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Abstract 

Background: The volume of biomedical literature and clinical data is growing at an 
exponential rate. Therefore, efficient access to data described in unstructured biomedi‑
cal texts is a crucial task for the biomedical industry and research. Named Entity Recog‑
nition (NER) is the first step for information and knowledge acquisition when we deal 
with unstructured texts. Recent NER approaches use contextualized word representa‑
tions as input for a downstream classification task. However, distributed word vectors 
(embeddings) are very limited in Spanish and even more for the biomedical domain.

Methods: In this work, we develop several biomedical Spanish word representations, 
and we introduce two Deep Learning approaches for pharmaceutical, chemical, and 
other biomedical entities recognition in Spanish clinical case texts and biomedical 
texts, one based on a Bi‑STM‑CRF model and the other on a BERT‑based architecture.

Results: Several Spanish biomedical embeddigns together with the two deep 
learning models were evaluated on the PharmaCoNER and CORD‑19 datasets. The 
PharmaCoNER dataset is composed of a set of Spanish clinical cases annotated with 
drugs, chemical compounds and pharmacological substances; our extended Bi‑LSTM‑
CRF model obtains an F‑score of 85.24% on entity identification and classification 
and the BERT model obtains an F‑score of 88.80% . For the entity normalization task, 
the extended Bi‑LSTM‑CRF model achieves an F‑score of 72.85% and the BERT model 
achieves 79.97%. The CORD‑19 dataset consists of scholarly articles written in English 
annotated with biomedical concepts such as disorder, species, chemical or drugs, gene 
and protein, enzyme and anatomy. Bi‑LSTM‑CRF model and BERT model obtain an 
F‑measure of 78.23% and 78.86% on entity identification and classification, respectively 
on the CORD‑19 dataset.

Conclusion: These results prove that deep learning models with in‑domain knowl‑
edge learned from large‑scale datasets highly improve named entity recognition per‑
formance. Moreover, contextualized representations help to understand complexities 
and ambiguity inherent to biomedical texts. Embeddings based on word, concepts, 
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senses, etc. other than those for English are required to improve NER tasks in other 
languages.

Keywords: Natural language processing, Clinical texts, Deep learning, Contextual 
information

Background
Efficient information extraction off biomedical data described in scientific articles, 
clinical narrative, or e-health reports is a growing interest in biomedical industry, 
research, and so forth. In this context, improved biomedical name mentions identi-
fication in the biomedical texts is a crucial step downstream tasks such as drug and 
protein interactions, chemical compounds, adverse drug reactions, among others. 
Named Entity Recognition (NER) is one of the fundamental tasks of biomedical text 
processing, intending to automatically extract and identify mentions of entities of 
interest in running text, typically through their mention boundary or by classifying 
tokens to match specific entity mentions. Traditionally, there are three phases in rec-
ognizing concepts in texts: (1) to identify the limits of the term or phrase that rep-
resents the concept in the text (char offsets in the text), (2) to classify the term or 
phrase on a class (for instance, drug, disease, body part, etc.) and (3) to normalize the 
concept by assigning it an identifier in a specific domain resource such as UMLS [1]. 
The existing biomedical NER methods can be classified into: dictionary-based meth-
ods, which are based on the use of existing domain knowledge dictionaries limited by 
its size, spelling errors, the use of synonyms, and the constant growth of vocabulary. 
Rule-based methods and Machine Learning methods usually depend on the engineer-
ing of syntactic and semantic features as well as specific language and domain features 
that are learned from large collections of text or built from scratch. More recently, 
deep learning approaches have emerged due to the availability of myriad data from 
different sources (scientific literature, social media, clinical texts, etc.).

The NER task has been accomplished by three types of methods. Dictionary-based 
methods require having specific resources integrating terminology such METAMAP 
tool [2] that includes UMLS [1] and recognizes mentions of medical concepts. With the 
availability of annotated corpora, machine learning supervised approaches have widely 
used in entity recognition. One of the most effective methods is Conditional Random 
Fields (CRF) [3] since CRF is one of the most reliable sequence labeling methods. Dif-
ferent challenges have been held to foster research in NER, for example, eHealth CLEF, 
SEMEVAL and TAC, among others. In the special case of drugs, DDIExtraction 2011 
[4] and DDIExtraction 2013 [5] were specifically designed to recognize pharmacological 
entities and drug-drug interactions (DDI) in Medline abstracts and DrugBank techni-
cal records both in English. In these shared tasks the best result reported for NER using 
four types of pharmacological substances (generic drug names, branded drug names, 
drug group names and active substances not approved for human use) was F1 of 71.5% 
(by a system based on CRF algorithm). For DDI identification and classification in four 
classes (advice, mechanism, effect and int) the best result was 65.1% (system bases on a 
combination of kernels). Most of the participating systems were built on support vector 
machines (SVM). In general, approaches based on non-linear kernels methods achieved 
better results than linear SVMs.
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More recently, deep learning methods started to obtain better results in NER based 
on the use of pre-trained models (word embeddings) obtained from a huge volume 
of unlabelled texts (scientific literature, social media texts, Wikipedia, among others). 
Word embeddings have been evolving from static representations that do not model the 
dynamic nature of words to contextualized representations that allow word embeddings 
to adapt to the context it appears, see [6] for a detailed description of embeddings. Pre-
trained models may be useful for analyzing texts if these texts are similar to what they 
were trained on. When texts are from a different domain we will need to fine-tune a 
pre-trained model to fit our data or task. This is much more efficient than training a 
whole model from scratch because it is too time and resources consuming task. With 
a limited set of examples systems can get high performance in downstream tasks. See 
[7] for a survey of embeddings in clinical natural language processing. The new chal-
lenge, PharmacoNER 2019 [8] was focused on recognizing and normalizing pharma-
cological substances in Spanish clinical cases. In the current stream of deep learning 
approaches, participating systems mostly included those architectures. The baseline 
defined for PharmacoNER was based on vocabulary transfer using a LSTM model with 
Glove embeddings trained from SBWC and the medical word embeddings for Spanish 
[9] that achieved a high F1 of 0.82% (ranked 16 out of 22) in NER. The first ranked sys-
tem [10] was based on a pipeline composed of a BERT (Bidirectional Encoder Represen-
tations from Transformers) for NER and a Bi-LSTM for concept indexing achieving an 
F1-score of 91.5% on NER and 83.9% on concept indexing. The third-ranked system [11] 
was based on a Bi-LSTM-CRF tagger with FLAIR contextualized embeddings obtain-
ing a result of 89.76% F1-score using pre-trained embeddings and up to 90.5% using 
specialized ones. The second-ranked system [12] implemented a traditional knowl-
edge-based approach based on dictionaries, particularly the SNOMED-CT medical 
ontology [13] together with a set of 104 contextual regexp patterns to tackle ambiguity 
(an important issue especially for abbreviations) and surprisingly this system obtained 
an F1-Score of 91% in NER and 91.6% in concept indexing (top system). This reveals that 
resource-based approaches have a lot to say yet. Other deep learning works have also 
demonstrated state-of-the-art performance for English [14–16] texts by automatically 
learning relevant patterns from corpora, which allows language and domain independ-
ence. Weber [17] described a set of experiments with a NER tool called HUNER that 
incorporates a fully trained LSTM-CRF model using 34 different corpora for five entity 
types that outperform the state-of-the-art tools CnormPlus and tmChem by 5–13 pp for 
chemicals, species and gene on CRAFT corpus [18]. However, concerning the genera-
tion of domain-based pre-trained models until now, to the best of our knowledge, there 
is only one work that addresses the generation of Spanish biomedical word embeddings 
[9, 19].

In this paper, we propose two deep learning approaches to face the recognition of 
pharmacological and chemical entities in Spanish texts. The approaches are evaluated 
using the Spanish biomedical PharmaCoNER and English biomedical CORD-19 data-
sets. Our main goal is to evaluate the performance impact of cross-domain (general and 
biomedical domain) and cross-language (Spanish and English) pre-trained embeddings 
models. Firstly, for entity identification and classification, we implemented two bidirec-
tional Long Short Memory (Bi-LSTM) layers with a CRF layer based on the NeuroNER 
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model proposed in [20]. Specifically, we have extended the NeuroNER [20] architecture 
by adding context information to token-level representation, such as Part-of-Speech 
(PoS) tags and overlapping or nested entities. Moreover, in this work, we use several pre-
trained word embedding models: (i) a word2vec model (Spanish Billion Word Embed-
dings [21]), which was trained on the 2014 dump of Wikipedia, (ii) pre-trained word2vec 
model of word embeddings trained with PubMed and PMC articles, (iii) Scielo and 
Wikipedia cased pre-trained model based on the FastText implementation, (iv) a sense-
disambiguation embedding model [22], where different word senses are represented 
with different sense vectors and trained from scratch embedding models (v) the Fast-
Text-SBC model trained on the FastText implementation and (vi) the SNOMED-SBC 
model based on the FastText-SBC replacing concepts with their unique SNOMED-CT 
[13] identifier. Finally, we implemented the Bidirectional Encoder Representations for 
Transformers (BERT) model with fine-tuning using BERT pre-trained general domain 
models and a trained from scratch biomedical model. For concept indexing based on the 
output of offset recognition and entity classification, we applied a full-text search and a 
fuzzy matching approach on the SNOMED-CT Spanish Edition dictionary to obtain the 
corresponding index to normalize the concept.

Results
We evaluate our deep learning models using the train, validation and test datasets pro-
vided by the task organizers of the PharmaCoNER Shared Task [8]. The PharmaCoNER 
task considers two subtasks. Subtask 1 considers offset recognition and entity classifica-
tion of pharmacological substances, compounds, and proteins. Subtask 2 considers con-
cept indexing where for each entity, the list of unique SNOMED concept identifiers must 
be generated. We apply the standard measures precision, recall and F1-score to evaluate 
the performance of our approaches. These metrics are also used in the PharmaCoNER 
task. A detailed description of the evaluation can be found in [23].

Moreover, we evaluate our deep learning models on the train, validation and test sub-
sets of the CORD-19 dataset [24]. F-measure is used as the primary metric where true 
positives are entities that match with the gold standard annotations boundaries and 
entity type.

Offset detection and entity classification

The NER task is addressed as a sequence labeling task. For NER we tested different con-
figurations with various pre-trained word representation models.

Bi‑LSTM CRF model: extended NeuroNER

For our Bi-LSTM CRF model we test various pre-trained and trained from the scratch 
word embeddings models (see Table  21). Table  1 describes our different experiment 
configurations for the PharmaCoNER datasets with Spanish general domain (W2V-
SBWC and FastText-SBWC), English general domain (FastText 2M), Spanish biomedical 
domain (FastText-SBC and SNOMED-SBC) and English biomedical domain (PubdMed 
and PMC) embeddings. Each configuration for all evaluations was executed up to 5 
times and we kept the best result obtained (85.75) as shown in Table 2. Table 2 compares 
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the different results obtained in 5 runs for Extended NeuroNER using FastText-SBC + 
Reddit embedding models.

Table  4 shows a comparison of the different pre-trained models on the Pharma-
CoNER validation dataset where we want to highlight that domain-specific and word 
embeddings outperform general domain models by almost 5 points, Moreover, lan-
guage-specific word embeddings outperform cross-lingual models by almost 4 points. 
Furthermore, lower performance of general domain and cross-lingual word embeddings 
models can be related to recall performance; this can be interpreted as many out-of-
vocabulary words. For the test dataset, we applied our best system configuration Fast-
Text-SBC + Reddit (see Table 4) obtaining an F-score of 85.24% for offset detection and 
entity classification. Furthermore, Table  3 shows the classification results obtained by 

Table 1 System hyperparameters for each PharmaCoNER run

Parameter Run 1 Run 2 Run 3 Run 4

Sense‑disambiguation embedding dimension 128 128 128 128

Pre‑trained word embeddings FastText‑SBC 
+ Reddit

W2V‑SBWC + 
Reddit

FastText‑SBWC 
+ Reddit

SNOMED‑
SBC + 
Reddit

Word embeddings dimension 300 300 300 300

Character embedding dimension 50 50 50 50

Hidden layers dimension (for each LSTM) 100 100 100 100

Learning method SGD SGD SGD SGD

Dropout rate 0.5 0.5 0.5 0.5

Learning rate 0.005 0.005 0.005 0.005

Epochs 100 100 100 100

Table 2 Extended NeuroNER with FastText‑SBC + Reddit embedding models runs results according 
to Table 1 configurations

Bold values are the best results for Precision (P), Recall (R) and F‑score

Experiment Precision (%) Recall (%) F-score (%)

Run 1 88.19 82.61 85.31

Run 2 87.77 83.65 85.66

Run 3 90.0 80.9 85.21

Run 4 89.13 82.61 85.75
Run 5 88.03 82.96 85.42

Table 3 Extended NeuroNER results for each entity on PharmaCoNER valid dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

Entity Precision (%) Recall (%) F-score (%)

Normalizables 92.38 86.41 89.29
No_Normalizables 0.00 0.00 0.00

Proteins 93.29 85.35 89.14

Unclear 87.80 70.59 78.26

Micro‑average 91.75 84.74 88.10
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our best system configuration for offset detection and entity classification with a micro 
average of 88.10% for PharmaCoNER valid dataset.

Moreover, we compared our best system configuration (FastText-SBC + Reddit) with 
the baseline NeuroNER model (without sense embeddings and BMEWO-V format 
encoding) using the same FastText-SBC embedding and configuration. Table  5 shows 
that our extended system outperforms the NeuroNER base system, which has proven 
that sense embeddings and BMEWO-V format to be an additional source of informa-
tion to deal with ambiguity and nested entities (see “Methods” section for detail about 
BMEWO-V format). Furthermore, the use of domain-specific word embeddings highly 
improves performance as is shown in Table 4.

Furthermore, we tested the FastText-2M English general domain and the Pubmed 
and PMC English domain-specific non-contextualized pre-trained embeddings mod-
els (more details in Table 21) on the CORD-19 dataset. Table 6 describes our different 
experiment configurations for the CORD-19 dataset.

Table 4 Results for Extended NeuroNER entity classification using combinations of embeddings 
models on PharmaCoNER test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

Experiment Embedding model Precision (%) Recall (%) F-score (%)

Run 4 SNOMED‑SBC + Reddit 83.52 74.97 79.02

Run 2 W2V‑SBWC + Reddit 83.85 75.75 79.60

Run 3 FastText‑SBWC + Reddit 84.70 77.31 80.84

Run 1 FastText‑SBC + Reddit 89.13 82.61 85.75
Out of task Scielo+Wiki cased + Reddit 86.69 82.72 84.66

Out of task PubMed and PMC + Reddit 87.23 76.98 81.79

Out of task FastText 2M + Reddit 84.04 77.55 80.67

Table 5 Baseline comparison for entity classification on PharmaCoNER test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

System Precision (%) Recall (%) F-score (%)

NeuroNER 86.38 82.07 84.16

Extended NeuroNER 89.13 82.61 85.75

Table 6 System hyperparameters for CORD‑19 experiments

Parameter Experiment 1 Experiment 2

Sense‑disambiguation embedding dimension 128 128

Pre‑trained word embeddings Pubmed and PMC + Reddit FastText 2M + Reddit

Word embeddings dimension 300 300

Character embedding dimension 50 50

Hidden layers dimension (for each LSTM) 100 100

Learning method SGD SGD

Dropout rate 0.5 0.5

Learning rate 0.005 0.005

Epochs 100 100
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In Table  8, we compare the FastText-2M model trained on English general domain 
texts and Pubmed and PMC model trained on English biomedical texts (more details 
in Table 22), both tested on the CORD-19 test dataset. As shown in Table 8, domain-
specific models outperform general domain models by almost 3 points, obtaining an 
F-score of 78.23% for offset detection and entity classification. Table 7 shows the classi-
fication results obtained by our best system configuration for offset detection and entity 
classification with a micro average F-score of 78.23% for the CORD-19 test dataset. Clas-
sification results on Protein/Gene are lower than other entities type mainly due to ambi-
guity and short named entity detection.

Multi‑layer bidirectional transformer encoder: BERT

Additionally, we compare the different contextualized word models using the BERT 
implementation on the PharmaCoNER and CORD-19 test dataset with 12 transformer 
layers, 768-hidden, 12-heads, 110M parameters trained on each pre-trained model and 
fine-tuned for NER using a single output layer based on the representations from its last 
layer to compute only token level BIOES-V probabilities. BERT directly learns Word-
Piece embeddings during pre-training and fine-tuning steps. BERT provides subword 
representations. Subwords are used for representing both the input text and the output 
tokens. Out of vocabulary words are sliced into multiple subwords, even reaching char-
acter subwords if needed. However, subwords representations do not necessarily fit with 
word representation in a given context.

Table 7 Extended NeuroNER results for each entity on CORD‑19 test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

Entity Precision (%) Recall (%) F-score (%)

Chemical or Drug 81.86 83.52 82.68

Disorder 85.73 80.77 83.17
Protein or Gene 63.81 49.40 55.69

Micro‑average 81.17 75.49 78.23

Table 8 Extended NeuroNER results for entity classification on CORD‑19 test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

Embedding model Precision (%) Recall (%) F-score (%)

Pubmed and PMC + Reddit 81.17 75.49 78.23
FastText 2M + Reddit 77.77 73.71 75.69

Table 9 Results of BERT systems for entity classification on PharmaCoNER test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

System Precision (%) Recall (%) F-score (%)

bert‑base‑multilingual‑cased 84.01 76.91 80.23

BETO cased 84.68 79.02 81.66

SBC-BERT 87.88 89.74 88.80
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We compare the different general domain English pre-trained (bert-base-multilingual-
cased and BETO cased) and domain-specific English pre-trained (SBC-BERT) contex-
tualized word embeddings. As shown in Table 9 domain-specific word representations 
outperform general domain models by almost 7 points. Nonetheless, to the best of our 
knowledge there is no open pre-trained contextualized word biomedical Spanish model. 
Moreover, Table 10 shows the classification results obtained by our best model for offset 
detection and entity classification with a micro average F-score of 88.80% for Pharma-
CoNER test dataset.

We compare our deep learning approaches with the participating systems presented 
in the PharmaCoNER task. A detailed description of the evaluation and the participant 
systems is provided in [25]. As can be seen in Table 11, our SBC-BERT model reaches 

Table 10 Results of SBC‑BERT system for entity classification on test PharmaCoNER dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

Entity Precision (%) Recall (%) F-score (%)

PROTEINAS 84.46 88.46 86.41

NORMALIZABLES 91.86 92.02 91.94
UNCLEAR 70.59 81.82 75.79

NO_NORMALIZABLES 15.38 12.5 13.79

micro avg 87.88 89.74 88.80

Table 11 Comparison of participant systems and ours on PharmaCoNER test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

Name Precision (%) Recall (%) F-score (%)

xiongying [10] 91.22 90.87 91.05
FSL [12] 90.62 91.31 90.96

m‑stoeckel [11] 90.70 89.08 90.46

CongSun [26] 88.05 89.24 88.64

SBC‑BERT 87.88 89.74 88.80

Extended NeuroNER 89.13 82.61 85.75

Table 12 BERT results for each entity on CORD‑19 test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

Entity Precision (%) Recall (%) F-score (%)

Chemical or Drug 86.05 83.71 84.86
Disorder 83.68 84.37 84.02

Protein or Gene 54.00 65.06 59.02

Micro‑average 77.28 80.52 78.86

Table 13 Contextualized word models results for entity classification on CORD‑19 test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

System Precision (%) Recall (%) F-score (%)

bert‑base‑multilingual‑cased 72.12 75.92 73.89

BioBERT Large 77.28 80.52 78.86
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satisfactory performance, however is outperformed by other approaches adding more 
complex language and domain-specific features.

Moreover, we test different contextualized word pre-trained models on the CORD-19 
test dataset. As shown in Table  13, domain-specific word representations outperform 
general domain models by almost 5 points. Based in our experiments, we found that the 
use of domain-specific contextualized word representations highly improves the entity 
classification task. Table 12 shows the classification results obtained by our best BERT 
system configuration for offset detection and entity classification with a micro average of 
78.86% for CORD-19 test dataset.

Concept indexing

For concept indexing or normalization, we applied the same approach described for 
SNOMED-SBC model training, replacing each entity detected in the entity recognition 
and classification step with their unique SNOMED-CT Spanish Edition identifier. First, 
we applied a lowercase conversion, then we replace abbreviations with their correspond-
ing full concept name using the Spanish Medical Abbreviation DataBase (AbreMES-DB) 
[27] and the SEDOM Medical Abbreviation Dictionary [28] for normalizing biomedi-
cal entities. We used the PyMedTermino library employing a two-stage search using 
full-text search and fuzzy search for concepts not found by partial matching. A full-text 
search with the Levenshtein distance algorithm [29] was applied in a first instance for 
concept indexing and fuzzy search with threshold using FuzzyDict implementation [14] 
as a second approach for concepts not found in the first instance by partial matching. 
Table 14 shows our result on concept indexing for PharmaCoNER test subset. We apply 
the standard measures precision, recall and micro-averaged F1-score to evaluate the 
effectiveness of our model, given as the evaluation metrics by the PharmaCoNER NER 
and concept indexing task. Results from the previous NER step are passed over for con-
cept indexing. As shown in Table 14, BERT approach outperforms Extended NeuroNER 
mainly for the ability of BERT approach to resolve ambiguity.

Our results for concept indexing are low due to a large number of misspellings enti-
ties, abbreviations ambiguity, drug names where the identifier corresponds to the active 
substance as “durogesic” (“Duragesic”) active ingredient “fentanyl” (“fentanyl”), identi-
fiers not existing in SNOMED CT, such as CHEBI:135810 and 373757009 and false posi-
tives, such as diseases identified as NORMALIZABLE entities and PROTEIN entities 
not annotated in the PharmaCoNER corpus.

Discussion
We used different pre-trained models and investigated their effect on performance. For 
Extended NeuroNER, we used general and specific-domain pre-trained word embed-
ding models, likewise we used pre-trained multi-language and language-specific models. 

Table 14 Results for concept indexing on PharmaCoNER test dataset

Bold values are the best results for Precision (P), Recall (R) and F‑score

System Precision (%) Recall (%) F-score (%)

SBC‑BERT 87.34 73.75 79.97
Extended NeuroNER 84.17 64.22 72.85
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We found that the use of a domain-specific (biomedical) and language-specific pre-
trained models highly improve the NER task. In addition, to the best of our knowledge, 
there is no open pre-trained biomedical Spanish model for context-dependent word rep-
resentations (pre-trained BERT). The base BERT model without extensions outperforms 
Extended NeuroNER model and other PharmaCoNER participant approaches, mainly 
due to its capability to deal with ambiguity problems.

We found that the text pre-processing (sentences split and tokenization) step had 
a significant impact on the entity offset recognition and classification mainly due 
out-of-vocabulary words. Additionally, we analyzed the confusion matrices for Phar-
maCoNER (see Table  15) and CORD-19 (see Table 16) datasets, where the leading 
diagonal represents correctly classified tokens (true positives and true negatives) and 

Table 15 PharmaCoNER confusion matrix on test dataset for Extended NeuroNER best 
configuration

Table 16 CORD‑19 confusion matrix on valid dataset for Extended NeuroNER best configuration
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the cells above and below the leading diagonal misclassified tokens (false positives and 
false negatives). We can see for PhamarCoNER dataset that the greatest amount of 
missclassified tokens (269) occurs with the PROTEINAS type entity and in the same 
way for CORD-19 dataset the greatest amount of misclassified tokens (452) occurs 
with the PRGE (protein or gene) type entity. This can be attributed to a large number 
of abbreviations and short-length entities. Furthermore, on false positives and false 
negatives error analysis we found that: (i) separating words by the hyphen ‘-’ caused 
some errors (e.g., S-100, Alfa-Feto-Proteina). (ii) Abbreviation recognition is a dif-
ficult task due to ambiguity and length, even more for very short abbreviations (1–2 
letters) due to their high level of ambiguity (e.g., CK 7, sY86, sY84, SRY, ZFY, Hb). (iii) 
Long entities consisting of more than five tokens are hard to identify correctly (e.g., 
Antigeno Prostatico Especifico, Antigeno Carcino Embrionario). (iv) Misspelling enti-
ties cause errors in concept indexing (e.g., lacticodeshidrogenasa, tenecteplasa). (v) 
Also, words do not present in the pre-trained models’ vocabulary are not recognized 
in entity offset recognition and classification.

Finally, entity recognition mistakes from offset detection and entity classification are 
propagated to the concept indexing task. There are about 10% errors caused by offset 
detection and entity classification. In addition, about 10% errors are caused by the con-
cept indexing model. About 40% entities are abbreviations, which is difficult to find the 
appropriate concept from SNOMED-CT which only considers full concept name. More-
over, about 20% of entities have the same candidates in SNOMED-CT, which are not 
normalized entities in the shared task. This proves that shorter sentences and shorter 
entities are easier to process. Longer are the sentence more complex syntactic structures 
it carries, and tougher it is to be processed by the system.

Conclusions
In this work, we propose a system for biomedical concept detection such as chemical 
compounds, drugs, disorders, chemicals, genes, and proteins in clinical narrative and 
biomedical texts written in Spanish and English. We address the named entity recog-
nition task as a sequence labeling task. Our deep learning approaches only use dense 
vector representations features instead of hand-crafted word-based features. We proved 
that as in other tasks such as NER, the use of dense representation of words such as 
word-level, character-level, and sense no-contextualized and contextualized represen-
tations are helpful for named entity recognition. Moreover, domain and language spe-
cific embedding models outperform general domain and cross-lingual models mainly 
due to the non-existence of vectors for words that are not found in the vocabulary. Our 
approaches achieved satisfactory performance with an F-score of 85.25% for Extended 
NeuroNER and 88.80% for SBC-BERT. Although the BERT model outperforms the 
Extended NeuroNER model, the BERT model is highly expensive to train in terms of 
time and cost. Besides, as mentioned before out of vocabulary words are not recognized 
in the offset and classification step. The Extended NeuroNER and BERT models are 
domain-independent and could be used in other fields, although generic and domain-
specific pre-trained word representations are used for this work. Moreover, new pre-
trained Biomedical Spanish word embeddings (contextualized and no-contextualized) 
and concept embeddings have been generated for this work.
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More initiatives to foster the availability of sufficiently large clinical narrative corpora 
in Spanish from hospitals or regional health systems are necessary. This will allow us to 
train embeddings of different types such as knowledge enhanced word embeddings that 
combine text corpora with terminology resources. Resources similar to clinical concept 
embeddings (cui2vec) obtained in [30] from 20 million clinical notes and 1.7 million full-
text biomedical journal articles using UMLS could be useful as specialized biomedical 
embeddings. New approaches to extend the scope of embeddings such as [31] that use 
BERT to pre-trained contextualized embeddings models on structured diagnosis data 
from 28,490,650 patients EHR dataset to be used in disease prediction could be of great 
interest in clinical practice.

As future work, we plan to enhance the SNOMED-CT concept representations in 
concept indexing step. Furthermore, we plan to generate contextualized word repre-
sentations integrating biomedical knowledge into our system such as SNOMED-CT or 
UMLS. The motivation would be to see whether contextualized word representations 
generated with biomedical knowledge can help to improve the results and provide a 
deep learning model for biomedical NER and concept indexing.

Methods
In this section, we described our NER approach. Additionally, we introduce the corpora 
used to generate our train from the scratch contextualized and no-contextualized word 
representations. Furthermore, we described our deep learning approaches. We first 
present a deep network with a pre-processing step, a learning transfer step, then two 
recurrent neural network layers and the last layer with CRF classifier and a deep learn-
ing model based on a multi-layer bidirectional transformer encoder. Finally, the datasets 
used for training, validating, and evaluating our deep learning models performance.

Fig. 1 BRAT annotation example from PharmaCoNER corpus sentence where three entities are shown, two 
of them nested entities ‑ “calcio iónico corregido” and “calcio”

Table 17 21 entity tags for BMEWO‑V tag encoding on PharmaCoNER dataset where 
NORMALIZABLES and NO_NORMALIZABLES refer to chemical entities, PROTEINAS are proteins 
entities and UNCLEAR refer to tokens different from chemical or protein mentions [34]

Entity Tags

NORMALIZABLES B/M/E/W/V‑ NORMALIZABLES

NO_NORMALIZABLES B/M/E/W/V‑ NO_NORMALIZABLES

PROTEINAS B/M/E/W/V‑ PROTEINAS

UNCLEAR B/M/E/W/V‑ UNCLEAR

Others O
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Named entity recognition

In order to train our model, first texts must be preprocessed to create the input for the 
deep network. Sentences are split and tokenized using Spacy [32], an open-source library 
for advanced NLP with support for 26 languages. The output from the previous process 
is formatted to BRAT format [33]. BRAT is a standoff format where each line represents 
an annotation (such as entity, relation, event). We use the information from the BRAT 
format (see an example in Fig. 1) and then annotate each token in a sentence using the 
BMEWO-V extended tag encoding which is a contribution of authors. Table 17 shows 
an example of every possible tags for each entity type within the PharmaCoNER dataset. 
The BMEWO-V encoding allows us to capture information about the sequence of tokens 
in the sentence.

The BMEWO-V encoding distinguishes the B tag to indicate the start of an entity, 
the M tag representing the continuity of an entity, the E tag as the end of an entity, 
the W tag for indicating a single entity, and the O tag to represent other tokens 
that do not belong to any entity. The V tag allows representing overlapping entities. 
BMEWO-V is similar to other previous encodings [35]; however, we introduce the 
V tag to allow the representation of overlapping or nested entities which are usual 
phenomena in these types of texts. Additionally, we tested the BMEWO-V encond-
ing format in previous works [16, 36]. Finally, the BRAT format is transformed into 
sentences annotated in the CoNLL-2003 format [37]. This is the input for our deep 
learning models, as is shown in Table 18.

Table 18 Tokens annotated for the sentence “instaurándose tratamiento con corticoides orales en 
forma de prednisona oral” in the ConLL‑2003 format

This sentence has two drugs: “corticoides” and “prednisona” with B_NORMALIZABLES tag (start of entity) and W_
NORMALIZABLES tag (single entity)

Token Entity Start offset End offset Tag Tag

instaurándose Others 950 963 O O

tratamiento Others 964 975 O O

con Others 976 979 O O

corticoides NORMALIZABLES 980 991 B‑NORMALIZABLES W‑NORMALIZABLES

orales Others 992 998 O O

en Others 999 1001 O O

forma Others 1002 1007 O O

de Others 1008 1010 O O

prednisona NORMALIZABLES 1011 1021 B‑NORMALIZABLES W‑NORMALIZABLES

oral Others 1022 1026 O O

Table 19 Biomedical Spanish corpus details

Collection\Corpus IBECS SciELO MedlineNLM MedlinePlus UFAL

Documents 168,198 161,710 330,928 1063 265,410

Words 23,648,768 26,169,655 4,710,191 217,515 41,604,517

Unique Words 184,936 159,997 20,942 5099 198,424



Page 14 of 22Rivera‑Zavala and Martínez  BMC Bioinformatics  2021, 22(Suppl 1):601

Corpora

In order to generate from scratch Spanish biomedical word representations to use in 
this research we gathered raw biomedical Spanish text from different sources. Source 
corpus details are described in Table 19: 

1 The Spanish Bibliographical Index in Health Sciences (IBECS) corpus [38] that col-
lects scientific journals covering multiple fields in health sciences.

2 Scientific Electronic Library Online (SciELO) corpus [39] gathers electronic publica-
tions of complete full-text articles from scientific journals of Latin America, South 
Africa and Spain.

3 MedlineNLM corpus obtained from the PubMed free search engine [40].
4 The MedlinePlus corpus [41] (an online information service provided by the U.S. 

National Library of Medicine), consists of Health topics, Drugs and supplements, 
Medical Encyclopedia and Laboratory test information.

5 The UFAL corpus [42] is a collection of parallel corpora of medical and general 
domain texts.

All the corpora are in XML (Dublin core format) and TXT format files. XML files were 
processed for extract only raw text from specific XML tags such as “title” and “descrip-
tion” from Spanish labels, based on the Dublin Core format as shown in Fig. 2. TXT files 
were not processed. Raw texts from all files were compiled in a single TXT file. Texts 
were processed, setting all to lower, removing punctuation marks, trailing spaces and 
stop words and used as input to generate our word embeddings. Sentences pre-process-
ing (split and tokenized) were made using Spacy [43], an open-source python library for 
advanced multi-language natural language processing.

Bi-LSTM CRF model: extended NeuroNER

Our proposal involves the adaption of a NER model named NeuroNER [20] based on 
deep learning to identify drug and chemical mentions. The architecture of our model 
consists of a first Bi-LSTM layer for character embeddings. In the second layer, we con-
catenate the output of the first layer with the word embeddings and sense-disambiguate 
embeddings for the second Bi-LSTM layer. Finally, the last layer uses a CRF to obtain the 
most suitable labels for each token. An overview of the system architecture can be seen 
in Fig. 3.

To facilitate our model training, we first perform a learning transfer step. Learning 
transfer aims to perform a task on a dataset using knowledge learned from a previous 
dataset [44]. As is shown in many works, such as speech recognition [45], sentence 

Fig. 2 Dublin core format for biomedical corpus
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classification [46] and Named Entity Recognition [47] transfer learning improves gen-
eralization of the model, reduces training time on the target dataset, and reduces the 
amount of labeled data needed to obtain high performance. We propose learning 
transfer as input for our model using two different pre-trained embeddings models: (i) 
word embeddings and (ii) sense-disambiguation embeddings. Word embedding is an 
approach to represent words as vectors of real numbers which have gained much popu-
larity among the NLP community because they are able to capture syntactic and seman-
tic information among words.

Although word embedding models are able to capture syntactic and semantic infor-
mation, other linguistic information such as morphological information, orthographic 
transcription or POS tags are not exploited in these models. According to [48], the use 
of character embeddings improves learning for specific domains and is useful for mor-
phologically rich languages (as is the case of the Spanish language). For this reason, we 
decided to consider the character embedding representation in our system to obtain 

Fig. 3 The architecture of the hybrid Bi‑LSTM CRF model for named entity recognition
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morphological and orthographic information from words. We used a 25 features vector 
to represent each character. In this way, tokens in sentences are represented by their cor-
responding character embeddings, which are the input for our Bi-LSTM network.

In this work, we used various Spanish and English pre-trained embedding models. The 
Spanish Billion Words Corpora (SBWC) [21] (W2V-SBWC), which is a pre-trained word 
embeddings model trained on different general domain text corpora written in Spanish 
(such Ancora Corpus [49] and Wikipedia) using the word2vec [50] implementation. The 
FastText-SBWC pre-trained word embeddings model was trained on the SBWC using 
the FastText implementation. The Scielo+Wiki cased [51] pre-trained word embed-
dings model trained on biomedical domain texts from Scielo and Wikipedia using the 
FastText implementation. We also integrate the sense2vec [22] model, which provides 
multiple dense vector representations for each word based on the sense of the word. 
This model is able to analyze the context of a word based on the lexical and grammati-
cal properties of words and then assigns its more adequate vector. Each word in this 
model is paired with its corresponding Part-of-Speech (PoS) tag. Sense2vec use the Poly-
glot Part-of-Speech tagger from Al-Rfou more details in [22]. We used the Reddit Vec-
tor, a pre-trained model of sense-disambiguation representation vectors presented by 
[22]. This model was trained on a collection of general domain comments published on 
Reddit (corresponding to the year 2015) written in Spanish and English. The FastText-
2M [52] pre-trained English word embedding model trained with subword information 
on Common Crawl using the FastText implementation. Finally, the PubMed and PMC 
[53] pre-trained English word embedding model, trained on a combination of PubMed 
abstracts and full-text documents from the PMC using the word2vec skip-gram model 
implementation.

Furthermore, we used the FastText [54] implementation to train our own word 
embeddings using the Spanish Biomedical Corpora (SBC) described in section Cor-
pora  (FastText-SBC). Moreover, we trained a concept embedding model replacing bio-
medical concepts in the SBC with their unique SNOMED-CT Spanish Edition identifier 
(SNOMED-SBC). First, we applied a lowercase conversion, then we replace abbrevia-
tions with their corresponding full concept name using the Spanish Medical Abbrevia-
tion DataBase (AbreMES-DB) [27] and the SEDOM Medical Abbreviation Dictionary 
[28] for normalizing biomedical entities. We used the PyMedTermino library [55] for 
concept indexing. We proposed two dictionary-based approaches. A full-text search 
with the Levenshtein distance algorithm [29] was applied in a first instance for concept 
indexing and fuzzy search with threshold using FuzzyDict implementation [14] as a sec-
ond approach for concepts not found by partial matching. The FastText model uses a 
combination of various subcomponents to produce high-quality embeddings. It uses a 
standard CBOW or skip-gram models, with position-dependent weighting, phrase rep-
resentations, and sub-word information in a combined manner. The training parameters 
for each model are shown in Table 20. Our pre-trained models can be found in Github 
[56] with the corpora sources, text pre-processing, and training information.

The embedding models and their parameters are summarized in Table 21.
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Multi-layer bidirectional transformer encoder: BERT

The use of word representations from pre-trained unsupervised methods is a crucial 
step in NER pipelines. Previous models such as Word2Vec [50], Glove [57], and Fast-
Text [54] focused on context-independent word representations or word embeddings. 
However, in the last few years models focused on learning context-dependent word 
representations, such as ELMo [58], CoVe [59], and the state-of-the-art BERT model 
[60], and then fine-tune these pre-trained models on downstream tasks. BERT is a 
context-dependent word representation model that is based on a masked language 

Table 20 Training parameters for embeddings models built in this work

Parameter\Model FastText-SBC SNOMED-SBC

Number of negatives sampled 20 20

Sampling threshold 6e−5 6e−5

Minimum number of word occurrences 10 10

Minimum length of character n‑gram 3 3

Maximum length of character n‑gram 6 6

Size of word vectors 300 300

Epochs 10 10

Processor 4 Intel Xeon 2.00 GHz, 8 Cores, 16 
Logical Processors

4 Intel Xeon 2.00 GHz, 8 
Cores, 16 Logical Proces‑
sors

RAM 32 GB 32 GB

Corpus size 1 GB 1 GB

Training time 4 h 8 h

Table 21 Embedding models details

Embedding 
model

Language Domain Type Corpus 
size

Vocab 
size

Array 
size

Algorithm Property

W2V‑SBWC Spanish General Word 1.5 billion 68k 300 Word2Vec 
Skip‑gram 
BOW

Pre‑trained

FastText‑
SBWC

Spanish General Word 1.5 billion 81.2k 300 FastText 
Skip‑gram 
BOW

Pre‑trained

FastText‑SBC Spanish Specific 
(Biomedi‑
cal)

Word 600 bil‑
lion

91.7k 300 FastText 
Skip‑gram 
BOW

Own

Scielo+Wiki 
cased

Spanish Specific 
(Biomedi‑
cal)

Word 50k 300 FastText 
Skip‑gram 
BOW

Pre‑trained

SNOMED‑
SBC

Spanish Specific 
(Biomedi‑
cal)

Concept 600 bil‑
lion

88.1k 300 FastText 
Skip‑gram 
BOW

Own

Pubmed and 
PMC

English Specific 
(Biomedi‑
cal)

Word 2 billion 400k 300 Word2Vec 
Skip‑gram 
BOW

Pre‑trained

FastText‑2M English General Word 600 bil‑
lion

2 million 300 FastText 
Skip‑gram 
BOW

Pre‑trained

Sense2vec 
Reddit

English/
Spanish

General Sense 2 billion 120k 128 Sense2Vec Pre‑trained
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model and pre-trained using the transformer architecture [60]. BERT replaces 
the sequential nature of language modeling. Previous models such as RNN (LSTM 
and GRU) combines two unidirectional layers (i.e., Bi-LSTM), as a replacement for 
the sequential approach the BERT model employs a much faster attention-based 
approach. BERT is pre-trained in two unsupervised “artificial” tasks: (i) masked lan-
guage modeling that predicts randomly masked words in a sequence, and hence can 
be used for learning bidirectional representations by jointly conditioning on both left 
and right contexts in all layers and (ii) next sentence prediction in order to train a 
model that understands sentence relationships. The transformer layer has two sub-
layers: a multi-head self-attention mechanism, and a position-wise fully connected 
feed-forward network, followed by a normalization layer. Even though BERT learns 
a lot about language through pre-training it is possible to adapt the model by adding 
a customized layer on top of BERT outputs and then new training is done with spe-
cific data (this phase is called fine-tuning). We refer readers [60] for a more detailed 
description of BERT. An overview of the BERT architecture can be seen in Fig. 4.

Due to the benefits of the BERT model, we adopted the multilingual cased [60], the 
BETO [61] and the Biomedical language representation (BioBERT-Large) [62] pre-
trained BERT models. Moreover, we trained from the scratch a Biomedical Span-
ish model (SBC-BERT) with 12 transformer layers (12-layer, 768-hidden, 12-heads, 
110Mparameters) and a SoftMax output layer to perform the NER task. First, we replace 

Table 22 Contextualized word models details

Detail SBC-BERT Bert-base-
multilingual-cased

BETO cased BioBERT-Large

Language Spanish 104 languages Spanish English

Domain Biomedical General General Biomedical

Type Contextual Word Contextual Word Contextual Word Contextual Word

Corpus size 6 billion 3300M 3 billion 21.3 billion

Vocab size 200k 120k 31k 59k

Hidden size 768 768 1024 768

Algorithm BERT train BERT train BERT train BERT train

Property Own Pre‑trained Pre‑trained Pre‑trained

Fig. 4 BERT pre‑training and fine‑tuning architecture overview. Source [60]
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the WordPiece tokenizer with the SentencePiece implementation [63] and the Spacy 
[32] tokenizer for sentence and subword segmentation. We train with a batch size of 128 
sequences for 1,000,000 steps, which is approximately 40 epochs over the 4 million word 
corpus. We use Adam with learning rate of 1e− 4. We use a dropout probability of 0.15 
on all layers and a gelu activation function. Training of SBC-BERT was performed on 1 
Cloud TPU, 8vCPUs Intel(R) Xeon(R) CPU @ 2.30 GHz and 16 GB memory. Details of 
train and pre-trained models can be seen in Table 23.

Datasets

We evaluate our deep learning approaches on the PharmaCoNER and the COVID-19 
Open Research Dataset (CORD-19) datasets. The PharmacoNER dataset is a manually 
annotated corpus of 1000 clinical cases written in Spanish and annotated with mentions 
of chemical compounds, drugs, genes, and proteins. The dataset consists of Normaliza-
bles (4398), No Normalizables (50), Proteins (3009), and Unclear (167) labels. Further 
details can be found in [8]. 

The CORD-19 dataset consists of over 181,000 scholarly articles written in English 
about COVID-19, SARS-CoV-2, and related coronaviruses. The dataset is manually 
annotated with disorder (18,704), species (30,343), chemical or drugs (11,173), gene and 
protein (57,738), enzyme (1480), anatomy (10,373), biological process (7765), molecular 
function (1722), cellular component (1099), pathway (517) and microRNA (690) unique 
entities. Further details can be found in [24]. In order to compare PharmaCoNER results 
with CORD-19 results we only evaluate on disorder, chemical or drugs and gene and 
protein entities. To the best of our knowledge, the CORD-19 dataset has not been used 
in any NER task or challenge. Therefore, we randomly split the dataset in training, vali-
dation and test datasets. Details about the datasets can be found in Table 24. 

Abbreviations
NER: Namede Entity Recogntion; Bi‑LSTM: Bidirectional Long Short‑Term Memory; CRF: Conditional Random Field; UMLS: 
Unified Medical Language System; PoS: Part of Speech; SBWC: Spanish Billion Word Corpus; SBC: Spanish Biomedical 
Corpus; DDI: Drug Drug Interaction; SVM: Support Vector Machine; BERT: Bidirectional Encoder Representations from 
Transformers.

Table 23 PharmaCoNER subsets details

Dataset Subset Documents Sentences Entities

PharmaCoNER Train 500 8036 3822

Valid 250 3759 1926

Test 3751 62,000

Table 24 CORD‑19 subsets details

Dataset Subset Documents Sentences Entities

CORD‑19 Train 8030 4015 7375

Valid 2032 1016 1802

Test 2776 1388 2647
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