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Abstract 

Background: Automated assignment of specific ontology concepts to mentions 
in text is a critical task in biomedical natural language processing, and the subject 
of many open shared tasks. Although the current state of the art involves the use of 
neural network language models as a post-processing step, the very large number of 
ontology classes to be recognized and the limited amount of gold-standard train-
ing data has impeded the creation of end-to-end systems based entirely on machine 
learning. Recently, Hailu et al. recast the concept recognition problem as a type of 
machine translation and demonstrated that sequence-to-sequence machine learning 
models have the potential to outperform multi-class classification approaches.

Methods: We systematically characterize the factors that contribute to the accuracy 
and efficiency of several approaches to sequence-to-sequence machine learning 
through extensive studies of alternative methods and hyperparameter selections. We 
not only identify the best-performing systems and parameters across a wide variety of 
ontologies but also provide insights into the widely varying resource requirements and 
hyperparameter robustness of alternative approaches. Analysis of the strengths and 
weaknesses of such systems suggest promising avenues for future improvements as 
well as design choices that can increase computational efficiency with small costs in 
performance.

Results: Bidirectional encoder representations from transformers for biomedical text 
mining (BioBERT) for span detection along with the open-source toolkit for neural 
machine translation (OpenNMT) for concept normalization achieve state-of-the-art 
performance for most ontologies annotated in the CRAFT Corpus. This approach uses 
substantially fewer computational resources, including hardware, memory, and time 
than several alternative approaches.

Conclusions: Machine translation is a promising avenue for fully machine-learning-
based concept recognition that achieves state-of-the-art results on the CRAFT Corpus, 
evaluated via a direct comparison to previous results from the 2019 CRAFT shared 
task. Experiments illuminating the reasons for the surprisingly good performance of 
sequence-to-sequence methods targeting ontology identifiers suggest that further 
progress may be possible by mapping to alternative target concept representations. All 
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code and models can be found at: https:// github. com/ UCDen ver- ccp/ Conce pt- Recog 
nition- as- Trans lation.

Keywords: Concept recognition, Machine translation, Named entity recognition, 
Named entity normalization, Computational resources

Background
Automated recognition of references to specific ontology concepts from mentions in 
text (hereafter “concept recognition") is a critical task in biomedical natural language 
processing (NLP) and has been the subject of many open shared tasks, including Bio-
CreAtIve [1], the BioNLP open shared tasks (BioNLP-OST) [2], and the recent Covid-19 
open research dataset challenge [3]. All of these shared tasks provide data, evaluation 
details, and a community of researchers, making them very useful frameworks for fur-
ther development of such tasks. We chose to focus on the Concept Annotation Task of 
the CRAFT Shared Tasks at BioNLP-OST 2019 (CRAFT-ST) as our framework, not only 
because it is the most recent shared task involving concept recognition, but also because 
of the richness of data in the CRAFT corpus; however, all methods described here can 
be applied to other corpora as well. The current state of the art (e.g., [4]) involves the use 
of neural network language models as a post-processing step, as the very large number of 
ontology classes to be recognized and the limited amount of gold-standard training data 
have impeded the creation of end-to-end systems based entirely on machine learning. 
Furthermore, the goal of running such systems over the entirety of the vast biomedical 
literature (with more than one million new articles per year indexed in PubMed) means 
that the efficiency of such systems is important, as well as their accuracy [5].

Recently, Hailu et al. [6] recast the concept recognition problem as a type of machine 
translation and demonstrated that sequence-to-sequence machine learning models have 
the potential to outperform multi-class classification approaches. Here we systemati-
cally characterize the factors that contribute to the accuracy and efficiency of several 
approaches to sequence-to-sequence machine learning. The best-performing sequence-
to-sequence systems perform comparably with the current state of the art (occasionally 
extending the state of the art by a modest degree), and some offer substantial efficiencies 
in the time and computational resources required for tuning and training. Furthermore, 
our analysis of the strengths and weaknesses of such systems suggests promising ave-
nues for future improvements as well as design choices that can increase computational 
efficiency at a small cost in performance.

Concept recognition poses many difficult computational challenges. The target of 
most biomedical concept recognition efforts have been the Open Biomedical Ontolo-
gies, such as the Gene Ontology [7] and the Human Phenotype Ontology [8], each of 
which contains more than 10,000 specific classes. Treating concept recognition as a 
classification task therefore requires tens of thousands of classes, rendering machine 
learning approaches impractical. Design principles for the open biomedical ontolo-
gies require semantically coherent definitions, regardless of the variability in textual 
expression of the represented concept [9]. For example, the gene ontology cellular com-
ponent class GO:0005886 might be textually referenced by “plasma membrane", “cell 
membrane", “cytoplasmic membrane", or “plasmalemma", among others, e.g., abbre-
viations such as “PM". All concept recognition methods must cope with challenges 
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related to the variability and ambiguity of human language. Not only are there many 
lexical variants that refer to the same ontological concept, but each of those words 
have morphological variants (e.g., nucleus, nuclei, nuclear, nuclearly). Furthermore, 
many individual words are ambiguous, depending on the surrounding context for the 
proper mapping to an ontological class; for example, the word “nucleus" can refer to an 
atomic nucleus (ChEBI:33252), a cell nucleus (GO:0005634), or an anatomical nucleus 
(UBERON:0000125), among other senses, depending on the surrounding context.

In the NLP literature, concept recognition is often divided into two tasks that are per-
formed separately and differently (see Fig. 1): Span detection (also referred to as named 
entity recognition or mention detection), which delimits a particular textual region that 
refers to some ontological concept (i.e., a text mention); and concept normalization (also 
referred to as named entity normalization or entity linking), which identifies the spe-
cific ontological class to which the textual region or mention refers (an ontology class 
ID). It is possible to approach these problems jointly with a single system, but evaluation 
approaches in shared tasks generally score them separately and then combine the scores 
for the full system. Here we approach the problem separately, employing very different 
methods for each task. Thus, going forward, we split every section into span detection 
and concept normalization subsections, and review them both separately and together 
as the full system, aligning with the framework of the CRAFT-ST.

Span detection has long been conceived of as a sequence-to-sequence analysis task, 
with outputs defined as sequences of tags identifying the beginning words or characters 
of mentions (labelled “B"), words or characters inside mentions (labelled “I"), and words 
or characters outside of mentions (labelled “O"), collectively referred to as BIO tags [10]. 
We evaluated the most widely used and high-performing sequence-to-sequence algo-
rithms for span detection to determine the best-performing algorithm as well as options 
for low-resource settings, specifically, conditional random fields (CRFs) [11] (which 
may be utilized with limited resources), bidirectional long short-term memory net-
works (BiLSTMs) [12, 13] (which require substantial resources, spurring us to evaluate 

Fig. 1 Example of the full translation pipeline. Each step is seen as a translation problem. The input is text 
and the final output is the ontology class identifiers for each detected text mention
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whether hyperparameter settings tuned on a simple model can be reused in more com-
plex models to save some resources), and language models (in particular, ELMo [14] and 
BioBERT [15], which are the current state of the art in NLP). In our evaluation, these 
systems show widely varying performances and resource requirements, and the perfor-
mance is not strongly correlated with resource requirements. Furthermore, though they 
are relatively rare, we attempt to identify discontinuous concept mentions, i.e., mentions 
that span two or more discontinuous strings of text, a textual phenomenon that a few 
researchers have specifically focused on recently [16, 17] and that others have chosen to 
ignore [4, 6]. We propose a simple extension to BIO tags that captures at least some dis-
continuous spans for almost all evaluated ontologies.

The novel contribution of Hailu et al. [6] was to use sequence-to-sequence methods for 
concept normalization, i.e., to map detected spans to specific ontology class identifiers, 
with both expressed as character sequences. Hailu et al. [6] investigated several alterna-
tive approaches and found that the popular Open Neural Machine Translation system 
(OpenNMT) [18] was the best-performing, although many other neural machine trans-
lation systems had very similar performance [19]. Thus, we continue the focus solely on 
OpenNMT for this exploration because the good performance of sequence-to-sequence 
approaches to normalization with the ontology class identifiers (e.g., GO:0005634) as the 
targets is surprising, as the identifiers are intended to be arbitrary and devoid of seman-
tic content. We explore the reasons underlying this surprisingly good performance by 
evaluating a variety of alternative identifier schemes, suggesting that there are, in fact, 
semantic signatures in the class identifiers.

The performance of machine learning methods in NLP depends crucially on hyperpa-
rameter selection (as does the performance of many dictionary- and rule-based meth-
ods, e.g., [20]). Large computational resources and time requirements, particularly for 
repeated training and testing under different hyperparameterizations, can limit the 
extent of hyperparameter searches to find optimal values. Here we report on extensive 
studies of alternative methods and hyperparameter selections in an exhaustive evalu-
ation framework that has been previously developed for open shared tasks [2]. These 
results not only identify the best-performing systems and parameters across a wide vari-
ety of ontologies but are illuminating with regard to the widely varying resource require-
ments and hyperparameter robustness of alternative approaches.

Related work

There have been many approaches to concept recognition, including dictionary-based 
or rule-based methods, classifier-based methods, and hybrids of these, using a variety 
of text representations ranging from bags of words to embeddings of words and charac-
ters [21, 22]. We evaluate alternative text representations using a modified sequence-to-
sequence BIO tag representation [10] to represent text mentions, including overlapping 
and discontinuous mentions (see Fig. 1 for an example). Previous research has mostly 
ignored these complex mentions due to their rarity and difficulty, and only recently have 
some researchers tried specifically to tackle them by extending existing sequence tagging 
frameworks (as we do here), or by looking at a given sentence as a whole to determine 
the relationships between concept mentions (see [16, 17] for an overview of previous 
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work). The method proposed here is simpler than previous methods and still identifies 
some of these complex mentions.

Dictionary-based and rule-based methods dominate concept recognition approaches 
for the Open Biomedical Ontologies due to the enormous number of concepts to iden-
tify. Funk et  al. [20] performed a systematic evaluation of some of these dictionary-
lookup systems finding that ConceptMapper [23, 24] generally performed the best. They 
not only identified the highest-performing systems but also the best parameter settings 
(finding they were not the default settings) for each of the ontologies used in an earlier 
version of the CRAFT corpus, achieving F1 scores between 0.14 and 0.83. We thus use 
ConceptMapper, run on the updated version of CRAFT, as a baseline model in com-
parison to OpenNMT (see https:// github. com/ UCDen ver- ccp/ Conce pt- Recog nition- as- 
Trans lation- Conce ptMap per- Basel ine for code). Rule-based post-processing techniques 
have also been proposed, including Boguslav et  al. [25], which used the results of an 
error analysis to extend the ConceptMapper system from Funk et al. [20], thereby iden-
tifying post-processing techniques that improved precision with at most modest costs to 
recall.

Recent advances in machine learning have resulted in many hybrid systems that 
apply machine-learning-based post-processing to dictionary-based systems. For exam-
ple, Campos et  al. [26] proposed a hybrid system employing dictionary matching 
and a machine learning system for biomedical concept recognition. Groza et  al. [27] 
approached the task as an information retrieval problem and explored case sensitivity 
and information gain. Basaldella et al. [28] proposed a hybrid system named OntoGene’s 
Entity Recognizer (OGER), which focused first on high recall through a dictionary-
based entity recognizer, followed by a high-precision machine learning classifier (see 
[29] for an updated version of this system). Furthermore, the group who developed this 
system had the highest-performing method in the 2019 CRAFT Shared Task [4] (UZH@
CRAFT-ST), combining an updated version of OGER with two neural approaches, 
thereby tackling concept recognition as a single task instead of two. As we are tackling 
the same task through the same framework, we use their results as a baseline for the full 
concept recognition system.

Many recent publications use sequence-to-sequence approaches for span detection, 
but do not attempt normalization. For example, Huang et  al. [30] proposed a model 
based on a BiLSTM combined with a CRF for BIO tagging and achieved better tagging 
accuracy for part-of-speech tagging, chunking, and span detection than with a CRF 
alone. Throwing in character and word embeddings, Lample et al. [31] used the same 
neural architecture as Huang et al. for span detection. Adding a CNN to the mix, Ma 
et al. [32] proposed an end-to-end sequence-tagging model based on a BiLSTM-CNN-
CRF approach. Thinking beyond any specific language, Gillick et  al. [33] created an 
LSTM-based model that reads text as bytes and outputs the span annotations. Since they 
focus on the bytes, their representations and models generalize across many languages, 
creating the first multilingual named entity recognition system.

In the biomedical domain, Habibi et  al. [34] applied the BiLSTM-CRF proposed by 
Lample et al. [31] for span detection on a wide range of biomedical datasets and found 
that their model outperformed the state-of-the-art methods. The same architecture was 
used by Gridach [35] to identify spans of genes and proteins. Zhao et al. [36] proposed 

https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation-ConceptMapper-Baseline
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a multiple-label strategy to replace the CRF layer of a deep neural network for detecting 
spans of disease mentions. To identify spans of chemicals, Korvigo et  al. [37] applied 
a CNN-RNN network, Luo et  al. [38] proposed an attention-based BiLSTM-CRF, and 
Corbett et al. [39] explored a BiLSTM and CRF separately as well as combined to cre-
ate ChemListem and further added transfer learning. Similar to Luo et al, Unanue et al. 
[40] used a BiLSTM-CRF to identify spans of drug names and clinical concepts, while 
Lyu et al. [13] proposed a BiLSTM-RNN model to detect spans of a variety of biomedi-
cal concepts, including DNA, genes, proteins, cell lines, and cell types. Wang et al. [41] 
applied multitask learning with cross-sharing structure using a BiLSTM-CNN-CRF 
model, which includes a BiLSTM that learns shared features between ten datasets with 
gene, protein, and disease categories, and a private BiLSTM specific for each task, bor-
rowing their base model from Ma et al. [32].

More recent advances in deep learning for a variety of different NLP tasks, includ-
ing span detection, have been achieved with language models. BERT [42], the sci-
ence-specific language model SciBERT [43], and the biomedicine-specific language 
model BioBERT [15], all require little fine-tuning to perform well for named entity 
recognition. The other main language model, ELMo [44], and its biomedical equiv-
alent [14], also perform well on named entity recognition. Peng et  al. [45] evalu-
ated both BERT and ELMo on the Biomedical Language Understanding Evaluation 
(BLUE) benchmark and found that BERT, with extra biomedicine-specific docu-
ments, outperformed ELMo. Even though none of this research attempted concept 
normalization, the success of these methods shows the value of deep learning and 
language models for span detection.

Deep learning methods have also been applied to concept normalization, although 
generally in hybrid settings. For example, Li et al. [46] generated concept normaliza-
tion candidates using a rule-based system and then ranked them using a convolu-
tional neural network that harnessed semantic information. Liu et  al. [47] used an 
LSTM to represent and normalize disease names. Similarly, Tutubalina et  al. [48] 
used recurrent neural networks, including LSTMs, to normalize medical concepts in 
social media posts.

Deep learning has also been applied to machine translation methods. To the best 
of our knowledge, this is the first attempt to use machine translation for concept 
normalization, and so there is no prior literature. However, machine translation 
usually aims to translate from one language to another (see, e.g., [19, 49]). Recently, 
neural machine translation has proven superior to previous methods. Successful 
approaches belong to the family of encoder–decoders, which encode source text 
into fixed-length vectors from which a decoder generates translations [19]. This is 
a sequence-to-sequence method that maps sequences of characters or tokens in one 
language into sequences of characters or tokens in another language. Bahdanau et al. 
[50] introduced a key innovation by adding an attention mechanism to the decoder 
to relieve the encoder of needing to encode all information from the source text to 
fixed-length vectors. With this approach, the information can be spread throughout 
the sequence of text, and the decoder can select the most useful parts to predict the 
next character or token. It is this approach that Hailu et  al. exploited [6] and the 
approach we further explore here.
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Methods
Our goal is to explore the performance, efficiency, and underlying reasons for the sur-
prisingly good performance of the proposed machine learning approach toward concept 
recognition, using the 2019 CRAFT Shared Task framework from the BioNLP-OST task 
[51, 52]. This framework provides all data and an evaluation pipeline, facilitating direct 
comparison to the best-performing system in that evaluation [4]. Per the setup of the 
CRAFT Shared Task, 67 full-text documents were provided as training with 30 unseen 
documents held out as an external evaluation set. Since each ontology of the ten Open 
Biomedical Ontologies (OBOs) used to conceptually annotate the version of the CRAFT 
corpus used here (e.g., the ChEBI chemical ontology, the Uberon anatomical ontology) 
presents different challenges and may benefit from different methods, hyperparam-
eters, and/or training regimes, each were trained, tuned, and evaluated independently 
for both span detection and concept normalization. Furthermore, training all ontologies 
separately solves both the problems of overlapping ontology annotations from different 
ontologies and the multi-classification problem between ontologies, and it simplifies the 
process of adding new ontologies. For all ontologies, the goal is to optimize F1 score, the 
harmonic mean between precision and recall, which is the metric for comparison of all 
models. We also take into consideration the resources needed for all models.

Materials and evaluation platform

The Colorado richly annotated full-text (CRAFT) corpus [53–55] was used to train, 
tune, and evaluate our models. CRAFT has had four major releases. The CRAFT Shared 
Task used version 3.1.3, which was released in July 2019 [56]; we thus used this release 
for all tasks and we will refer to it as CRAFT without the version number. Version 3.1.3 
includes 67 full-text documents with 30 documents held back, whereas the most recent 
version, added after the shared task, includes the previously held-back 30 documents 
for a total of 97 [57]. These versions are a significant improvement from version 2.0 with 
regard to the concept annotations. Among other changes, relative to version 2.0, the con-
cept annotations were updated using newer versions of the ontologies, annotations were 
created based on the classes of two additional ontologies (the molecular process ontol-
ogy and the Uberon anatomical ontology), and extension classes of the OBOs were cre-
ated and used to annotate the articles, resulting in a substantial increase in annotation 
counts. (The extension classes were created by the CRAFT semantic annotation lead for 
the concept annotations but are based on proper OBO classes; they were created for 
various reasons, particularly for the purposes of semantic unification of similar classes 
from different ontologies, unification of multiple classes that were difficult to consist-
ently differentiate for annotation, and creation of similar but corresponding classes that 
were either easier to use or better captured the ambiguity of the annotated text men-
tions.) The total corpus is a collection of 97 full-text articles with a focus (though not 
exclusively) on the laboratory mouse that has been extensively marked up with both 
gold-standard syntactic and semantic annotations. Among the syntactic annotations, 
segmented sentences, tokens, and part-of-speech tags were used to extract features for 
all algorithms tested. The semantic annotations to single or multi-word concepts rely on 
ten Open Biomedical Ontologies (OBOs): 
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1 Chemical entities of biological interest (ChEBI): compositionally defined chemical 
entities (atoms, chemical substances, molecular entities, and chemical groups), suba-
tomic particles, and role-defined chemical entities (i.e., defined in terms of their use 
by humans, or by their biological and/or chemical behavior)

2 Cell ontology (CL): cells (excluding types of cell line cells)
3 Gene ontology biological processes (GO_BP): biological processes, including genetic, 

biochemical/molecular-biological, cellular and subcellular, organ- and organ-system 
level, organismal, and multiorganismal processes

4 Gene ontology cellular components (GO_CC): cellular and extracellular components 
and regions; species-nonspecific macromolecular complexes

5 Gene ontology molecular function (GO_MF): molecular functionalities possessed 
by genes or gene products, as well as the molecular bearers of these functionali-
ties (though note that only five of the proper classes of the ontology were used for 
annotation, while the corresponding extension classes were instead used for the large 
majority of the classes of this ontology)

6 Molecular process ontology (MOP): chemical reactions and other molecular pro-
cesses

7 NCBI taxonomy (NCBITaxon): biological taxa and their corresponding organisms; 
taxon levels

8 Protein ontology (PR): proteins, which are also used to annotate corresponding genes 
and transcripts

9 Sequence ontology (SO): biomacromolecular entities, sequence features, and their 
associated attributes and processes

10 Uberon (UBERON): anatomical entities; multicellular organisms defined in terms of 
developmental and sexual characteristics

For each of the ten ontologies used in the CRAFT Corpus, there are two annotation 
sets: a core set and a core + extensions set. The core set consists solely of annotations 
made with proper classes of the given OBO, and the core + extensions set consists of 
annotations with proper OBO classes as well as classes created as extensions of the 
ontologies. The unique identifier for an OBO class is a class identifier (class ID) that 
consists of the ontology namespace, a colon, and a unique number identifier; for exam-
ple, NCBITaxon:10088 is the unique identifier for Mus, the taxonomic genus of mice. 
An extremely small subset of classes of the OBOs used for CRAFT concept annotation 
instead have textual IDs, e.g., NCBITaxon:species, the NCBI Taxonomy class repre-
senting the taxonomic rank of species. Between and within ontologies the length of the 
class IDs can vary: CL, GO, MOP, SO and UBERON classes have seven-digit IDs (e.g., 
CL:0000014 (germ line stem cell), GO:0016020 (membrane), MOP:0000590 (dehydroge-
nation), SO:0000040 (genomic clone), UBERON:0001004 (respiratory system)), while PR 
classes have nine-digit IDS (e.g., PR:000000035 (BMP receptor-type 1A)). ChEBI class 
IDs range from one (e.g., ChEBI:7 ((+)-car-3-ene)) to six (e.g., ChEBI:139358 (isotopi-
cally modified compound)) digits, and NCBITaxon entry IDs (other than those repre-
senting taxonomic ranks) have between one (e.g., NCBITaxon:2 (Bacteria)) and seven 
(e.g., NCBITaxon:1000032 (Enterobacter sp. P19-19)) digits. For the extension classes, 
which are identifiable by their namespace prefixes always ending in “_EXT", the class 
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IDs are even more varied. For four of the OBOs used, one or more parallel hierarchies 
of extension classes were programmatically created for either the entire OBO or for 
one or more subhierarchies of the OBO so as to create corresponding classes that are 
more abstract and/or more straightforward to use for concept annotation; the class ID 
for such an extension class is the same as the original OBO class on which it is based 
with the exception of “_EXT" appended to the namespace, e.g., GO_EXT:0004872 
(bearer of signaling receptor activity), based on the original GO:0004872 (signal-
ing receptor activity). In addition to these programmatically created extension classes, 
there are many manually created extension classes, which have entirely textual IDs of 
human-readable labels with the namespaces of the ontologies of which they are exten-
sions appended with “_EXT", e.g., ChEBI_EXT:calcium. In the case of a manually cre-
ated extension class that is an extension of more than one ontology, the namespace is an 
underscore-delimited concatenation of the namespaces of the extended ontologies, e.g., 
GO_MOP_EXT:glycosylation. Of relevance to our concept normalization work, many 
of the manually created extension classes have long textual IDs, e.g., GO_UBERON_
EXT:innervation_entity_or_process. More information about the CRAFT Corpus can 
be found at [58], and statistics regarding the annotations and annotation classes of the 
training and evaluation data sets can be seen in Tables 1 and 2, respectively. Note that 
only a very small number of proper GO_MF classes were used for annotation and that 
the corresponding extension classes were instead used for the large majority of classes in 
the GO_MF core + extensions annotation set (GO_MF_EXT).

Table 1 Statistics for the concept annotations in the training (67-document) and evaluation 
(30-document) data sets for all ontologies

Avg average

Ontology # training set 
annotations

avg/median # training set 
annotations per article

# evaluation 
set annotations

Avg/median # evaluation 
set annotations per 
article

ChEBI 4548 68/45 2200 73/45

ChEBI_EXT 11,915 178/142 5248 175/142

CL 4043 60/32 1749 58/32

CL_EXT 6276 94/64 2872 96/64

GO_BP 9280 139/108 3681 123/108

GO_BP_EXT 13,954 208/158 5847 195/158

GO_CC 4075 61/33 1184 39/33

GO_CC_EXT 8495 127/91 3217 107/91

GO_MF 375 6/2 94 3/2

GO_MF_EXT 4070 61/34 1822 61/34

MOP 240 4/2 101 3/2

MOP_EXT 386 6/2 111 4/2

NCBITaxon 7362 110/90 3101 103/90

NCBITaxon_EXT 7592 113/97 3219 107/97

PR 17,038 254/198 6409 214/198

PR_EXT 19,862 296/246 7932 264/246

SO 8797 131/118 3446 115/118

SO_EXT 24,955 372/341 9136 305/341

UBERON 12,269 183/130 6551 218/130

UBERON_EXT 14,910 223/165 7416 247/165
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Performance of all systems is measured using the CRAFT Shared Task evaluation 
platform [51, 52]. Briefly, for the concept annotation task, the evaluation platform 
makes use of the method proposed by Bossy et al. [59], which incorporates flexibil-
ity in matching both the boundaries (i.e., the start and end character positions) of 
a predicted concept mention to the reference, and in the predicted ontology class 
identifiers. This flexibility allows the scoring metric to assign partial credit to inexact 
matches in two different ways. Partial credit is assigned for overlapping boundaries 
using a Jaccard index scheme over the characters in the matches, and partial credit for 
inexact ontology class ID matches is computed using a semantic similarity metric that 
makes use of the hierarchical structure of the ontologies. The final scores for a given 
predicted concept are based on a hybrid of both the boundary and ontology class ID 
match scores, and include precision, recall, F1 score, and an aggregate score called 
the slot error rate (see Bossy et al. [59] for the exact equations). In order to facilitate 
reproducibility and comparison of future systems to those that participated in the 
2019 CRAFT Shared Task, the evaluation platform is made available as a versioned 
Docker container. Version 4.0.1_0.1.2 was used to evaluate the systems described 
here. All evaluation information can be found at the CRAFT GitHub site (specifically 

Table 2 Statistics for the concept annotation classes used in the training (67-document) and 
evaluation (30-document) data sets and for those added as additional training data for concept 
normalization for all ontologies

Avg average

Ontology # training set 
annotation 
classes

Avg/median 
# training set 
annotation 
classes per 
article

# classes 
added to 
training set

# evaluation 
set annotation 
classes

Avg/median 
# evaluation 
set annotation 
classes per article

ChEBI 1463 22/18 58,214 627 21/20

ChEBI_EXT 2852 43/38 58,439 1167 39/39

CL 581 9/7 2163 253 8/9

CL_EXT 651 10/8 2168 286 10/10

GO_BP 1586 24/21 29,213 682 23/23

GO_BP_EXT 2511 37/33 29,301 1090 36/37

GO_CC 677 10/9 4052 212 7/6

GO_CC_EXT 896 13/12 4086 296 10/9

GO_MF 49 1/1 10951 19 1/1

GO_MF_EXT 738 11/11 10,031 377 13/12

MOP 85 1/1 3574 32 1/1

MOP_EXT 108 2/1 3578 40 1/1

NCBITaxon 690 10/9 1,175,661 315 11/9

NCBITaxon_EXT 757 11/10 1,175,682 346 12/10

PR 1278 19/18 213,371 466 16/16

PR_EXT 1534 23/22 213,531 588 20/19

SO 1216 18/18 2256 544 18/19

SO_EXT 3172 47/47 2405 1409 47/48

UBERON 2048 31/24 14,057 1040 35/31

UBERON_EXT 2409 36/29 14,113 1217 41/38
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at https:// github. com/ UCDen ver- ccp/ craft- shared- tasks/ wiki/ Conce pt- Annot ation- 
Task- Evalu ation).

Computational time and resource availability limited some potential evaluations. 
Some computations were performed on a contemporary laptop, but many required the 
use of an NIH-funded shared supercomputing resource [60] that includes:

• 55 standard compute nodes with 64 hyperthreaded cores and 512GB of RAM
• 3 high-memory compute nodes with 48 cores and 1TB of RAM
• GPU nodes with Nvidia Tesla k40, Tesla k20, and Titan GPUs
• A high-speed Ethernet interconnect between 10 and 40 Gb/s

We used both the CPUs and all GPUs. All computation was written in Python 3 with 
associated packages. All code and models can be found at: https:// github. com/ UCDen 
ver- ccp/ Conce pt- Recog nition- as- Trans lation.

Span detection

Span detection is the first task of our two-part approach to concept recognition. Even 
though there is quite a lot of previous work on this task, we aimed not only to explore 
the state-of-the-art methods (using language models), but also to find low-resource 
methods (using a CRF) and explore whether we can exploit hyperparameter tuning of 
simpler methods for more complex ones that build on the simple methods (using BiL-
STMs). Thus, the goal is to explore the performance and resources of six canonical span 
detection algorithms [15, 44, 61] using the CRAFT shared task framework [51]. The 
underlying target representation for all algorithms are BIO tags [10], which are used to 
label each word in the sequence as beginning (B), inside (I), or outside (O) an ontological 
concept mention; for example, the BIO tagging for the text mentions “red blood cells" 
and “white blood cells" in the phrase “red and white blood cells" can be seen in Table 3.

Discontinuous annotations and overlapping annotations [17] make BIO labeling chal-
lenging to define formally. Discontinuous annotations are annotations composed of two 
or more non-contiguous text spans. The difficulty in translating these text mentions to a 
sequence of BIO tags is how to label the intervening text between the two discontinuous 
spans, i.e., as I (inside) or O (outside). Since discontinuous annotations are rare (no more 
than 7% of the total words in all concept mentions (see Table 4), many previous systems 
ignore them (e.g., [4, 6]). Here we introduce and evaluate a novel approach simpler than 
previous work (e.g., [16, 17]) to represent such annotations. Discontinuous annotations 

Table 3 BIO(−) labeling for the discontinuous and overlapping ontology class mentions in the 
phrase “red and white blood cells” (from PMCID:15314655)

The O− would simply be O in the canonical BIO labeling

Red And White Blood Cells

Labels for the annotation 
of red blood cells

B O− O− I I

Labels for the annotation 
of white blood cells

O O B I I

Final labeling B O− B I I

https://github.com/UCDenver-ccp/craft-shared-tasks/wiki/Concept-Annotation-Task-Evaluation
https://github.com/UCDenver-ccp/craft-shared-tasks/wiki/Concept-Annotation-Task-Evaluation
https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation
https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation
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contain fewer words within their component text spans compared to the words between 
the spans, except for PR (see Table 4). Thus to exploit more data, we created a new label, 
O−, which signifies the text between the discontinuous spans of these annotations (see 
Table 3 for an example of “O−"). We refer to this expanded set of BIO tags as BIO(−) 
tags.

Overlapping spans create a different problem: the possibility of multiple labels for a 
word in the sequence, only one of which can persist for training purposes. For exam-
ple “red", “and", and “white" all have two conflicting labels depending on the concept 
mention labeled (see Table 3). To address this problem, we prioritize the beginnings of 
concept mentions (B) to capture as many concepts as possible, even if some words in the 
multi-word concepts will not formally be captured. In our example then, the annota-
tions based on the BIO(−) tags would be “red..." and “white blood cell" separately. Other 
approaches (e.g., [62]) rewrite texts with conjunctions to unwind them, but that would 
not allow us to use the shared task framework, which depends on the unaltered text for 
evaluation.

Before training models, CRAFT is preprocessed into a word-tokenized BIO(−) tag 
format using the methods described above. This preprocessed data is used to train, tune, 
and evaluate all span detection algorithms. The input to each algorithm is a sentence as 
a sequence of words represented as word features, word embeddings, character embed-
dings, or language-model-contextualized word embeddings that are then mapped to 
a sequence of BIO(−) tags as the output. Each algorithm and its corresponding input 
representation is described in more detail below, focusing on the resources needed, the 
parameters to tune, and the final training framework used.

Conditional random fields (CRFs)

CRFs are of interest because they use the least computational resources of any of the 
approaches we have implemented and can generally be easily trained on contemporary 
laptops. A CRF is a discriminative algorithm that utilizes a combination of arbitrary, 
overlapping and agglomerative observation features from both the past and future to 
predict the output sequence [11]. The words in a sentence are the input sequence along 

Table 4 Quantification of discontinuous and overlapping words in all concept mentions

All numbers are based on the number of words, not concepts

Ontology # words in 
all concept 
mentions

% words in 
discontinuous 
mentions (%)

% words between text spans 
of discontinuous mentions 
(%)

% words overlapping 
multiple mentions 
(%)

ChEBI 5985 0.3 0.6 0.1

CL 6576 4.3 4.3 2.6

GO_BP 12,956 5.2 7.0 1.6

GO_CC 5864 1.5 2.1 0.5

GO_MF 376 0 0 0

MOP 257 0 0 0

NCBITaxon 7696 0.03 0.03 0.03

PR 23,261 0.5 0.2 0.9

SO 10,348 1.2 1.8 0.5

UBERON 15,681 2.0 2.3 0.8
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with features for each word including the case of the word, the three words before the 
word for added context, its part-of-speech tag, and the part-of-speech tags for the two 
words ahead of the word of interest. The output sequence is a BIO(−) tag for each word. 
The output sequences are directly connected to the inputs via the sentence- and word-
level features. To optimize F1 score for each ontology, we tuned the CRF by conducting 
a randomized search of the hyperparameter space of both the L1 and L2 regulariza-
tion penalties, with 3-fold cross-validation, which guarantees that the global optimum 
is found [11]. With these optimal parameters, we evaluated the model using 5-fold 
cross-validation.

Bidirectional long short term memory (BiLSTM)

BiLSTMs are of interest because much prior work uses and builds on them, with signifi-
cant effort and resources put into tuning. Instead of tuning more complex systems, we 
aimed to test whether the parameters for the simplest model could generalize to more 
complex models built on the simple one. An LSTM is a special form of a recurrent neu-
ral network that by default remembers information for long periods of time, allowing 
for more distant context to be used by the algorithm [12]. It is a chain of memory cells 
stitched together to allow long-term and short-term memory. Each memory cell con-
tains four neural networks, including a forget gate (information to drop), a new infor-
mation gate (information to add), and an output gate to the next cell (information to 
propagate). The LSTM architecture lends itself to sequence-to-sequence tasks such as 
ours, in which the input is a sequence of words and the output is the corresponding 
sequence of BIO(−) tags. However, the inputs must be vectors, so we use an embed-
ding layer that maps each word in the training data to a fixed-length vector to create the 
semantic vector space of the training data. Due to varying lengths of sentences, we pad-
ded all input sequences and output sequences to the maximum number of words among 
all sentences (approximately 400). Additionally, since the context for a word can be 
before or after the word itself, we used Bidirectional LSTMs (BiLSTMs), which first run 
through the sequence forwards and then again backwards, thereby allowing the usage of 
the context on either side of a word [13].

Tuning a BiLSTM is resource-intensive, so we aimed to test whether the parameters 
tuned on a simple BiLSTM could translate across more complex BiLSTM models. There-
fore, to conserve resources, hyperparameters tuned here are used for all other more 
complex BiLSTM approaches (specifically, BiLSTM-CRF, char-embeddings, and BiL-
STM-ELMo). The hyperparameter search attempts to optimize F1 score; however, unlike 
the CRF setting, there are no guarantees of finding optimal parameters. The large hyper-
parameter space and the high cost of each evaluation are barriers to identifying opti-
mal values. We followed established heuristics for tuning a BiLSTM [63], using GPUs to 
speed up evaluation. The four main hyperparameters to tune are the optimizer, the batch 
size, the number of epochs, and the number of neurons or hidden units [63]. The classic 
optimizer is the stochastic gradient descent (SGD), but newer approaches have proven 
less variant and faster [64], including RMSProp [65] and Adam [66]. For named entity 
recognition tasks, many have used SGD [30–32, 34–36, 38, 40], and a smaller number 
have used RMSProp (Root Mean Square Propagation) [39, 41] and Adam [37]. We chose 
to focus on RMSProp, which updates the learning rate for each parameter separately 
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and automatically using the exponential average of the square of the gradient in order to 
weight the more recent gradient updates over the less recent ones [65]. Thus, the learn-
ing rate requires very little tuning, and so we chose not to change the default learning 
rate of 0.0001. Additionally, it implicitly performs simulated annealing in that it auto-
matically decreases the size of the gradient step if it is too large, so as not to overshoot 
the minima.

Next, multiple time-consuming experiments of different combinations of batch sizes, 
epochs, and neurons are needed to find the best parameters since they are interrelated. 
The batch size determines the number of examples to run together to help speed up the 
time-consuming training process. The larger the batch, the faster the runs, but the less 
nuanced the results. Typical batches range from 1 to 64, and thus we tested 18, 36, 53, 
and 106 (all of which cleanly divide a validation set of 10% of the training data). The 
epochs are the number of repeat experiments to run, as the LSTM can result in very dif-
ferent results based on each random initial condition. The larger the number of epochs, 
the more time the LSTM takes to run. Due to our limited memory and time, we tested a 
small (10) and larger (100) number of epochs. For all runs, 10% of the data was used for 
validation for each epoch, as well as overall. Lastly, to determine the number of neurons 
or the hidden states ( Nh ), we utilized this formula [67]:

Ni = number of input neurons; N0 = number of output neurons; Ns = number of sam-
ples in training data set; α = an arbitrary scaling factor, usually between 2 and 10.

We found that varying α between 2 and 10 yields between 3 and 12 neurons, and thus 
we took the two extremes of 3 and 12 to test.

Overall, we conducted 16 experiments (one optimizer, four batch sizes, two epoch 
sizes, and two neuron sizes) per ontology to find the optimal hyperparameters for 
the BiLSTM for each ontology. F1 score cannot be optimized directly with an LSTM; 
instead, the models aim to minimize errors. We chose the categorical cross-entropy as 
the loss function, as it is the default loss function for multi-class classification problems 
such as ours, in which four categories are used for BIO(−) tagging.

BiLSTM combined with CRF (BiLSTM‑CRF)

A BiLSTM-CRF is the architecture of a regular BiLSTM with a CRF as the last layer [30]. 
The BiLSTM provides the feature weights for the CRF, which provides sequence-level 
features. The tuning processes would be exactly the same as for the previously discussed 
BiLSTM; however, to determine if the simple BiLSTM parameters can be used in a more 
complex model, we used the same tuned hyperparameters for each ontology found for 
the BiLSTM and then added the CRF layer on top. This is a simple extension of the pre-
vious model, which can be trained on CPUs since the BiLSTM tuning is already done.

BiLSTM with character embeddings (Char‑Embeddings)

The BiLSTM and BiLSTM-CRF approaches use word embeddings for all of the words in 
the training data; thus, any word not in the training set cannot be translated to a BIO(−) 
tag and will be unknown. To combat this, we tried a different underlying sequence 

Nh =
Ns

(α ∗ (Ni + N0))
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representation based on the characters to create character embeddings for each word. 
As each word is a sequence of characters, this approach can create a representation for 
any unknown word using these character embeddings. Again, to determine if the simple 
BiLSTM parameters can be used in more complex models, we utilized the same param-
eters as the tuned BiLSTM. In terms of resources, training the character embeddings 
adds a significant amount of CPU time and memory.

BiLSTM and embeddings from a language model (BiLSTM‑ELMo)

BiLSTM-ELMo is a BiLSTM with a new underlying sequence representation from the 
language model ELMo [44]. The original ELMo is a language model trained on the 1 
Billion Word Benchmark set, which includes approximately 800 million tokens of news 
crawl data from the general-domain WMT 2011. ELMo representations are contextual 
(with modeling of word polysemy), deep (as the BiLSTM is pretrained on a large text 
corpus), and character-based (thus allowing for representations of words unseen in 
training). Again, to determine if the simple BiLSTM parameters can be used in more 
complex models, we wanted to use the already tuned parameters from our original BiL-
STM, but due to limited resources, we ran out of memory quite quickly in training the 
BiLSTM-ELMo. Experimenting with the same aforementioned batch sizes, we found 
that a batch size of 18 could run for all ontologies. Thus, we took the optimal hyperpa-
rameters with a batch size of 18 for each ontology.

Bidirectional encoder representations from transformers for biomedical text mining (BioBERT)

BioBERT is a biomedical-specific language model pre-trained on biomedical docu-
ments from both PubMed abstracts (PubMed) and PubMed Central full-text articles 
(PMC) based on the original BERT architecture [15]. Briefly, BERT is a contextualized 
word representation model pre-trained using bidirectional transformers. It then uses a 
masked language model to predict randomly masked words in a sequence from the full 
context on either sides of the word (instead of scanning one direction at a time), creat-
ing bidirectional representations. BioBERT adds the additional layer of biomedical-spe-
cific training data, as it is known that general-domain-trained algorithms do not usually 
perform well in the biomedical domain [68, 69]. We chose to use the BioBERT + Pub-
Med + PMC model because it is the most similar to CRAFT, the articles of which all 
appear in PMC. Due to the generalizabilty of BERT and BioBERT, they require mini-
mal fine-tuning to utilize for other tasks, especially for this task since the documents 
in CRAFT are most likely included in the PMC training data. Thus, we utilized the 
default fine-tuning parameters for named entity recognition, including a learning rate of 
1× 10

−5 , a training batch size of 32, evaluation and prediction batch sizes of 8 each, and 
10 training epochs [15], which require minimal resources aside from a GPU. Similar to 
the LSTM models, validation is done within each epoch.

Concept normalization

The final step in the concept recognition task is concept normalization, i.e., the nor-
malization of the detected spans or text mentions of concepts to their respective unique 
ontology class identifiers (class IDs). For example, the text mention “white blood cell" is 
normalized to the class ID CL:0000738 and the text mention “red ... blood cell" to the 
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class ID CL:0000232 (see Fig. 1). To the best of our knowledge, this is the first attempt 
to reframe and explore this task as a translation problem by translating the characters 
of all the text mentions to the characters of the ontology class identifiers. Usually, for 
translation from one language to another, there is an assumed underlying structure and 
semantics of both languages that is captured at least in part by any algorithm that aims 
to automate the translation process. For this task, the input in the form of English text 
mentions contains the structure and semantics of the English language [70], as well as 
the rich history of its development [71, 72]. On the other hand, the unique numeric 
class IDs to which these text mentions are annotated supposedly contain no structure 
or semantics [73]. Thus, from the outset, one would not expect translation from text 
mentions to class IDs to work, yet our results suggest that it does. We designed a series 
of experiments to understand what signals in the ontology class IDs are important to the 
performance.

To implement the idea of concept normalization as machine translation, we use the 
popular Open Neural Machine Translation system (OpenNMT) [18]. It implements 
stacked BiLSTMs with attention models and learns condensed vector representations 
of characters from the training data, processing one character at a time. One layer of 
the sequence-to-sequence LSTM model includes four main components: an encoder, a 
decoder, an attention mechanism, and a softmax layer. There are stacks of multiple lay-
ers of encoders, attention mechanisms, and decoders before the softmax layer at the top. 
The input to OpenNMT is the sequence of characters for the text mentions (e.g., “w h i 
t e b l o o d c e l l", with each character separated by a space to show it is a sequence of 
characters and not words). The size of this input sequence for the encoder is the length 
of the longest text mention in the training data by character count, which could be from 
1 to 1000 characters depending on the ontology (e.g., “white blood cell" has 16 charac-
ters including the spaces between words). Any input that is shorter than the maximum 
character length is padded at the end with null characters. Then for each text mention, 
the output is the class ID, similarly in the form of characters (e.g., for the input “w h 
i t e b l o o d c e l l", the output is “C L : 0 0 0 0 7 3 8" including the ontology names-
pace and the colon). Analogously, the output size is the maximum number of charac-
ters among the ontology class IDs, with added null characters if the sequence is shorter 
(e.g., “CL:0000738" has 10 characters). The maximum number of characters in the class 
IDs range among the ontologies from 7 to 20 characters in the core annotation sets and 
10–83 in the core + extensions sets. This discrepancy arises from the naming conven-
tion of extension classes with both the additional “_EXT" in the namespace along with 
the textual class IDs, as detailed in the materials for CRAFT. We used the default param-
eter settings to begin to explore this idea as this approach is resource-intensive, requir-
ing large amounts of memory and CPUs.

To train OpenNMT, pairs of text mentions and class IDs are required. For more gen-
eralized training, in addition to the linked text mentions and class IDs of the CRAFT 
concept annotations, we also used as training data the primary labels and synonyms 
(extracted from the .obo files distributed as part of the corpus) of classes not used for 
annotation in the corpus simply due to the fact that they are not mentioned in the arti-
cles of the corpus. For each of these classes, we used the name of the class and its syno-
nyms as the text mentions that map to it; for example, CL:0000019, the Cell Ontology 
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class representing sperm cells, does not occur in the CRAFT training data, so we added 
to the training data its primary label “sperm" and its exact synonyms “sperm cell", “sper-
matozoon", and “spermatozoid" as quasi-mentions that map to this ontology class. (See 
Table 2 for counts of ontology classes whose primary labels and synonyms were added 
to the training data.) Note that CRAFT annotators curated lists of unused classes that 
either were too difficult to reliably annotate with and/or for which extension classes were 
alternatively created or used; the labels and synonyms of these classes were not added as 
training data. By adding these metadata of these classes from the .obo files, we not only 
add a significant amount of training data (amounting to thousands of more classes per 
ontology), but also ensure that all current ontology classes are captured by OpenNMT 
(with the exception of those purposefully not used by the CRAFT curators).

With all of these concepts, training sets can be assembled at the type level (for which 
there is one mapping of a given text mention to a class ID regardless of frequency) or 
the token level (for which all mappings of text mentions to class IDs are included, even 
though some are the same string and class ID, only occurring in different places in the 
text). Training and testing with tokens takes into account the frequency of occurrence in 
the corpus (token-ids), while using types ignores frequency of occurrence in training and 
evaluation (type-ids). The token-ids are used for the full end-to-end system as it captures 
all the data including frequency. However, we compare token-ids to type-ids as well to 
determine if there is a performance difference, and type-ids are used for some experi-
ments to better understand how concept normalization as machine translation works. 
We also explored the performance with and without the extension classes. The extension 
classes greatly increase the size of the training data, and have somewhat different perfor-
mance characteristics. Tuning was over a 90–10 data split for training to validation over 
all tokens, and default training parameter settings were used.

As framing concept normalization as a machine translation problem is unconven-
tional, we aimed to explore how this approach might be exploiting semantic informa-
tion in the ontology class IDs used as output (the core set only) by transforming them 
in various ways to see how performance changes. To start, the type-ids are compared to 
the token-ids, and going forward all further experiments use the type-ids, as they are a 
smaller set and thus faster to run. If the frequency of the text mention and class ID mat-
tered, then we would see a drop in performance from token-ids to type-ids. The next 
approach was to use the same IDs but scramble the relationship between text mention 
and class ID (“shuffled-ids"). Another was to replace the class IDs with random num-
bers of the same length, drawn without replacement as to have no repeats (“random-
ids"). If there were information in the specific class IDs, we would expect to see a drop 
in performance for shuffled-ids relative to type-ids. If there were information in the 
distribution of class IDs but not in specific ones, then we would expect a further drop 
in performance for random-ids relative to shuffled-ids. We further tested to see if we 
could add information to the class IDs by alphabetizing them by the text mention and 
assigning consecutive IDs (“alphabetical-ids"). Text mentions that have similar prefixes 
(e.g., proteins BRCA1 and BRCA1 C-terminus-associated protein) would have consecu-
tive alphabetical IDs (PR:089212 and PR:089213, respectively), potentially giving the 
sequence-to-sequence learner additional information. For all experiments, we main-
tained the ontology prefixes before the unique number identifiers and only changed the 
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numbers (as seen in the example above for alphabetical-ids). However, not all text men-
tions map to class IDs solely with numbers. For example, the class ID for the text men-
tion “phylum" is NCBITaxon:phylum. These types of text mentions and class IDs are rare 
in ontologies in the core set and thus were not changed in any experiments. In the evalu-
ation of alternative output targets, we calculate both exact matches between ontology 
class identifiers overall and on a per-character basis, as OpenNMT translates per char-
acter. Furthermore, we conducted error analyses of these runs to better understand what 
underlies the translation and to suggest future improvements.

Results
Overall we achieve near or above state-of-the-art performance on the concept annota-
tion task of the CRAFT Shared Tasks, with direct comparison to Furrer et al. [4] on the 
full end-to-end system using the corresponding evaluation platform as described above 
(see Tables 5 and 6). Recall that partial credit is awarded both for span detection and 

Table 5 Full end-to-end system evaluation on the core set comparing F1 score

For all results shown here, the span detection algorithm is listed, and the concept normalization algorithm is OpenNMT. 
UZH@CRAFT-ST is the best performing system from Furrer et al. [4] in the CRAFT-ST, shown as a comparison to our methods. 
The best-performing algorithm is bolded with an asterisk*

Ontology CRF BiLSTM BiLSTM-CRF Char-
Embeddings

BiLSTM-ELMo BioBERT UZH@CRAFT-ST

ChEBI 0.7882 0.6394 0.5027 0.5942 0.0550 0.7885* 0.7700

CL 0.6779 0.5134 0.3859 0.5611 0.0526 0.6994* 0.6657

GO_BP 0.7505 0.5137 0.3642 0.6182 0.0720 0.7405 0.8037*
GO_CC 0.7225 0.1689 0.3049 0.3244 0.0506 0.7762* 0.7645

GO_MF 0.9778 0.9770 0.9778 0.8906 0.3704 0.9783 0.9838*
MOP 0.8129 0.7721 0.7158 0.5985 0.0930 0.8742* 0.8705

NCBITaxon 0.9026 0.7736 0.8391 0.8518 0.0948 0.8910 0.9694*
PR 0.4040 0.3136 0.2827 0.2732 0.0516 0.5295 0.8026*
SO 0.8987 0.4106 0.4096 0.7815 0.0813 0.9054* 0.9027

UBERON 0.7474 0.6812 0.5029 0.6901 0.0793 0.7670* 0.7488

Table 6 Full end-to-end system evaluation on the core + extensions set comparing F1 score for the 
top two algorithms found in the core set

For all results shown here, the span detection algorithm is listed, and the concept normalization algorithm is OpenNMT. 
UZH@CRAFT-ST is the best performing system from Furrer et al. [4] in the CRAFT-ST, shown as a comparison to our methods. 
The best-performing algorithm is bolded with an asterisk*

Ontology CRF BioBERT UZH@CRAFT-ST

ChEBI_EXT 0.7891 0.8039 0.8209*
CL_EXT 0.7381 0.7491* 0.7484

GO_BP_EXT 0.7279 0.7353 0.8138*
GO_CC_EXT 0.8738 0.8983* 0.8936

GO_MF_EXT 0.6413 0.6255 0.7438*
MOP_EXT 0.8000 0.8651* 0.8437

NCBITaxon_EXT 0.8710 0.8624 0.9722*
PR_EXT 0.4397 0.5188 0.8011*
SO_EXT 0.7682 0.7829 0.9187*
UBERON_EXT 0.7558 0.7711 0.7714*
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concept normalization, so we also evaluate each separately to understand what drives 
the performance in the full end-to-end system. Even with the state-of-the-art perfor-
mance, there is still room for improvement for all ontologies in the core and core + 
extensions sets, especially for PR and PR_EXT, respectively.

Not surprisingly, BioBERT outperforms almost all other span detection algorithms, 
except for the CRF (for GO_BP, NCBITaxon, GO_MF_EXT, and NCBITaxon_EXT). 
[See Tables 5 and 6 for the full results as compared to those of Furrer et al. [4] (UZH@
CRAFT-ST).] The BiLSTMs overall did not perform the best, but it does seem that reus-
ing the simplest model parameters in the more complex models of BiLSTM-CRF and 
a BiLSTM with character embeddings (Char-Embeddings) either maintains the same 
performance or sometimes increases performance, especially for the Char-Embeddings 
model. However, these simple model parameters cannot be reused for the BiLSTM-
ELMo model. In comparison to UZH@CRAFT-ST, among the core sets this model mod-
estly outperforms the best system for ChEBI, CL, GO_CC, MOP, SO, and UBERON, 
whereas among the core + extensions sets it just barely outperforms the best system for 
CL_EXT, GO_CC_EXT, and MOP_EXT. Even for the ontologies whose results are lower 
than the best system, the results are usually in close proximity (within 0.10 F1 score). 
Note that the model yields the best performance for GO_MF among all ontologies, 
most likely due to the very few annotation classes included in the ontology (see Tables 1 
and 2). Lastly, for some ontology annotation sets (specifically, ChEBI, CL, GO_CC, 
UBERON, CL_EXT, GO_MF_EXT, and UBERON_EXT), all systems (including UZH@
CRAFT-ST) perform less competently, with F1 scores below 0.80.

It does appear then that translation is a salient avenue to explore for a purely machine 
learning approach to concept recognition, which at least for the core set is compara-
ble to the state of the art. We also describe the resources needed for each algorithm 
(see Table 7), and the tuning, training and evaluation for the span detection algorithms 
(see Tables 8, 9, 10, 11, 12, 13 and 14) and for the concept normalization algorithm (see 
Tables 15, 16, 17, 18, 19, 20, 21 and 22).

Table 7 Hardware, memory, and time used for training for all evaluated algorithms

A given training time specifies the total hours if training for all ontology annotation sets were run consecutively, but these 
can be parallelized by ontology

ConceptMapper runs on CPUs but has no training, as it is a dictionary-based lookup tool, hence the specifications as N/A

*Parallelized per ontology due to time constraints

**Runs significantly faster on GPUs

***Total free RAM available

Algorithm Hardware Training memory 
(GBs)

Training time (h)

CRF CPUs 2–13 1–4

BiLSTM* GPUs/CPUs** 17 29

BiLSTM-CRF CPUs 7 15

Char-Embeddings CPUs 30 84

BiLSTM-ELMo* GPUs 42 700–1000

BioBERT GPUs/CPUs** 5 20

UZH@CRAFT-ST BioBERT* [4] GPUS 120*** 200

OpenNMT* CPUs 620 515

ConceptMapper [20] CPUs N/A N/A
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Training resources

Training these algorithms requires significant computational resources due to the 
amount of data, tuning, and optimizing necessary. It is important to consider access 
to hardware, memory, and time when deciding on which algorithms to use for a task. 
Thus, here we report on those factors to aid other users in making these decisions 

Table 8 Span detection F1 score results for all algorithms tested against the core evaluation 
annotation set of the 30 held-out articles

The best-performing algorithm per ontology is bolded with an asterisk*

Ontology CRF BiLSTM BiLSTM-CRF Char-Embeddings BiLSTM-ELMo BioBERT

ChEBI 0.7234 0.6545 0.5000 0.5280 0.0620 0.9091*
CL 0.8333 0.5882 0.3774 0.8000 0.0000 0.9231*
GO_BP 0.8677* 0.5498 0.3661 0.6346 0.0685 0.8646

GO_CC 0.9412 0.1379 0.2689 0.2581 0.1000 0.9444*
GO_MF > 0.9999* > 0.9999* > 0.9999* 0.8421 0.0000 > 0.9999*
MOP > 0.9999* > 0.9999* > 0.9999* > 0.9999* 0.0000 > 0.9999*
NCBITaxon 0.9959* 0.8551 0.9440 0.9569 0.0711 0.9453

PR 0.4351 0.2979 0.2151 0.0995 0.0339 0.8199*
SO 0.9435* 0.4935 0.4897 0.8203 0.1059 0.9081

UBERON 0.7913 0.7206 0.4758 0.7440 0.0854 0.8826*

Table 9 Span detection F1 score results for all algorithms tested against the core + extensions 
evaluation annotation set of the 30 held-out articles

The best-performing algorithm per ontology is bolded with an asterisk*

Ontology CRF BioBERT

ChEBI_EXT 0.8802 0.9291*
CL_EXT 0.8000 0.9677*
GO_BP_EXT 0.8800* 0.8516

GO_CC_EXT 0.8667 0.9524*
GO_MF_EXT 0.9211 0.9231*
MOP_EXT > 0.9999* > 0.9999*
NCBITaxon_EXT 0.9959* 0.9919

PR_EXT 0.5598 0.7717*
SO_EXT 0.8054 0.8244*
UBERON_EXT 0.8418 0.9157*

Table 10 F1 score results for detection of discontinuous spans for all algorithms tested against the 
core evaluation annotation set of the 30 held-out articles

Note that there are no discontinuous spans in the GO_MF, MOP, and NCBITaxon sets

Ontology Support CRF BiLSTM BiLSTM-CRF Char-Embeddings BiLSTM-ELMo BioBERT

ChEBI 14 0 0 0 0 0 0

CL 175 0.1176 0.1158 0.1171 0 0.0107 0.1818

GO_BP 272 0.0952 0 0.014 0 0.007 0.2742

GO_CC 14 0.1053 0 0 0.0526 0 0.3

PR 44 0 0 0 0 0 0.08

SO 45 0.0408 0 0 0 0 0.3

UBERON 118 0.04 0 0 0 0 0.0915
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(see Table 7). We report on these resources for the core annotation set only, as those 
for the core + extensions annotation set are similar.

Usually, access to GPUs is helpful in speeding up training time as are hyperthreaded 
CPUs, since advanced hardware is quite important for some algorithms. Here, we 

Table 11 F1 score results for detection of discontinuous spans for all algorithms tested against the 
core + extensions evaluation annotation set of the 30 held-out documents

Note that there are no discontinuous spans in the MOP_EXT and NCBITaxon_EXT sets

Ontology Support CRF BioBERT

ChEBI_EXT 19 0 0

CL_EXT 175 0.1164 0.1608

GO_BP_EXT 287 0.085 0.2651

GO_CC_EXT 30 0.1579 0.3721

GO_MF_EXT 20 0 0

PR_EXT 44 0 0.1224

SO_EXT 72 0.1505 0.2979

UBERON_EXT 133 0.0485 0.2128

Table 12 CRF tuning parameters and resulting tuning F1 scores

The overall memory usage for all tuning was 6 GB

Ontology L1 L2 Time (h) F1 score 
(macro)

F1 score (micro)

ChEBI 0.0862 0.000186 3 0.61 0.99

CL 0.00477 0.0473 3 0.73 > 0.99

GO_BP 0.0862 0.000186 3.17 0.63 0.99

GO_CC 0.269 0.00892 3 0.55 0.99

GO_MF 0.215 0.00392 3 0.66 0.99

MOP 0.0862 0.000186 3 0.65 > 0.99

NCBITaxon 0.0862 0.000186 3 0.61 > 0.99

PR 0.00477 0.0473 3.25 0.54 0.97

SO 0.315 0.00578 3.22 0.66 > 0.99

UBERON 0.221 0.003005 3.3 0.63 0.99

Table 13 BiLSTM tuning parameters and resulting tuning F1 scores that are used for the BiLSTM-
CRF and Char-Embeddings models also

Ontology Batch size # Epochs # Neurons Time (h) Memory (GBs) F1 score 
(macro)

F1 score (micro)

ChEBI 53 10 12 99 6.5 0.67 > 0.99

CL 36 10 12 92 6.5 0.74 > 0.99

GO_BP 36 10 12 99 6.5 0.68 > 0.99

GO_CC 106 100 12 97 6.5 0.66 > 0.99

GO_MF 106 10 3 108 8.4 0.99 > 0.99

MOP 106 10 12 99 6.4 0.61 > 0.99

NCBITaxon 106 100 12 95 6.5 0.96 > 0.99

PR 36 10 12 95 6.5 0.71 > 0.99

SO 36 100 12 98 6.5 0.66 > 0.99

UBERON 18 10 12 97 6.5 0.68 > 0.99
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began with CPUs and switched to GPUs as the time to train increased, as the latter 
will often speed up the processes significantly [74]. The CRF, BiLSTM-CRF, and Char-
Embeddings models ran in reasonable amounts of time on CPUs for all ontology 
annotation sets. For the BiLSTM itself though, we tuned it on GPUs and continued 
the runs on GPUs once we had the optimized parameters. BioBERT also performed 
significantly faster on GPUs than on CPUs. At the same time, some algorithms (such 
as that for the BiLSTM-ELMo model, for which the portion involving ELMo is the 
rate-limiting one) need a GPU for practical running times due to the amount of tasks 
performed in it [74].

All algorithms required a small amount of memory, except for OpenNMT, which 
required more than 600 GB to train all ontologies. Due to its memory requirement, we 
parallelized it among the ten ontologies, averaging around 60–80 GBs per ontology. We 
also parallelized BiLSTMs and BiLSTM-ELMo due to similar considerations.

Table 14 BiLSTM-ELMo parameters and resulting tuning F1 scores

Due to limited resources, the batch size is 18 for all ontologies

Ontology Batch size # Epochs # Neurons F1 score 
(macro)

F1 score (micro)

ChEBI 18 10 3 0.65 > 0.99

CL 18 10 12 0.72 > 0.99

GO_BP 18 10 12 0.66 > 0.99

GO_CC 18 10 3 0.65 > 0.99

GO_MF 18 100 3 0.66 > 0.99

MOP 18 100 12 0.61 > 0.99

NCBITaxon 18 100 12 0.96 > 0.99

PR 18 10 12 0.71 > 0.99

SO 18 100 12 0.65 > 0.99

UBERON 18 10 12 0.68 > 0.99

Table 15 Concept normalization exact match results on the core evaluation annotation set of the 
30 held-out documents compared to the baseline ConceptMapper approach

We report both the percent exact match at the class ID level and the character level. We also report the percentage of false 
negatives (FN) for ConceptMapper (i.e., no class ID prediction for a given text mention). Note that for each ontology the 
better performance between OpenNMT and ConceptMapper is bolded with an asterisk* for both class ID and character 
levels

Ontology % OpenNMT 
class ID (%)

% 
ConceptMapper 
class ID (%)

% ConceptMapper 
FN Class ID (%)

% OpenNMT 
character (%)

% 
ConceptMapper 
character (%)

ChEBI 82* 55 41 94* 58

CL 72* 52 12 92* 77

GO_BP 82* 29 59 93* 36

GO_CC 81* 54 44 91* 55

GO_MF 98* 0 100 99* 0

MOP 95* 65 34 99* 66

NCBITaxon 87* 86 13 97* 87

PR 10 47* 26 76* 57

SO 97* 75 21 99* 78

UBERON 78* 64 34 95* 65
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Choosing the right hardware with the right memory also hinges on the training 
time of the algorithm, which is particularly relevant for, e.g., a shared task, where 
time is very important for meeting deadlines. We found that the fastest algorithm 
was the CRF, followed by BiLSTM-CRF and BioBERT. The UZH@CRAFT-ST also 
used BioBERT, and it took significantly longer than our BioBERT due to a differing 
number of epochs (55 and 10, respectively). The most time-consuming algorithms 
were BiLSTM-ELMo, with ELMo taking the majority of the time, and OpenNMT. In 
both cases though, similar to memory issues, we parallelized among the ten different 
ontologies to speed up the process. Still though, each ontology required 50–100 h of 
supercomputer time.

Table 16 Exact match results for the unseen and seen text mentions (relative to the training data) 
for the core evaluation annotation set of the 30 held-out documents

Reporting the total number of mentions and the number of unique mentions along with the percent exact match on the 
class ID level and character level for both unseen and seen text mentions

Ontology Total/unique 
# unseen 
mentions

% Unseen 
OpenNMT class 
ID (%)

% Seen 
OpenNMT class 
ID (%)

% Unseen 
OpenNMT 
character (%)

% Seen 
OpenNMT 
character (%)

ChEBI 345/148 17 94 69 99

CL 774/208 39 98 92 > 99

GO_BP 727/367 17 98 65 99

GO_CC 301/85 29 99 67 > 99

GO_MF 3/3 33 > 99 70 > 99

MOP 18/7 83 98 96 > 99

NCBITaxon 81/52 0 89 72 98

PR 2926/388 0 19 71 80

SO 181/105 62 99 89 > 99

UBERON 1584/514 20 97 80 99

Table 17 Concept normalization exact match results on the core + extensions evaluation 
annotation set of the 30 held-out documents compared to the baseline ConceptMapper approach

We report both the percent exact match on the class ID level and the character level. We also report the percentage of false 
negatives (FN) for ConceptMapper (i.e. no class ID prediction for a given text mention). Note that the best performance 
between OpenNMT and ConceptMapper is bolded with an asterisk* for both class ID and character level

Ontology % OpenNMT 
class ID (%)

% 
ConceptMapper 
class ID (%)

% 
ConceptMapper 
FN class ID (%)

% OpenNMT 
character (%)

% 
ConceptMapper 
character (%)

ChEBI_EXT 86* 64 26 84* 66

CL_EXT 82* 67 11 93* 84

GO_BP_EXT 80* 34 44 76* 38

GO_CC_EXT 93* 80 18 94* 84

GO_MF_EXT 69* 60 30 69* 64

MOP_EXT 92* 64 35 97* 44

NCBITaxon_EXT 83 86* 13 93* 87

PR_EXT 15* 9 28 72* 21

SO_EXT 92* 19 40 91* 22

UBERON_EXT 81* 68 29 92* 75
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Table 18 Exact match results for the unseen and seen text mentions (relative to the training data) 
for the core + extensions evaluation annotation set of the 30 held-out documents

Reporting the total number of mentions and the number of unique mentions along with the percent exact match on the 
class ID level and character level for both unseen and seen text mentions

Ontology Total/unique 
# unseen 
Mentions

% Unseen 
OpenNMT class 
ID (%)

% Seen 
OpenNMT class 
ID (%)

% Unseen 
OpenNMT 
character (%)

% Seen 
OpenNMT 
character (%)

ChEBI_EXT 476/188 32 92 67 85

CL_EXT 775/209 36 99 77 97

GO_BP_EXT 861/431 26 89 57 78

GO_CC_EXT 339/113 39 99 57 98

GO_MF_EXT 515/146 31 83 45 78

MOP_EXT 21/10 67 98 85 > 99

NCBITaxon_EXT 123/79 1 86 68 94

PR_EXT 3114/429 0 25 66 75

SO_EXT 318/183 51 94 69 92

UBERON_EXT 1609/532 23 96 79 95

Table 19 Percentage of predicted non-existent class IDsout of the total number of predicted 
mismatch class IDs for the core set for the training, validation and evaluation sets

Ontology % Non-existent class IDs in 
training (%)

% Non-existent class IDs in 
validation (%)

% Non-existent class 
IDs in evaluation (%)

ChEBI 3 4 11

CL 0 0 0

GO_BP 2 2 2

GO_CC 2 4 1

GO_MF 1 1 50

MOP 0 2 0

NCBITaxon 7 7 11

PR 10 10 2

SO 0 1 0

UBERON 0 1 2

Table 20 Percentage of predicted non-existent class IDs out of the total number of predicted 
mismatch class IDs for the core + extensions set for the training, validation and evaluation sets

Ontology % Non-existent class IDs in 
training (%)

% Non-existent class IDs in 
validation (%)

% Non-existent class 
IDs in evaluation (%)

ChEBI_EXT 8 8 17

CL_EXT 1 1 9

GO_BP_EXT 2 2 3

GO_CC_EXT 4 4 21

GO_MF_EXT 2 2 4

MOP_EXT 0 6 0

NCBITaxon_EXT 9 9 25

PR_EXT 7 7 5

SO_EXT 1 1 2

UBERON_EXT 1 1 1
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Span detection results

Overall, BioBERT and CRF perform best for span detection on both the core and core + 
extensions annotation sets (see Tables 8 and 9, respectively) as evaluated on the set of 30 
held-out documents. Overall performance is very good, with all ontology F1 scores for 
both sets above 0.77 and most above 0.90. Note that the best results are seen for GO_
MF, MOP, and MOP_EXT, most likely due to the fact that there are relatively few anno-
tations in these sets (see Tables 1 and 2). One can see that the BiLSTM-ELMo model 
performs the worst and is most likely the reason the full end-to-end system is so poor 
for this algorithm. Even with some poor results, all algorithms can detect some discon-
tinuous spans, and some discontinuous spans can be detected by at least one algorithm 
for all ontologies except for ChEBI, ChEBI_EXT, and GO_MF_EXT, which have among 
the fewest discontinuous spans (see Tables 10 and 11 for the core and core + extensions 
annotation sets, respectively). Due to the rarity of discontinuous spans, these tables sug-
gest that we can just barely detect them and that more work is needed on these complex 
mentions specifically.

Table 21 Exact match results for the concept normalization experiments on the core evaluation 
annotation set of 30 held-out documents (class ID level)

We report the exact match percentage at the class ID level. The highest percentage is bolded and with an asterisk*

Ontology Token-ids (%) Type-ids (%) Shuffled-ids 
(%)

Random-ids 
(%)

Alphabetical-
ids (%)

ChEBI 82* 65 0 0 78

CL 72* 72* 69 70 56

GO_BP 82* 79 64 27 52

GO_CC 81 80 81 84* 76

GO_MF 98* 98* 98* 98* 51

MOP 95 97* 97* 92 80

NCBITaxon 87* 0 0 0 0

PR 10* 3 0 0 8

SO 97* 96 97* 97* 96

UBERON 78* 74 0 0 74

Table 22 Exact match results for the concept normalization experiments on the core evaluation 
annotation set of 30 held-out documents (character level)

We report the exact match percentage at the character level. The highest percentage is bolded and with an asterisk*

Ontology Token-ids (%) Type-ids (%) Shuffled-ids 
(%)

Random-ids 
(%)

Alphabetical-
ids (%)

ChEBI 94* 89 60 58 94*
CL 92* 92* 86 80 65

GO_BP 93* 91 85 56 84

GO_CC 91 92* 92* 89 82

GO_MF 99* 99* 99* 99* 94

MOP 99 > 99* 99 99 86

NCBITaxon 97* 74 73 68 74

PR 76* 75 40 30 74

SO 99* 99* 99* 98 96

UBERON 95* 93 69 54 88
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The most time-consuming and difficult part of this work is tuning the algorithms, 
whereas running and evaluating the models are generally quite fast. So that others can 
benefit from this work, we present the tuning results for the CRF and BiLSTM models, 
as well as the final parameters used for the BiLSTM-ELMo model. All tuning was paral-
lelized among the ten different ontologies for time and memory efficiency. We report 
both the macro- and micro-F1 scores for tuning because the “O" (outside) category 
for the BIO(−) tags appears significantly more often than any other tag. The micro-F1 
scores take this into account and thus are significantly higher, whereas the macro-F1 
scores only look at the raw scores, weighting each tag equally. Conversely, the macro-F1 
scores are low due to the infrequent “O−" tag.

The CRF required the least amount of time for tuning (around 3 h for each ontology) 
to find the optimal L1 and L2 regularization penalties (see Table 12). Of note is that for 
ChEBI, GO_BP, MOP, and NCBITaxon the model shares the same parameters and yields 
very similar F1 scores. This may mean that these ontologies need more tuning with 
larger parameter spaces or that this signifies a universal parameter for most ontologies. 
In general, all macro-F1 scores are above 0.6 except for GO_CC and PR, which are still 
above 0.5. The lowest score is for PR and the highest for CL, with room for improvement 
in both.

In contrast to the CRF tuning, tuning the BiLSTM required a significantly longer 
amount of time to achieve optimal performance on the training data. However, less 
time was required for the more complex BiLSTM algorithms (BiLSTM-CRF and Char-
Embeddings), as we reused these parameters, even though it did not perform the best in 
the full-system evaluation. On average, training took around 98 h per ontology, which is 
due in part to the number of parameters tested. That being said, each tested parameter 
value for batch size and numbers of epochs and neurons was required by at least one 
ontology for optimal performance. For batch size, the two most common, 106 (the larg-
est value tested) and 36 (the second lowest value tested), were found to be optimal for 
four ontologies each, while optimal batch sizes of 53 and 18 were found for ChEBI and 
UBERON, respectively. As for epochs, an optimal number of 10 was found for most of 
the ontologies, while an optimal number of 100 was found for GO_CC, NCBITaxon, and 
SO. For neurons, an optimal number of 12 was found for all ontologies except for GO_
MF, for which an optimal number of 3 was found. About the same amount of memory 
(6.5 GB) was used for tuning all ontologies. In terms of optimization metrics, we calcu-
lated tuning macro- and micro-F1 scores, as for the CRF model. In this case, all micro-
F1 scores are above 0.99, while macro-F1 scores are equal to or greater than those for the 
CRF model, with all scores greater than 0.6, in contrast to the results for the final end-to-
end system, for which the CRF model outperforms all BiLSTM algorithms. The highest 
F1 score is that for GO_MF and the lowest for MOP (with GO_MF and MOP having the 
smallest amount of training data, see Tables 1 and 2). To test whether the simplest model 
parameters can be used for more complex models (thereby saving a significant amount 
of resources), the same parameters were used for the BiLSTM-CRF and Char-Embed-
dings models, along with modified values for BiLSTM-ELMo due to resource constraints 
as discussed below.

The BiLSTM-ELMo model required the most resources for training and performed the 
worst. Due to memory issues using the simplest model parameters, we needed to restrict 
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the batch size to 18 and thus took the best results from the tuning of the aforementioned 
BiLSTM with this batch size (see Table 14). Using a batch size of 18 (the smallest batch 
size we tested) resulted in some differences in the optimal numbers of epochs and neu-
rons compared to the BiLSTM results shown in Table 13. Most ontologies still required 
10 epochs for optimal performance, but a few (GO_CC, GO_MF, and MOP) changed 
from 10 to 100 or vice versa, with the rest remaining the same. For neurons, most ontol-
ogies remained at 12, but two switched to 3, including ChEBI and GO_CC, with GO_
MF remaining at 3 as well. Comparing F1 scores to the previous algorithms, the tuning 
micro-F1 scores are exactly the same as those for the BiLSTM, but the macro-F1 scores 
either decreased slightly (for ChEBI, CL, GO_BP, GO_CC, GO_MF, and SO) or stayed 
the same (for MOP, NCBITaxon, PR, and UBERON) as those for the BiLSTM. UBERON 
is the only ontology for which the parameters remained the same from the BiLSTM to 
BiLSTM-ELMo because it already required a batch size of 18 for optimal performance.

Concept normalization results

Overall, the implementation of concept normalization as a sequence translation task via 
OpenNMT performed well on almost all ontologies in both the core and core + exten-
sions sets (see Tables 15 and 17) and significantly outperformed ConceptMapper, except 
for PR and NCBITaxon_EXT, on the 30 held-out document evaluation set. Note that for 
ConceptMapper, not all text mentions were normalized to ontology class IDs, indicating 
false negatives, whereas for OpenNMT all text mentions were normalized to class IDs. 
These false negatives are the main reason performance of ConceptMapper is so poor 
(e.g., no class IDs are predicted for MOP). Recall that ConceptMapper is a dictionary-
based lookup tool where any text mention not in the dictionary will not be captured. 
Thus, methods like OpenNMT are necessary for unseen text mentions and perform 
quite well over previous dictionary-based methods.

For this task, evaluation can be performed at both the class ID level, in which a cor-
rectly predicted class ID in its entirety counts as an exact match, and at the character 
level, in which each character of the predicted class ID is evaluated and a fractional 
score is calculated for a partial match. For example, while a text mention of “Brca2" 
was annotated in the gold standard with the Protein Ontology class PR:000004804, 
it was predicted to refer to PR:000004803, which differs from the gold standard only 
in the last digit. (The predicted ontology class ID PR:000004803 represents BRCA1, 
which also differs from the gold-standard protein BRCA2 in only its last digit.) At 
the class ID level, this is a mismatch, but at the character level it receives a score of 
11

12
= 0.92 , as 11 of the 12 predicted characters match. Scores greater than 69% were 

achieved at the class ID level for all ontologies except for PR and PR_EXT. Compar-
ing the core set to the corresponding core + extentions set, scores for the latter were 
higher than those of the former for half of the ontologies (ChEBI_EXT, CL_EXT, 
GO_CC_EXT, PR_EXT, and UBERON_EXT). The class IDs of the extension classes 
may be easier to predict because there is less variation of text mentions annotated 
with the extension classes and also possibly due to the use of English words in the 
extension class IDs (e.g., ChEBI_EXT:calcium, CL_GO_EXT:cell) rather than the 
numeric IDs of the proper OBO classes. At the character level, all match scores are 
above 69% for both sets. Scores for the core set were generally higher than those of 
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the corresponding core + extension set, except for CL and GO_CC. For all ontol-
ogies, in most cases, the character level match scores are near or greater than the 
class ID scores, indicating that many of the predicted IDs were partly correct (in that 
they contained correct substrings). Future work can look at these partial matches for 
improvements.

To understand how well this method will generalize beyond the training data, we 
also report performance with the evaluation set on text mentions seen in the training 
data and text mentions unseen in the training data, again by full class ID and charac-
ter-level exact matching (see Tables 16 for the core set and 18 for the core + exten-
sions set). Overall, for both the core and core + extensions sets at the class ID level, 
the text mentions seen in the training data performed far better than the unseen ones. 
However, more than 50% of the unseen text mentions were normalized correctly for 
the MOP, SO, MOP_EXT, and SO_EXT sets, while none of the unseen mentions were 
normalized for the NCBITaxon, PR, and PR_EXT sets. At the character level, the 
unseen text mentions results are still lower than those for the seen text mentions, 
but the difference is less extreme. Thus, these models can generalize to some extent 
beyond the text mentions seen in the training data, most likely due to the character-
level translation of OpenNMT, unlike ConceptMapper.

To better understand these results and elicit future research directions, we looked 
at the types of mismatches that occurred at the class ID and character levels. At the 
class ID level, two scenarios arise: (1) A different real class ID is predicted or (2) a 
completely non-existent class ID is predicted. The aforementioned Protein Ontology 
example involving Brca1 and Brca2 is an example of the first scenario. This also can 
occur with concepts both within an ontology subhierarchy, such as a prediction of 
ChEBI:24867 (monoatomic ion) for a gold-standard mention of ChEBI:23906 (mono-
atomic cation), which is a child of the former. One can see the striking resemblance 
between the two concepts; the only difference is the added “cat", which OpenNMT 
did not pick up on. However, we do receive partial credit in the final evaluation, as 
ChEBI:’monatomic cation’ is subsumed by ChEBI:’monoatomic ion’ in the ChEBI 
ontology. Much less frequent are occurrences of the second scenario, one example 
of which is a prediction of SO:0002000 (for which there is no such SO class) for a 
gold-standard mention of SO:0001179 (U3 snoRNA); note that these class IDs are 
quite different. For occurrences of the first type, the predicted and the true class IDs 
are not always very similar such as for Brca1 and Brca2 and are sometimes even very 
different. To understand how often both of these phenomena occur, we report the 
percentage of non-existent class IDs relative to the total mismatches in the train-
ing, validation, and evaluation data for both the core and core + extensions sets (see 
Tables 19 and 20, respectively).

Overall, there is not much difference between the percentage of predicted non-
existent class IDs for the training and validation sets. However, there does seem 
to be quite a difference between those and the evaluation set, with more predicted 
non-existent class IDs in the evaluation set, especially for GO_MF (50%) and GO_
CC_EXT, and NCBITaxon_EXT (more than 20%). Conversely, there are no predicted 
non-existent class IDs in any of the CL data sets nor in the MOP_EXT training and 
evaluation sets. This is a proxy for whether these ontologies can stay within the 
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“vocab" of the class IDs only using true class IDs (0% means fully within vocab). At 
the moment, it is unclear how to interpret these predicted non-existent class IDs, 
though this is explored in the Discussion section.

Focusing only on the core set, to determine the effect of concept frequency in our 
training data, we explored the use of the type-ids and token-ids approaches, and it 
appears this has a modest effect on the performance of OpenNMT (see Tables 21 and 
22 at the class ID and character levels, respectively), except for NCBITaxon and PR. 
Interestingly, the match results for the token-ids relative to those for the type-ids were 
the same or very close (CL, GO_MF, and SO) or slightly decreased at both the class ID 
and character levels, except for MOP at the class ID level and GO_CC at the character 
level, for which the performance for the type-ids increased. Note that at the class ID 
level, the match result for PR is already very low for token-ids (under 10%), so any drop 
is comparatively minuscule. For NCBITaxon, performance completely drops to zero at 
the class ID level, indicating that frequency of annotation concepts (which is taken into 
account in token-ids) is necessary for performance (which is analyzed further in the Dis-
cussion section). However, at the character level, the drop is nowhere near as drastic for 
NCBITaxon due to partial-match scoring. Looking at some of the mismatches for both 
type-ids and token-ids, different errors were made. For example, for “penicillin" (anno-
tated with ChEBI:173334 in the gold standard), ChEBI:7986 (which is the class ID for 
“pentoxifylline") was predicted. These class IDs are nothing alike, but we can see simi-
lar structure (specifically, “pen" and “in") in the English concept mention and label of 
the predicted ID, which was identified by the token-ids method but not by the type-ids 
method. Our results show that it is better to use the token-ids approach for all ontolo-
gies except for MOP, for which the type-ids approach performed better.

We also found that through our two other experiments (shuffled-ids and random-
ids), the class IDs have some semantic content or structure (see Tables  21 and 22 for 
shuffled-ids and random-ids performance). As expected, we do see a decrease in per-
formance from type-ids to shuffled-ids to random-ids at both the class ID and character 
levels for at least half of the ontologies. The match results for ChEBI, NCBITaxon, PR, 
and UBERON reduce to 0% for both shuffled-ids and random-ids at the class ID level, 
whereas those for CL, GO_MF, MOP, and SO generally maintain their level of exact 
matching between type-ids, shuffled-id, and random-ids, with random-ids performing 
the best for GO_CC of all experiments. Note that NCBITaxon is already at zero for the 
type-ids. Furthermore, since OpenNMT works at the character level, we can see the 
structure breaking at the character level, as for all ontologies there is a large decrease 
from type-ids to shuffled-ids to random-ids, except for GO_CC, GO_MF, MOP, and SO. 
This may suggest some accidental structure in the shuffled-ids and/or random-ids gener-
ated. The results at the class ID and character levels suggest some structure in the cur-
rent ontology class IDs that OpenNMT has identified.

We also added in more semantic content than the current ontology class IDs by alpha-
betizing the text mentions to see if this would boost performance for some ontolo-
gies (see the alphabetical-ids columns in Tables  21 and 22). At the class ID level, the 
token-ids approach performed the best for all ontologies; however, the alphabetical-ids 
approach recovered the losses from the shuffled-ids and/or random-ids approaches 
to perform close to the token-ids results for most ontologies, except for CL, GO_MF, 
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MOP, and NCBITaxon, with a similar trend at the character level. This suggests that 
the alphabetical-ids approach may provide too much structure that is imposed on the 
ontology concepts, as incremented alphabetized IDs were given to all text mentions even 
if they were annotated with the same class ID. For example, the class ID GO:0097617 
was used for “annealing", “hybridization", and “hybridizations" mentions, which in the 
alphabetical-ids approach were mapped to GO_MF:05728, GO_MF:15701, and GO_
MF:15702, respectively. Therefore, in the predictions then, hybridization was mapped 
to GO_MF:15702, which is one number different but incorrect nonetheless, whereas 
annealing was predicted correctly. Thus, performance may be boosted by incorporating 
stemming and lemmatization into ID mapping, e.g., providing the same alphabetized ID 
to “hybridization" and “hybridizations" and a different one for “annealing".

Discussion
By reframing concept recognition as a translation problem, we not only sidestep the 
multi-class classification problem, but also achieve above or near state-of-the-art perfor-
mance (see Tables 5 and 6) on the concept annotation task of the CRAFT Shared Task 
with direct comparison to Furrer et al. [4] via the corresponding evaluation framework. 
Overall, on the full system run for the core set, our approach using BioBERT with Open-
NMT slightly outperformed the best run from the participants in the CRAFT Shared 
Task (UZH@CRAFT-ST) [4] for six of the ten ontologies, whereas the latter modestly 
outperformed our best system for three of the four other ontologies (except for PR which 
was significantly lower). Furthermore, the BioBERT used here required less resources 
than the BioBERT for UZH@CRAFT-ST, but the OpenNMT in our system negated that 
(see Table  7). For the core + extensions set, our best-performing run slightly outper-
formed the best UZH@CRAFT-ST run for CL_EXT, GO_CC_EXT, and MOP_EXT, 
while the UZH@CRAFT-ST system outperformed our approach for all other ontologies. 
However, our BioBERT + OpenNMT system attained F1 scores within 0.2 of the UZH@
CRAFT-ST scores for six of the seven ontologies, with PR_EXT as the exception.

The errors that lead to lower performance in these full runs can result from issues 
with span detection, concept normalization, or an interaction between the two. For span 
detection, there are four classes of errors relative to the gold-standard text mentions: (1) 
the text mention is not detected at all; (2) the text mention is partially detected; (3) the 
text mention detected includes extra text; and (4) a full extra text mention is detected. 
Case (1) is a false negative and case (4) is a false positive. For cases (2) and (3) though, 
partial credit is awarded in the full evaluation pipeline for detecting at least part of the 
text mention. For concept normalization, the errors produced are most likely rather 
opaque and difficult to analyze (such as the non-existent class IDs) compared with e.g., 
a dictionary-based approach like ConceptMapper (though there may be other reasons 
this approach would have trouble for these ontologies). Thus, concept normalization as 
translation needs to be explored beyond the experiments done here, especially since for 
PR and NCBITaxon_EXT, ConceptMapper outperformed OpenNMT. At the same time, 
some possible reasons for poorer performance may be related to the mixing of two dif-
ferent types of class IDs that include both numbers and English text as well as the vary-
ing lengths of the class IDs. The text class IDs tend to be rather long, and OpenNMT 
performs worse with longer sequence lengths compared to shorter ones (as evidenced 
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by the results on the core + extensions set, where many extension classes have English 
text class IDs and are longer, and UZH@CRAFT-ST outperformed BioBERT + Open-
NMT for all but three ontologies). Lastly, for the interaction of the two tasks in the full 
system, case (1) in span detection will lead to no normalization to a class ID, propagat-
ing the error from span detection and resulting in a false negative also for concept nor-
malization. For cases (2) and (3), however, it is possible for the normalization step to still 
correctly identify the class ID even though the text mention is slightly incorrect. On the 
other hand, for case (4), the class ID determined will always be wrong because the text 
mention should not have been detected in the first place, as OpenNMT always outputs a 
class ID for each inputted text mention.

Overall, span detection algorithms performed very well for all ontologies with all F1 
scores for the best algorithms above 0.81 for the core set and 0.77 for the core + exten-
sion set (see Tables 8 and 9). The lowest, PR_EXT, seems to be suffering from predicting 
extra text mentions (false positives) as in case (4) of the span detection errors men-
tioned above. For concept normalization, the exact match percentage on the class ID 
level is above 72% for the core set (except PR) and above 69% for the core + extensions 
set (except PR_EXT) (see Tables 15 and 17). In this case, both PR and PR_EXT are very 
low at 10% and 15%, respectively, at the class ID level. At the character level, the exact 
match percentage is much higher at 76% and 72%, respectively, but these are still lower 
than those for most of the other ontologies. Looking at the errors produced for PR spe-
cifically, it seems that the English text class IDs error mentioned above is at play for PR_
EXT especially, as well as the fact that PR has longer numeric class IDs to begin with, 
and it has many acronyms and other synonyms compared to other ontologies. As for 
the interaction of the two tasks, the best F1 scores of the full system were all above 0.69 
for the core set and above 0.74 for the core + extensions set, except again for PR and 
PR_EXT, respectively (see Tables 5 and 6). It seems that the very poor results of concept 
normalization for PR and PR_EXT are to blame for these poor full-system results, for 
which many of the spans are detected correctly, but normalized incorrectly. Thus, there 
is still room to improve concept recognition for all core and extension ontologies, espe-
cially for PR and PR_EXT, and future work can directly compare to this work using the 
CRAFT Shared Task as their framework with the built-in evaluation platform [51, 52].

The goal of this work is not only state-of-the-art performance but also efficient use 
of resources. If the level of resources needed to train, tune, test, or use these models is 
outrageously high, then it would not be feasible to extend beyond the ontologies here or 
use these models for much larger collections of texts such as all of the publications cata-
logued in PubMed. Thus, some models are less useful than others due to their resource 
consumption for tuning and training (see Table 7), even if they perform better. Recent 
research quantified the exorbitant financial and environmental cost to deep learning 
algorithms for natural language processing [75]. They suggest that since researchers 
have unequal access to computational resources, they should report their training time 
and hyperparameter sensitivity, perform a cost-benefit analysis (the benefit in terms of 
accuracy), and they should prioritize computationally efficient hardware and algorithms. 
They also acknowledge that ideally researchers should have equal access to computa-
tional resources. For this work, having access to a GPU greatly sped up tuning and train-
ing times, which is in line with other research findings [74]. Compared to the BioBERT 
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runs in UZH@CRAFT-ST [4], the CRF, run on a CPU, and BioBERT, on a GPU, were the 
most efficient algorithms because the CRF remains on the sentence level and BioBERT 
fine-tunes a pre-trained language model (not taking into account the pre-training), 
respectively. If one does not have access to a GPU, or has a large dataset, the CRF would 
be most efficient for very similar performance, especially for GP_BP, GO_MF, MOP, 
NCBITaxon, SO, GO_BP_EXT, MOP_EXT, and NCBITaxon_EXT, where the CRF either 
outperformed BioBERT or remained the same for span detection (see Tables 8 and 9). 
In terms of state-of-the-art language models, if one has a small dataset or access to a 
GPU, then BioBERT is preferred over the other language model, ELMo. ELMo requires 
the most resources and a GPU, and thus may not be practical for this task, as the simple 
model parameters could not even be tested. This is in line with previous research com-
paring BioBERT and ELMo [45]. Along with ELMo, the BiLSTM may not be practical 
for this task, as it requires a large amount of resources to tune (see Table 13). However a 
promising avenue for reducing BiLSTM resources is to reuse (or at least start from) the 
simple model parameters for more complex models to yield sometimes only very slight 
drops or even increases in performance. For concept normalization, OpenNMT also 
uses a large amount of resources (CPU threads, memory, and time), and other machine 
translation algorithms should be explored in the future with respect to resources and 
performance.

As mentioned above, for span detection, BioBERT performs best, followed closely by 
the CRF for both the core and core + extensions sets. All algorithms that included a 
BiLSTM performed worse on this task. However at least one BiLSTM-included model 
performed well (within 0.2 of the best-performing model) for all ontologies except 
GO_CC and PR (see Table  8). There is always room to tune the BiLSTM parameters 
more, as BiLSTMs are difficult to effectively tune [63]. These results for BiLSTMs are 
in line with previous methods, which found that BiLSTMs combined with other algo-
rithms performed well on span detection [13, 30–32, 34, 35, 38, 40]. Thus, future work 
can explore the parameter reusage more, tune the algorithms more, and separately tune 
the BiLSTM-ELMo component.

All algorithms can also detect discontinuous concept mentions, one of the most dif-
ficult types of concept mentions to detect, for at least one ontology. A recent review on 
recognizing complex entity mentions, including discontinuous mentions, found that the 
problem is complex and not yet solved [16, 17]. We offer a new simple approach looking 
at the words between the discontinuous spans of the mentions, recognizing that they are 
greater in number compared to the words in the discontinuous spans providing more 
training data. In the evaluation documents, we were able to detect some discontinuous 
spans, even if only a few, for all ontologies, except for ChEBI, which contains the fewest 
discontinuous spans (see Tables 10 and 11). As reviewed by Dai [17], more system devel-
opment as well as curation of more examples of these complex mentions is necessary to 
improve performance.

In general, regarding concept normalization as sequence translation performed 
well on all ontologies except for PR and PR_EXT as discussed earlier (see Tables 15 
and 17). There are several advantages to this translation approach. The primary one 
is that, for the classes of the Open Biomedical Ontologies used in CRAFT and in 
this work, the output to be predicted is a relatively short string of characters. This 
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task is no longer a massive multi-classification problem with a choice among thou-
sands of different classes. Treating the inputs as sequences of characters, rather than 
sequences of words, also addresses the problem of unknown or out-of-vocabulary text 
mentions, as the model can learn sub-word patterns, covering potential text mentions 
in the evaluation set that are unseen in the training set, whose fragments (charac-
ter n-grams) may appear in the training process [76] (see Table 2 for the number of 
new text mentions). However, poor performance in general most likely stems from 
the added ontology concepts from the OBOs not seen in the CRAFT annotations (see 
Table  1 for column additional OBO concepts), which greatly increased the number 
of concepts (especially for NCBITaxon and PR). It is a bit more complex though, as 
performance for NCBITaxon is fine, whereas it is not for PR. For NCBITaxon this 
is the case because CRAFT mainly focuses on the laboratory mouse in biomedical 
studies; thus, the taxon for mice (in addition to that for humans) is overrepresented 
in this collection, leading to the good results for the token-ids approach (in which 
annotation frequency is taken into account) and the very bad results for the type-ids 
approach (in which there is only one mapping for each unique class). This suggests 
that for large ontologies the type-ids approach is not feasible, unless there are added 
training data for the most represented concepts in the corpus to boost the perfor-
mance. For NCBITaxon specifically, this may mean that its model cannot general-
ize to articles not focused on laboratory mouse studies. On the other hand, for PR 
there is no one overrepresented protein as is the case for NCBITaxon, and so the large 
amount of additional OBO concepts is most likely confusing the model, and it seems 
that the more annotation classes there are, the harder it is to train the model success-
fully. Note that ChEBI and GO_BP are the next largest ontologies, but their perfor-
mance with the type-ids approach does not suffer as much as for PR and NCBITaxon, 
so adding the labels of their unseen ontology classes may help with generalizability. A 
further exploration of the performance with different quantities and sets of labels of 
additional ontology classes not used in CRAFT, such as concepts in other biomedical 
corpora, may help determine a better training data set for concept normalization for 
some ontologies especially.

Combining span detection and concept normalization for the full run, our perfor-
mance is near or slightly above the state of the art. One explanation is that the full evalu-
ation pipeline gives partial credit to predicted IDs of ontology classes that have some 
semantic overlap with the correct annotation classes (e.g., the aforementioned exam-
ple involving ChEBI:‘monoatomic ion’ and ChEBI:‘monoatomic cation’). This may also 
be due to the duplicate annotations in the training data for the token-ids approach, 
for which we included all annotations from CRAFT. However, it is interesting to note 
that the performances of the type-ids experiments are always the same or lower than 
those for the corresponding token-id experiments, except for MOP, which is higher (see 
Table 21). The duplicates in the token-ids approach may bias the algorithm to recognize 
more frequent concepts in CRAFT. On the other hand, a number of non-existent class 
IDs are predicted for almost all ontologies except CL, with more in the core + exten-
sions set compared to the core set (see Tables 19 and 20). A further exploration of both 
these predicted non-existent class IDs and the absence of them for CL may help explain 
how OpenNMT translates concept mentions to class IDs.
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Our results show that the unique ontology class identifiers contain some semantic 
content or structure (see Tables 21 and 22), which probably give rise to the predicted 
non-existent class IDs in the full run. This is contrary to the OBO Foundry recommen-
dation of ontology class identifiers not having semantic content [73]. There exists obvi-
ous semantic content in the IDs of the very small number of proper OBO classes (e.g., 
NCBITaxon:phylum, representing taxonomic phyla) and the many CRAFT extension 
classes of the OBOs (e.g., ChEBI_EXT:calcium, representing elemental calcium and cal-
cium ions) that contain English words. Semantic content may also arise due to a cura-
tion process that produces groups of closely related classes with sequentially adjacent 
identifiers, e.g., PR:000004803 and PR:000004804, representing the BRCA1 and BRCA2 
proteins, respectively. It appears that OpenNMT creates a fuzzy dictionary matching, 
where generally the mappings are unique with some wiggle room when necessary. By 
shuffling or randomly assigning class IDs, we can see where this fuzzy dictionary breaks 
the structure at both the class ID and character levels. It appears that OpenNMT is find-
ing patterns between mentions of concepts with consecutively numbered class IDs, such 
as those for BRCA1 and BRCA2. In fact, many of the mistaken class IDs are only a few 
characters off from the correct ones (see Tables 15 and 17 for results at the character 
level). This therefore provides an opportunity for applying post-processing techniques 
to the predicted class IDs to fix the mistaken characters, similar to the work of Boguslav 
et al. [25]. From another perspective, we attempted to boost performance by adding in 
more structure to the class IDs during the execution of the task, as in the alphabeti-
cal-ids experiment. The alphabetical-ids approach did not outperform the token-ids 
approach, and the performance is most likely dependent on how alphabetical the con-
cepts in each ontology are. For example, the concepts “HaC" (CL:0000855) and “hae-
matopoietic cell" (CL:0000988) have quite different class IDs but are very close in the 
alphabetization of the CL classes. Furthermore, stemming and lemmatization may also 
help boost performance. Thus, a hash or mapping from the current ontology class IDs 
to the alphabetical IDs with some stemming and lemmatization, along with some post-
processing techniques at the character level, may help boost the performance at the class 
ID level. Both of these avenues warrant further investigation.

The main limitations of this work were due to limited data and resources. As for 
representations of the inputs, for span detection the BIO(−) tags proposed here prop-
erly capture neither overlapping spans nor many discontinuous spans, thus meriting 
future work, and for concept normalization we chose not to change any of the class 
IDs even though they all had varying lengths within and between ontologies (particu-
larly for the extension classes, whose IDs included much more English text and were 
longer). Exploring different representations, including different ways to map the text 
class IDs to number identifiers, may improve performance. In terms of the algorithms 
themselves, future work should include an exploration of the amount of data needed 
to train and develop these algorithms for this task. In general it is possible to tune 
all algorithms more fully, including tuning the learning rate, for which the default 
or suggested rate was used for all algorithms. In particular, the BiLSTMs were most 
likely not tuned fully and should be tuned additionally in future work, including using 
early stopping for determining a more precise number of epochs. Furthermore, the 
assumption that the two best-performing algorithms on the core annotations set for 
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span detection would perform well on the core + extensions set may be false. Thus, 
future work should focus on the core + extensions set more for span detection, start-
ing with the BiLSTMs. For concept normalization methods, we only explored one 
machine translation model, OpenNMT, providing preliminary evidence that refram-
ing this problem as translation is a salient avenue to explore in future work on con-
cept recognition. Further exploration of other algorithms for machine translation may 
prove fruitful. Lastly, the unseen text mentions in the evaluation set hint at the gen-
eralizability of the concept normalization method, but the generalizability of both the 
span detection methods and the full end-to-end system to other biomedical corpora 
is unknown. It is unclear how to add synthetic data for span detection, but we did 
make sure to add all the class identifiers from the OBOs not seen in the training data 
for the concept normalization task. Future work should test the generalizability of 
both the span detection models and the full end-to-end system.

Conclusions
In conclusion, machine translation is a promising avenue for concept recognition that 
sidesteps the traditional multi-class classification problem. We can achieve state-of-the-
art results on the concept annotation task of the 2019 CRAFT Shared Task with a direct 
comparison to previous results. Given the amount of work that goes into shared tasks, 
shared task resources should be reused if possible. Furthermore, in general resources 
need to be taken into consideration for concept recognition and NLP at large. Future 
work should focus on the core + extensions annotations set more for span detection. 
Also, for concept normalization, further exploration of other algorithms for machine 
translation may prove fruitful. As the generalizability of this system is unknown, future 
work should test the generalizability of the full end-to-end system.
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