

2(1− δ)2
�(Y),
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Then, it is concluded that

where C is a constant.

Taking expectations from both sides of (11), we obtain

Set �m = {τm ≤ T } for m ≥ m1 and according to Eq. (8), we have P{�m} ≥ ε . 
Note that for every ω ∈ �m , x(τm, ω) or y(τm, ω) is equal to one of m or 1

m . So 
V
(

x(τm, ω), y(τm, ω)
)

 is not less than either

m− 1− lnm or 1
m − 1− ln 1

m = 1
m − 1+ lnm.

Therefore,

It can be seen from (12),

where I�m indicates the indicator function of �m . Here m → ∞ leads to the contradiction

so we must have τm = ∞ a.s. This completes the proof. � �

H2 =

∫

Y

[

γ 2(u)x2

2(1+ γ (u)θx)2

]

�(du) ≤
δ2

2(1− δ)2
�(Y)

LV
(

x, y
)

≤ k1a0 + k−1x0 + k2(c0 − x0)+ k

(

k2(x0 − c0)

2k−1 − k2

)

+ σ 2

(

k2(x0 − c0)

2k−1 − k2

)2

+
δ2

(1− δ)2
�(Y)

:= C

(11)

∫ τm∧T

0
dV

(

x(t), y(t)
)

≤

∫ τm∧T

0
Cds+

∫ τm∧T

0
σy

(

s−
)

dB(s)

−

∫ τm∧T

0
σx

(

s−
)

dB(s)

−

∫ τm∧T

0

∫

Y

[

γ (u)x
(

s−
)

y
(

s−
)

− ln
(

1− γ (u)y
(

s−
))]

Ñ (ds, du)

+

∫ τm∧T

0

∫

Y

[

γ (u)x
(

s−
)

y
(

s−
)

− ln
(

1+ γ (u)x
(

s−
))]

Ñ (ds, du)

(12)
EV

(

x(τm ∧ T ), y(τm ∧ T )
)

≤ V
(

x(0), y(0)
)

+ CE(τm ∧ T )

≤ V
(

x(0), y(0)
)

+ CT .

(13)V
(

x(τm,ω), y(τm,ω)
)

≥ (m− 1− lnm) ∧

(

1

m
− 1+ lnm

)

V
(

x(0), y(0)
)

+ CT ≥ E
[

I�mV
(

x(τm,ω), y(τm,ω)
)]

≥ ε

[

(m− 1− lnm) ∧

(

1

m
− 1+ lnm

)]

∞ > V
(

x(0), y(0)
)

+ CT = ∞,
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Remark 4
According to system (6), we have

Therefore the region

is a positive invariant set of system (6). In the following, set the initial value 
x(0)+ y(0) ∈ Ŵ∗ of system (6).

Sufficient conditions for end and continuation of reaction
In order to study the effect of Lévy noise on EDA circuit response, the changes in the 
response of EDA circuit and the reactivity of ThTSignal under different noise intensities 
are analyzed below.

Conditions for the end of reaction

In this section, the sufficient conditions for the end of the reaction of system (6) is 
proved. First of all, the following theorems are given.

Theorem 2  Under Assumption 1, assuming that 
(

x(t), y(t)
)

 be the solution of system (6) 
with any given initial value 

(

x(0), y(0)
)

∈ Ŵ∗ . If one of the following two conditions is true.

(a)σ ′2 >
c21
2b2

 , or

(b)σ ′2 ≤ c1
k2(x0−c0)
2k−1−k2

 and c1b2
(

k2(x0−c0)
2k−1−k2

)

− σ ′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
< 1 , then

lim sup
t→∞

ln y(t)
t ≤

c21
2σ ′2

+ b2 (a.s.), if (a) holds,

lim sup
t→∞

ln y(t)
t ≤ b2

[

−1+ c1
b2

(

k2(x0−c0)
2k−1−k2

)

− σ ′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
]

< 0 (a.s.),  if (b) holds, where 

σ ′2 = σ 2 +
∫

Y

γ 2(u)

(1+δ)2
�(du) . This means that the reaction will end with an exponential 

probability of 1.

Proof
From model (6),

d
(

x + y
)

≤
[

k2(c0 − x0)+ (2k−1 − k2)
(

x + y
)]

dt.

Ŵ∗ =

{

(

x, y
)

∈ R
2
+ : x + y <

k2(x0 − c0)

2k−1 − k2

}

x(t)− x(0)

t
+

y(t)− y(0)

t
= k2(x0 − c0)

〈

y
(

t−
)〉

− (2k−1 − k2)
〈

x
(

t−
)

y
(

t−
)〉

− k2

〈

y2
(

t−
)

〉
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and then

where

satisfies

Using It’s formula to calculate ln y , we can get the following results

Integrate this equation from 0 to t, and divide both sides by t to get

where M1(t) = σ
∫ t
0 x

(

s−
)

ds, M2(t) =
∫ t
0

∫

Y

[

ln
(

1+ γ (u)x
(

s−
))]

Ñ (ds, du)are all mar-
tingale terms and f :

(

0 k2(x0−c0)
2k−1−k2

)

→ R is defined by

Case 1 When σ ′2 >
c21
2b2

 , by (18), one can see that

(14)
〈

x
(

t−
)〉

=
k2(x0 − c0)

2k−1 − k2
−

k2

2k−1 − k2

〈

y
(

t−
)〉

+ ϕ(t),

(15)ϕ(t) = −
1

(2k−1 − k2)
〈

y
(

t−
)〉

[

x(t)− x(0)

t
+

y(t)− y(0)

t

]

(16)lim
t→∞

ϕ(t) = 0.

d
(

ln y
)

=

{

a1x
(

t−
)

y
(

t−
) + b2 − c1x

(

t−
)

− k2y
(

t−
)

−
σ 2

2
x2
(

t−
)

+

∫

Y

[

ln
(

1+ γ (u)x
(

t−
))

− γ (u)x
(

t−
)]

�(du)

}

dt

+ σx
(

t−
)

dB(t)+

∫

Y

[

ln
(

1+ γ (u)x
(

t−
))]

Ñ (dt, du).

(17)

ln y(t)− ln y(0)

t
= a1

〈

x
(

t−
)

y
(

t−
)

〉

+ b2 − c1
〈

x
(

t−
)〉

− k2
〈

y
(

t−
)〉

−
σ 2

2

〈

x2
(

t−
)

〉

+

∫ t

0

∫

Y

[

ln
(

1+ γ (u)x
(

s−
))

− γ (u)x
(

s−
)]

�(du)ds +
M1(t)

t
+

M2(t)

t

≤ b2 − c1
〈

x
(

t−
)〉

−
1

2

[

σ 2 +

∫

Y

γ 2(u)

(1+ δ)2
�(du)

]

〈

x2
(

t−
)

〉

+
M1(t)

t
+

M2(t)

t

≤ b2 − c1
〈

x
(

t−
)〉

−
σ ′2

2

〈

x2
(

t−
)

〉

+
M1(t)

t
+

M2(t)

t

:= f (z)+
M1(t)

t
+

M2(t)

t
,

(18)

f (z) = b2 + c1z −
σ ′2

2
z2

= −
σ ′2

2

(

z −
c1

σ ′2

)2

+
c21

2σ ′2
+ b2z

=
〈

x
(

t−
)〉

∈

(

0
k2(x0 − c0)

2k−1 − k2

)

.
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Then from (17), we have

The quadratic variation of Mi(t), i = 1, 2can be calculated

According to the strong law of large numbers of local martingale, it follows that

Taking the upper limit on both sides of Eq. (20), we get

Case 2 when σ ′2 ≤ c1
k2(x0−c0)
2k−1−k2

 and c1b2
(

k2(x0−c0)
2k−1−k2

)

− σ ′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
< 1 , from equation 

(18), it’s easy to see that

Similarly, limt→∞ sup
ln y(t)

t ≤ b2

[

−1+ c1
b2

(

k2(x0−c0)
2k−1−k2

)

− σ ′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
]

< 0 a.s.

In summary, limt→∞y(t) = 0 a.s. This completes the proof. � �

Remark 5
It can be known from Theorem 3 that if the intensity of the noise is large enough so that 
σ ′2 >

c21
2b2

 or the intensity of the noise meets conditions (b), EDA circuit reaction will end 
in exponential form with probability 1. This shows that when the above conditions are 
met, Lévy jump will force EDA circuit to end the reaction.

(19)f (z) ≤ f

(

c1

σ ′2

)

=
c21

2σ ′2
+ b2,

(20)

ln y(t)

t
≤

ln y(0)

t
+ f (z)+

M1(t)

t
+

M2(t)

t

≤
ln y(0)

t
+

c21

2σ ′2
+ b2 +

M1(t)

t
+

M2(t)

t
.

�M1,M1�t = σ 2

∫ t

0
x2
(

s−
)

ds ≤σ 2

(

k2(x0 − c0)

2k−1 − k2

)2

t,

�M2,M2�t =

∫ t

0

∫

Y

[

ln
(

1+ γ (u)x
(

s−
))2

]

�(du)ds

≤ max
{[

ln (1− δ)2
]

,
[

ln (1+ δ)2
]}

�(Y)t.

(21)lim
t→∞

Mi(t)

t
= 0 a.s. i = 1, 2.

(22)lim sup
t→∞

ln y(t)

t
≤

c21

2σ ′2
+ b2 < 0 a.s.

f (z) ≤ f

(

k2(x0 − c0)

2k−1 − k2

)

= −b2 + c1

(

k2(x0 − c0)

2k−1 − k2

)

−
σ ′2

2

(

k2(x0 − c0)

2k−1 − k2

)2

= b2

[

−1+
c1

b2

(

k2(x0 − c0)

2k−1 − k2

)

−
σ ′2

2b2

(

k2(x0 − c0)

2k−1 − k2

)2
]

.
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Remark 6
When EDA circuit is completed, the reactants of biological information system are con-
sumed. At this time, the resulting product concentration reaches the maximum, and the 
system’s unbaled fluorescence reaction is the strongest, indicating that the reaction activ-
ity of unlabeled fluorescent reporter ThTSignal reaches the maximum.

Continuous reaction conditions

In this section, the conditions under which system (6) reaction continues are considered. 
First, give the following definition

Definition 1  System (6) is persistent if lim inf
t→∞

∫ t
0 y(s)ds > 0 a.s.

Assumption 2  R∗
0 := R0 −

σ ′′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
> 1, where σ ′′2 = σ 2 +

∫

Y

γ 2(u)

(1−δ)2
�(du).

Theorem 3  Let Assumptions 1 and 2 hold, 
(

x(0), y(0)
)

∈ Ŵ∗ is any given initial value, 
the solution 

(

x(t), y(t)
)

 of system (6) has the following property

lim inf
t→∞

〈

y
(

t−
)〉

≥
2k−1+k2

k2

[

b2
c1

− σ ′′2

2c1

(

k2(x0−c0)
2k−1−k2

)2
]

+ (x0 − c0) > 0.

Proof
In term of the first equation of (17), we can get

Substitute (14) into (23) to get

(23)

ln y(t)− ln y(0)

t
= a1

〈

x
(

t−
)

y
(

t−
)

〉

+ b2 − c1
〈

x
(

t−
)〉

− k2
〈

y
(

t−
)〉

−
σ 2

2

〈

x2
(

t−
)

〉

+
M1(t)

t
+

M2(t)

t

+
1

t

∫ t

0

∫

Y

[

ln
(

1+ γ (u)x
(

s−
))

− γ (u)x
(

s−
)]

�(du)ds

≥ b2 − c1
〈

x
(

t−
)〉

−
σ 2

2

(

k2(x0 − c0)

2k−1 − k2

)2

−

(

k2(x0 − c0)

2k−1 − k2

)2 ∫

Y

γ 2(u)

2(1− δ)2
�(du)+

M1(t)

t
+

M2(t)

t

= b2 − c1
〈

x
(

t−
)〉

−
1

2

(

σ 2 +

∫

Y

γ 2(u)

(1− δ)2
�(du)

)(

k2(x0 − c0)

2k−1 − k2

)2

+
M1(t)

t
+

M2(t)

t

= b2 − c1
〈

x
(

t−
)〉

−
σ ′′2

2

(

k2(x0 − c0)

2k−1 − k2

)2

+
M1(t)

t
+

M2(t)

t
.
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Since −∞ < ln y(t) < ln
(

k2(x0−c0)
2k−1−k2

)

 , the above formula can be rewritten as

Take the lower limit on both sides of the above formula to get 

lim inf
t→∞

〈

y
(

t−
)〉

≥
2k−1−k2

k2

[

b2
c1

− σ ′′2

2c1

(

k2(x0−c0)
2k−1−k2

)2
]

+ (x0 − c0).

In light of the condition R∗
0 > 1 , lim inf

t→∞

〈

y
(

t−
)〉

> 0 can be obtained. This completes the 

proof. � �

Remark 7
According to Theorem  3, as long as the noise is small enough to satisfy 
R∗
0 = R0 −

σ ′′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
> 1 , EDA circuit reaction will continue. The concentration of 

reactants in EDA circuit reaches a dynamic equilibrium, which indicates that the reac-
tant remains. At this point, the reaction activity of unlabeled fluorescent reporter ThTSig-
nal is low, and the fluorescence in-tensity of EDA circuit reaction is weak. The persistence 
of the reaction will not be conducive to the monitoring of EDA circuit reaction.

Remark 8
When the conditions of Theorem 2 are satisfied, Lévy noise will force the reaction to end 
earlier. At this point, the reaction activity of ThTSignal reaches the maximum value 
and the fluorescence intensity of the reaction reaches the maximum, indicating that the 
response has fully reacted, that is, the reaction is over. When the conditions in Theorem 3 
are contented, EDA circuit reaction will continue. At this time, the reaction activity of 
unlabeled fluorescent reporter ThTSignal is low and the fluorescence intensity of the reac-
tion is weak, which indicates that the reaction is not complete, but dynamic equilibrium is 
achieved, and EDA circuit response will continue.

Remark 9
In biological information system, the intensity of noise is closely related to the state of the 
system. Based on EDA circuit reaction, nonlinear biochemical reaction system (6) with 
Lévy beating is established, and sufficient conditions for the end and continuation of EDA 
reaction are analyzed. The results show that the end and duration of EDA circuit reaction 
is closely related to the intensity of Lévy noise, and Lévy jump has a significant impact on 
the properties of EDA circuit reaction system. When the noise intensity is large enough to 

make σ ′2 >
c21
2b2

 or noise meets conditions (b), EDA circuit response will end exponentially 

ln y(t)− ln y(0)

t
≥ b2 − c1

[

k2(x0 − c0)

2k−1 − k2
−

k2

2k−1 − k2

〈

y
(

t−
)〉

+ ϕ(t)

]

−
σ ′′2

2

(

k2(x0 − c0)

2k−1 − k2

)2

+
M1(t)

t
+

M2(t)

t
.

(24)

〈

y
(

t−
)〉

≥
2k−1 + k2

k2

{

ln y(t)− ln y(0)

c1t
−

b2

c1
+

σ ′′2

2c1

(

k2(x0 − c0)

2k−1 − k2

)2

−
M1(t)

c1t
−

M2(t)

c1t
−

k2(x0 − c0)

2k−1 − k2
− ϕ(t)

}

.
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with probability 1, that is to force EDA circuit reaction to end earlier. When the noise is 
small enough to satisfy R∗

0 = R0 −
σ ′′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
> 1 , EDA circuit reaction will 

continue.

Results
Simulated data

In order to display EDA circuit reaction more intuitively, the following uses MAT-
LAB software to perform a numerical simulation of system (6). Therefore, the 
numerical simulation of Lévy jump of system (6) is given below. Assuming the unit 
of time is minutes, the unit of reactant concentration is mol/L, take the initial value 
(

x(0), y(0)
)

=
(

1.5× 104, 0
)

 , and other parameters are as follows
a0 = 2.8× 10−4 , c0 = 1.4 × 10−4 , k1 = 2× 104 , k−1 = 1.8× 104 , k2 = 2.1× 104 , 

Y = (0,+∞) , �(Y) = 1.

Simulation study

Case 1 Choose white noise intensity σ = 0.8 and jumping noise intensity γ (u) = 0.55 , 
and set δ = 0.7 . Meets Assumption 1 and σ ′2 = 5.8482 > 0.625 =

c21
2b2

.

Therefore, condition (a) in Theorem 2 is satisfied, and the reaction ends with a prob-
ability 1 index. The simulation result is shown in Fig. 2.

Case 2 Choose white noise intensity σ = 0.6 , jumping noise intensity γ (u) = 0.75 , and 
set δ = 0.1 . Meets Assumption 1 and σ ′2 = 0.6804 ≤ 2.8571 = c1

k2(x0−c0)
2k−1−k2

 and 

c1
b2

(

k2(x0−c0)
2k−1−k2

)

− σ ′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
= 0.9983 < 1.

Therefore, condition (b) in Theorem  2 is satisfied, and the reaction ends with a 
probability 1 index. The simulation result is shown in Fig. 3.

Case 3 Choose white noise intensity σ = 0.2 , jumping noise intensity γ (u) = 0.15 , and 
set δ = 0.2 . Meets Assumption 1 and R0 −

σ ′ ′2

2b2

(

k2(x0−c0)
2k−1−k2

)2
= 1.1553 > 1.

Therefore, when EDA circuit response satisfies the condition of Theorem 3, EDA cir-
cuit response will continue. That is to say, when Lévy jump satisfies certain conditions, 
EDA circuit reaction will be in a dynamic equilibrium process, and with the increase of 
time, the concentration of the reactant will be in an equilibrium stage, that is, the con-
centration change will be stable, as shown in Fig. 4 of the simulation results.

Remark 10
When the noise intensity meets certain conditions, EDA circuit reaction will enter a state 
of equilibrium, at which time the system response will continue. The duration of EDA cir-
cuit response is closely related to the intensity of Lévy noise, and Lévy jump has a signifi-
cant impact on biological information system.
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Discussion
From Case 1 and Case 2, it can be seen that Lévy jump will force EDA circuit to end 
with probability 1 when EDA circuitry meets two conditions satisfying Theorem 2. That 
is, EDA circuit responded in advance in advance under the influence of Lévy jump. 
According to Figure 2 and Figure 3, as time increases, the concentration of the reactants 
will also decrease until it reaches 0. At this time, the reaction of EDA circuitry will be 
completely consumed, so that the product concentration of EDA circuit will reach the 

Fig. 2  When σ = 0.8 and γ (u) = 0.55 , the state variable response diagram of system (6)

Fig. 3  When σ = 0.6 and γ (u) = 0.75 , the state variable response diagram of system (6)
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maximum value, at which point the fluorescence intensity reaches the maximum, and 
the reaction activity of Thtsignal reaches the maximum. This proves that THT can be 
used as a non-marking reporter to complete the expression in the influence of the appro-
priate Lévy jump, providing a new idea for biological information.

From Case 3, when Lévy jump satisfies certain conditions, EDA circuit reaction will be 
in a dynamic equilibrium process, and with the increase of time, the concentration of the 
reactant will be in an equilibrium stage, that is, the concentration change will be stable. 
This shows that there are still some reactants in EDA circuit at this time, the fluores-
cence intensity is weak, and the reaction activity of ThTSignal is reduced.

Through the study of EDA circuit response, we can find that ThT, as an unlabeled 
reporter, can also promote the research of bioinformatics. Using ThT instead of fluores-
cent labeling can not only reduce the cost, but also regulate the fluorescence intensity of 
the reaction by controlling external noise, such as Lévy jump, so that we can have a more 
intuitive feeling. This has played a role in promoting the development of bioinformatics.

Conclusions
In this paper, nonlinear biochemical reaction system with Lévy jump based on EDA cir-
cuit response is studied. Firstly, nonlinear biochemical reaction system model is estab-
lished based on EDA circuit reaction. Considering that biochemical reaction will suffer 
sudden disturbances, such as sudden addition of catalyst, thermal shock and so on, in 
order to describe the system more accurately, nonlinear biochemical reaction system 
model with Lévy jump based on EDA circuit reaction is established. Then, the existence 
and uniqueness of positive solutions for the system is analyzed. Next, we analyze the suf-
ficient conditions for the end of EDA circuit reaction and the sufficient conditions for 
the reaction to continue under the influence of Lévy jump. Finally, the conclusion is veri-
fied by numerical simulation. The results show that the end and duration of EDA circuit 
reaction is closely related to the intensity of Lévy noise.

Fig. 4  When σ = 0.2 and γ (u) = 0.15 , the state variable response diagram of system (6)
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