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Abstract
Background: For optimization of microfluidic devices for the analysis of blood samples, it is useful to simulate
blood cells as elastic objects in flow of blood plasma. In such numerical models, we primarily need to take into
consideration the movement and behavior of the dominant component of the blood, the red blood cells. This can be
done quite precisely in small channels and within a short timeframe. However, larger volumes or timescales require
different approaches. Instead of simplifying the simulation, we use a neural network to predict the movement of the
red blood cells.
Results: The neural network uses data from the numerical simulation for learning, however, the simulation needs
only be run once. Alternatively, the data could come from video processing of a recording of a biological experiment.
Afterwards, the network is able to predict the movement of the red blood cells because it is a system of bases that
gives an approximate cell velocity at each point of the simulation channel as a linear combination of bases.
In a simple box geometry, the neural network gives results comparable to predictions using fluid streamlines,
however in a channel with obstacles forming slits, the neural network is about five times more accurate.
The network can also be used as a discriminator between different situations. We observe about two-fold increase in
mean relative error when a network trained on one geometry is used to predict trajectories in a modified geometry.
Even larger increase was observed when it was used to predict trajectories of cells with different elastic properties.
Conclusions: While for uncomplicated box channels there is no advantage in using a system of bases instead of a
simple prediction using fluid streamlines, in a more complicated geometry, the neural network is significantly more
accurate. Another application of this system of bases is using it as a comparison tool for different modeled situations.
This has a significant future potential when applied to processing data from videos of microfluidic flows.
Keywords: Red blood cell, Simulation of fluid, Cell trajectories, Microfluidic device, Neural network

Background
There are currently many open problems in the research
of microfluidic devices used for analysis of specific prop-
erties of blood samples. Our primary motivation is devel-
opment and optimization of devices used for efficient
circulating tumor cell (CTC) capture, such as described in
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[1, 2], which can be used for early diagnostics and manage-
ment of treatment of cancer. The analysis of blood sample
properties is just a subset of this overall goal, but neverthe-
less poses several important questions, such as accurate
determination of cell velocities or deformations.

The design, manufacture and testing of a large spec-
trum of microfluidic devices faces time, technical and
financial limits. One of the reasons is that the behav-
ior and dynamics of blood cells in various settings is
diverse and complex and to gain quantitative under-
standing one often needs modeling and simulations of
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the underlying elasto-mechanical processes. Firstly, the
analysis of deformations is a nontrivial problem [3, 4],
which cannot be avoided, since the red blood cells
(RBCs), the main solid constituent of blood, are primar-
ily characterized by their elasticity. And secondly, various
aspects of their dynamics in flow [5–7] also need to be
examined.

An inseparable part of the computational approach is an
ongoing verification and validation of the models primar-
ily by comparing simulation and biological experiments,
such as in [8–10].

In this work, we methodologically generalize this
approach. We process and analyze the results of blood
flow simulation experiments using machine learning tech-
niques. While such techniques have already been success-
fully used for detection of red blood cells in images from
experiments [11] or for classification of various shapes
and states of red blood cells [12, 13], we propose a new
direction. We focus on the accurate description of behav-
ior of the fluidic part, the blood plasma, and the immersed
elastic RBCs.

We can consider each performed simulation or bio-
logical experiment as a source of information capable
of describing the general properties of the investigated
device and its behavior, which we are going to analyze,
compare and optimize. The output from both types of
experiments is in the form of a data set that describes
the behavior of the RBCs in the device. The behavior is
characterized primarily by cell positions, i.e. trajectories,
velocities and more generally by cell rotations, inclinations
and areas of occurrence [14].

To obtain this kind of data it is necessary to either
perform computationally very intensive simulations or
non-trivial and technically complicated video processing
of usually imperfect recordings of biological experiments
that capture the movement of (mostly) red cells. Therefore
the goal of this work is to propose a method that extrap-
olates from this hard-earned description of behavior of
specific cells monitored in the experiment. The result is
a general and universal description of cell behavior and
important properties in the whole channel, including in
locations where there were no cells in that particular
experiment.

We apply radial basis functions [15, 16] and Kohonen
networks [17, 18] that are useful in identification and
modeling of non-linear dynamical systems. The output
is a universal system of bases of positions and veloci-
ties, which allows us to characterize the modeled situation
and predict the RBC dynamics. The data source we used
was from simulations of flow in a box channel without
obstacles and in a channel similar to the one described
in [19]. We compared the results to baseline predic-
tions obtained by using tracers (mass points) and fluid
streamlines.

Methods
Blood flow simulation model
Blood flow simulations at the scale of individual cells typ-
ically involve two distinct model parts - the fluid and the
cell membrane. These two are coupled and exert influ-
ence on one another in the form of forces. Our model uses
the lattice-Boltzmann method [20] for the fluid, the spring
network model for the cell membrane and a dissipative
version of Immersed Boundary Method (DC-IBM) for the
coupling.

There are also several particle-based models available
(DPD [21], SPH [22]), in which the particles are used to
represent not only the elastic membrane, but also the fluid
outside and inside of the cell. Another option is to use the
Stokes equation with boundary integral methods, which
is suitable for investigation of small numbers of cells [6].
However, the lattice-Boltzmann method is often a method
of choice for the fluid due to its simplicity and locality,
which makes it suitable for parallelization.

In the models that use the lattice-Boltzmann method
for the fluid, the IBM is typically used to couple the fluid
to the membrane, e.g. in [23]. Unlike these, our coupling
is done via a dissipative exchange of forces at the cell
membrane nodes:

Fjf = ξ(v − u), (1)

where Fjf is the sum of all fluid forces acting on the node j.
The force is proportional to the difference of the velocity
v of the node (immersed boundary point - IBP) and the
fluid velocity u at the same position. For the motion of the
nodes we use Newton’s equation:

mIBPx′′
j = Fj + Fext , (2)

where xj is the position of the given node and mIBP is its
mass. Note that Fj = Fjf +Fje, where Fje is the composition
of all elastic forces acting on node j and Fjf is calculated
using Eq. (1). The force Fext represents the sum of all
external forces including those arising from the cell-cell
and cell-wall interactions.

For the modeling of elastic properties of cell membrane
we use five types of elastic forces. Each one corresponds to
one elastic modulus: stretching (preservation of length),
bending (preservation of angles between neighboring tri-
angles), conservation of local area, conservation of global
area and conservation of volume. A schematic represen-
tation of the model is depicted in Fig. 1. The description
of implementation can be found in [24] and the current
documentation with up-to-date model at [25].

In this simulation model, the following needs to be
evaluated at each time step:
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Fig. 1 A schematic illustration of the channel with cells. The color represents the fluid velocity (blue for slower and red for faster). Each individual cell
is modeled by a spring network of immersed boundary points bound by elastic interactions

• Local elastic interactions - If there are n nodes (IBPs)
representing the cell surface, this means
approximately 3n evaluations of three local
interactions for this cell: stretching, bending and local
area.

• Global elastic interactions - This amounts to a loop
over all n nodes to calculate the global surface and
volume and then another loop over nodes to apply
the global forces to all of them.

• Cell-wall interactions - A cell-wall interaction is
evaluated for each node that is closer than a
predefined cutoff distance to any boundary.

• Cell-cell interactions - A cell-cell interaction is
evaluated for each pair of nodes belonging to different
cells that are closer than a predefined cutoff distance.

• Cell-fluid interactions - The forces in Eq. (1) are
evaluated for all nodes. This involves a trilinear
interpolation of fluid velocity from lattice nodes to
IBP position.

• Movement of IBPs - For all nodes, the differential
equations (2) are solved using the velocity Verlet
scheme.

• Fluid flow - Multiple-relaxation version of
lattice-Boltzmann method is used for propagation
and collisions of the density populations in a 3D
cubic lattice.

Simulation setup and parameters
All simulation experiments were performed using the
freely-available open-source software ESPREesSo [26]

and its LB and Object-in-fluid modules. The
surface mesh of red blood cell was generated in
Gmsh [27].

We performed two types of simulations for this work.
In both of them, the cell was represented by a triangu-
lated mesh with 141 vertices. The numerical parameters
of the cell are summarized in Table 1 and the mechanical
properties of the fluid are summarized in Table 2.

There are no predefined units in ESPResSo. For our sim-
ulations, we chose a system denoted as an LB-unit system.
Values of all variables are indicated in both LB and SI
units.

The cell-cell interaction was modelled using the
membrane_collision potential with the parameters
mc_K = 0.005, mc_n = 2.0, mc_cut = 0.5. The inter-
actions between the cells and the walls and obsta-
cles were modelled using the soft_sphere potential
with the parameters soft_K = 0.00035, soft_n = 1.0,
soft_cut = 0.5. During the simulation, the position vec-
tor of the cell center and the velocity vector of the cell
center calculated from positions were saved every 1000
steps, with the simulation step being 0.1 μs. Even though
the simulation channels were constructed with periodic
boundary conditions in the x-direction, the output data
were processed in order to consider the simulation chan-
nel only once and multiple passages of a single cell through
the channel were regarded as separate trajectories of dif-
ferent cells.

The two different types of channels, which were used,
are labeled A and B.
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Table 1 Numerical parameters of the cell used in simulations

Parameter LB units SI units

Stretching coefficient ks 7 · 10−3 LN/Lm 7 · 10−6 N/m

Bending coefficient kb 2.5 · 10−4 LNLm 2.5 · 10−19 Nm

Coefficient of local area conservation kal 1 · 10−3 LN/Lm 1 · 10−6 N/m

Coefficient of global area conservation kag 0.9 LN/Lm 9 · 10−4 N/m

Coefficient of volume conservation kv 0.5 LN/Lm2 5 · 102 N/m2

Viscosity of cell membrane kvisc 0 Lm2/Ls 0 m2/s

Channel A
The biological experiments described in [19] investigate
red blood cell deformability using a flat microfluidic chan-
nel with slits of different width. The deformability was
assessed by observing cell velocities in different parts of
the channel. This enables easier evaluation of cells’ elastic-
ity that has diagnostic use. In order to achieve single-cell
precision, the blood was diluted with saline solution in the
1:50 ratio, which represented hematocrit Ht< 1%.

Our simulation was run in a periodic channel inspired
by these experiments. The channel contained obstacles
forming four slits and we used a random initial seeding of
50 cells (Ht=20%). The higher hematocrit was chosen in
order to include the cell-cell interactions. The simulation
was run twice, each time with a different initial seeding,
in order to provide a training and a testing dataset for the
neural network.

The simulation channel is presented in Fig. 2. The
dimensions of the channel were 126.0 × 44.0 × 3.5 μm3

and the fluid that carried the cells was flowing in the x-
direction. This geometry was inspired by the laboratory
experiment with RBCs described in [19].

The model of cells used for the simulation is presented
in Fig. 3. The dimensions of each cell were 7.0 × 7.0 × 2.3
μm3.

The movement of the fluid in the simulation is caused
by an external fluid force, which defines the velocity of
the flow inside the channel. These values are presented in
Table 3.

For the cross-validation of the proposed method, two
other simulations were run under slightly different condi-
tions. The properties of the liquid were not modified and
both simulations were run with 50 randomly seeded cells.

The first simulation had a different geometry of the
simulation channel. The original channel contained three
obstacles, forming four slits. In the modified channel,
the middle obstacle was omitted and so there were only
three slits, Fig. 4. This corresponds to slightly larger fluid
volume and thus slightly lower Ht=19%.

The second simulation had the same geometry and
hematocrit as the original channel but the elastic prop-
erties of the RBCs were different. The original values of
the stretching and the bending elastic coefficients were
multiplied by 100 and the original value of the local area
conservation coefficient was multiplied by 10. These mod-
ifications resulted in significantly stiffer cells. The global
area conservation coefficient and the volume conserva-
tion coefficient were unchanged.

Channel B
The simulation channel B had a box shape with four walls,
which were parallel to the main direction of the flow. The
fluid was flowing in the x-direction. The dimensions of
this simulation box were 100 × 40 × 40 μm3. There were
no obstacles inside the channel. A precise description of
the channel is presented in Fig. 5.

The dimensions of each cell were 7.8 × 7.8 × 2.6 μm3.
The external fluid force and the corresponding fluid veloc-
ity are presented in Table 4. Note that the fluid in this
simulation was flowing significantly faster than in channel
A.

For the purpose of this study, we simulated a flow
with 177 cells representing approximately 10% hemat-
ocrit. These settings were chosen, because channel B is
meant as a baseline simulation, with no obstacles, uniform
velocity and infrequent cell-cell interactions. Similarly to

Table 2 Numerical parameters of fluid used in simulations

Parameter LB units SI units

LB-grid for fluid 1 Lm 1 · 10−6 m

Kinematic viscosity 1.5 Lm2/Ls 1.5 · 10−6 m2/s

Density 1 Lkg/Lm3 1 · 103 kg/m3

Friction coefficient 3.63 [ −] 3.63 [ −]
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Fig. 2 The geometry and dimensions of the simulation channel A. The depth of the channel is 3.5μm

the first channel, the simulation was run twice, with two
different initial seedings, in order to provide a training and
a testing dataset for the neural network.

In the following, we describe the results obtained by
analyzing and comparing several simulations. Table 5 lists
their notation and basic parameters. The initial seeding of
cells was random and unique for every simulation.

Machine learning algorithms
In this section, we describe a method that we used to cre-
ate a system of bases of velocities in specific channels.
Using this system, we can then predict the cell velocities
and consequently, the cell movement. We obtain the sys-
tem of bases using a neural network with unsupervised
learning inspired by the radial basis function network and
self-organized Kohonen maps.

The system of bases obtained this way characterizes the
microfluidic channel and can also be used for compari-
son. Two different seedings using the same model and the
same channel resemble one another more than two dif-
ferent channels or two different cell models. Another use

case, the one we focus on in this work, is the prediction of
cell trajectories using the velocities obtained from linear
combination of bases.

Overview
One of the areas for which the neural networks are very
suitable is the approximation of functions. The concept
of approximation as a linear combination of special non-
linear functions is known, for example, from the field
of signal processing, where the basis functions are the
Shannon function and its shifts in time [28].

For radial basis function networks, non-linear functions
with the property that they depend only on the size of
the input vector x, or possibly on its distance from a cer-
tain fixed center c, are used as basis functions. A Gauss
function is a typical example of a radial basis function:

ϕ (x, c) = e
−

(
α·

√
N∑

k=1
(xk−ck)2

)2

. (3)

Fig. 3 Numerical model of the RBC uses surface discretisation
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Table 3 Fluid velocity parameters, channel A

Parameter LB units SI units

External fluid force 6 · 10−4 LN 6 · 10−13 N

Maximal fluid velocity 5.7 · 10−4 Lm/Ls 5.7 · 10−4 m/s

The necessary decomposition coefficients can be found
using a neural network.

A self-organizing map (SOM), introduced by Kohonen
[17, 18], uses not only weights for the individual neurons,
but also considers their geometric location using a neigh-
borhood function. During the learning phase, the weights
of SOM reflect the statistical properties of the values of
input vectors from the training set.

A specific property of SOM is that it can use the topol-
ogy and display the characteristic features of the training
data set as they relate to the data position. This is the
reason why the SOM neurons are organized in a regu-
lar structure (lattice or list). The output is geometrically
sorted and thus it is possible to find a neighbor.

Consequently, an assumption for learning is that the
neighboring neurons have similar values and more distant
neurons have more different values. One can take advan-
tage of this by using the Euclidian distance and setting the
value 1 (representing the radius of the important neigh-
borhood) properly. After squaring, values smaller than 1
decrease and values larger than 1 increase. This way one
can influence, which values have more and which less
weight in the learning process when creating the system
of bases.

The learning process of the system of bases
Compared to the videos from biological experiments,
using data from simulations for the learning process has
the advantage that we can include many more details of
the cell dynamics. Image processing of videos of cell flows
typically results in bounding boxes or approximate 2D
cell shapes, their centers and velocities. In cell-scale sim-
ulations, in addition to these characteristics, we can also

observe the full 3D shape, cell rotations, local velocities
at different parts of the membrane and more. From this
perspective, it is more suitable to examine the quality of
machine learning predictions by training and testing them
on various simulation data. Once they work satisfactorily,
they can be applied to data extracted from images.

For this work, we used the two training sets (one for
each considered channel, A and B) as the input for the
learning algorithm, which contained information about
the cell center positions and velocities in simulation exper-
iments. In simulation A50a center position and veloc-
ity information about 50 randomly seeded cells were
recorded 15 430 times (every 1 000 simulation steps). This
comprises 771 500 data vectors for the training set. In
simulation B177e, we recorded the center trajectories and
velocity vectors for 177 randomly seeded RBCs cells 2 269
times (every 1 000 simulation steps). This means 401 613
data vectors as a training set.

We obtained the system of bases by unsupervised neu-
ral network learning inspired by the previously mentioned
radial basis function network and self-organizing Koho-
nen maps. We used N = 256, N = 1 024, N = 4 056 and
N = 8 112 basis vectors in the neural networks. In the
following, we present the results of the analysis using the
N = 8 112 basis vectors.

To initialize the system of bases B, we used the out-
put of simulation experiments. Firstly, we selected the
initial system B0 that consists of six-component vectors
B0

i (a, b) for i ∈ {1, 2, . . . N}, which represent positions
B0

i (a) and corresponding velocities B0
i (b). Typically, this

selection is random, taking the input vectors (x, y) of
positions and velocities from the training set. The ben-
efit of this approach is that fewer time steps and fewer
vectors in the system of bases are needed for the neu-
ral network training compared to completely random
initialisation.

The initialized system of basis vectors B0 was then iter-
ated using input vectors (x, y) randomly selected from the
training set. For the training, we have chosen the following

Fig. 4 In the modified channel A, the middle obstacle was removed. The depth of the channel remains 3.5μm
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Fig. 5 The geometry and dimensions of the simulation channel B

radial function as the similarity function for comparing
the basis Bi(a) to the position x from the training set:

si(x) = e−k ·||x−Bi(a)||22 , (4)

where k > 0 is a shape constant, which determines how
steep the basis is. We used the value k = 10 for simula-
tions in channel A and k = 1 for simulations in channel
B. Note that the values of the similarity function si(x) are
from the interval (0, 1〉.

The approach to training of the basis vectors is adopted
from the Kohonen networks concepts. For an input vec-
tor (x, y) we found the closest basis, Bmax, which is the
one with the largest value si. We then adjusted the posi-
tion of Bmax in the next step. The iterated basis position
was determined using the following formula:

Bn+1
max(a) = Bn

max(a) + η(x − Bn
max(a)), (5)

where η is the learning rate. We used the value η = 0.1.
For all other basis vectors Both we had

Bn+1
oth (a) = Bn

oth(a). (6)

The advantage of this approach over the back-
propagation algorithm is that it needs a smaller dataset
and shorter learning time.

For the next calculations, we normalized the values of
the similarity function si(x) so that their sum s(x) = 1:

s′i(x) = si(x)

N∑
i=1

si(x)

. (7)

Table 4 Fluid velocity parameters, channel B

Parameter LB units SI units

External fluid force 1 · 10−4 LN 1 · 10−13 N

Maximal fluid velocity 7.6 · 10−3 Lm/Ls 7.6 · 10−3 m/s

The predicted velocity at position x is then a linear
combination of Bn

i (b) with coefficients s′i(x):

y′(x) =
N∑

i=1
s′i(x) · Bn

i (b). (8)

To determine the velocities in the system of bases, i.e.
to determine the components Bi(b), we used the stochas-
tic gradient descent method to get a system of bases
B = {Bi(a, b), i = 1...N}, which minimizes the error
E = y−y′(x). For calculation of the iterated velocity values
Bn+1

i (b), we used the formula:

Bn+1
i (b) = Bn

i (b) + η

(
y −

N∑
i=1

s′i(x) · Bn
i (b)

)
· s′i(x).

(9)

Due to the small depth of the network, the learning time
was very short and we did not need a large dataset. The
network weights were fully trained (with respect to η and
the size of the data set) after five training epochs. The
number of iterations was 4·106 for channel A and 6·106 for
channel B. In each iteration, a random sample was selected
from the data set and the network weights were adjusted.
Using an i7-7700k processor, the training took about 10
minutes.

Table 5 Notation used for simulations with respect to geometry,
number of cells and seeding

Simulation ID Channel Description Seeding No. of cells Dataset

A50a A normal a 50 training

A50b A normal b 50 testing

A50c A stiff RBC c 50 testing

A50d A new geometry d 50 testing

B177e B no obstacles e 177 training

B177f B no obstacles f 177 testing
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Prediction of velocities using the system of bases
Once the neural network was trained, we got a system of
basis vectors Bi(a, b). This system can be used for predic-
tion of velocities of RBCs at positions x using the formula

y(x) =
N∑

i=1
s′i(x) · Bi(b), (10)

which is analogous to Eq. (8) that was used for iterations
of velocity components in the system of bases.

Results
To validate the system of bases generated for the two
channels, we used several methods that correspond to
some of the expected use cases regarding the RBC veloc-
ity predictions. In the following, we describe some of the
validation approaches and measurement of the predic-
tion accuracy of system of bases trained using the training
dataset when applied to the testing dataset.

Cross validation simulations
We run different simulations for the channel A. In addi-
tion to the original simulation A50a, we also performed
a simulation with stiffer RBCs (A50c) and a simulation
with modified channel topology (A50d). We then used the
A50a simulation as the training set and the A50c and A50d
simulations as the testing datasets. We expected worse
prediction results for both of these cases.

More specifically, we removed the central obstacle in
simulation A50d. We then observed the effect of faster
flow of cells that do not slow down due to the contact with
obstacle. Also, the cells passing this part of the channel
now do not need to deform to pass through the missing
4.7 and 5.8 μm slits but can travel through an essentially
free 15.8 μm corridor instead.

In the simulation A50c, we examined even more dra-
matic changes. Artificially stiff RBCs can only pass the 5.8
μm slit between obstacles and even this they do signifi-
cantly more slowly. They cannot deform to pass the two
narrower slits and thus they block them and accumulate
around the entries.

Local velocity prediction error
For the evaluation of accuracy of velocity prediction, we
used the RBC testing data in the format (x, y), where x rep-
resents the position of the center and y its velocity vector.
We neglected their mutual relations, i.e. the fact that the
cells are following trajectories, and considered each data
vector as a purely local information about the velocity of
the RBC center at the given location. We calculated the
predicted velocity vector yp for position x using Eq. (10).
We then evaluated how close this calculated prediction yp
is to the corresponding velocity y.

In order to do that, we measured the difference of
the velocities as a percentage of the deviation from the
expected value of the velocity y. For each data vector
(x, y) we obtained a dimensionless relative error REi =
||y−yp||2

||y||2 · 100[ %]. The number of the testing vectors (x, y)

for individual tests are listed in Table 6 together with the
respective mean relative error (MRE).

In Table 6, we also report similar results calculated after
leaving out 0.1%, 1%, 10% or 50% of the data with the
largest difference ||y − yp||. These data can be consid-
ered as a specific form of outliers where the value of y
is influenced by the numerical fluctuations caused by the
short-term oscillations of the numerical model of the sur-
face of the RBC when passing through the critical points
of the channel.

The first two columns of Table 6 document the MRE for
the original training and testing datasets in both channels.
As expected, we observe smaller errors for the simpler and
more predictable channel B.

In the validation columns, we observe the expected
increase in errors. For the simulation A50d, we see
approximately doubling of the error of velocity predic-
tion. In the case of simulation A50c with the stiff cells and
two blocked slits, the increase in the error is significantly
larger. Interestingly, the error value for top half of the cells,
those which travel through the wide part of the channel,
confirms that this part of flow is still similar to the baseline
simulation and the stiff cells pass it in an almost identical
manner.

Global trajectory prediction error
In order to measure the precision of the neural network
velocity prediction, we also consider the whole trajectories
of the individual RBCs in the simulation experiment. We
compare these simulated (required) trajectories with the
predicted trajectories that start from the same positions.
The predicted trajectories are obtained by numerical inte-
gration of cell motion using the predicted velocities.
Therefore for each cell i, its initial position, xi

0, is identical
with the initial position of the cell in the simulation and its
further motion is determined by the formula

xi
n+1 = xi

n + y(xi
n) · dt, (11)

Table 6 The dimensionless MRE (in %) for velocity predictions

Training set A50a B177e A50a A50a

Testing set A50b B177f A50d A50c

No. of compared velocities 309816 473154 706794 704769

MRE 11.9 8.9 21.0 468.5

MRE for top 99.9% of results 11.8 8.9 20.8 442.1

MRE for top 99% of results 11.3 8.6 20.2 352.5

MRE for top 90% of results 9.8 6.9 17.6 52.1

MRE for top 50% of results 6.1 3.2 10.1 6.6
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Fig. 6 Simulated (required) and predicted trajectories for a selection of 20 RBCs in channel A. The simulated trajectories (red) are taken from the
simulation A50b, the predicted trajectories (blue) are calculated using the system of bases trained on the simulation A50a

where y(xi
n) is the velocity, calculated using Eq. (10), and

with respect to the chosen unit system, the value of the
dt is 1.

For each cell, the number of iterations, and thus posi-
tions generated for the predicted trajectory, matches the
number of positions recorded for the simulated trajec-
tory. This way we get a pair of corresponding trajectories,

for which we can compare the RBC center positions and
calculate their distance in μm.

Figures 6, 7 and 8 present the simulated and the
predicted trajectories for a selection of 20 RBCs in
the channel A for the original setup and for the
two modifications (different geometry, different cell
stiffness).

Fig. 7 Simulated (required) and predicted trajectories for a selection of 20 RBCs in a modified channel A. The simulated trajectories (red) are taken
from simulation A50d (middle obstacle removed) and the predicted trajectories starting from the same positions are calculated using the system of
bases trained on the simulation A50a (channel with all obstacles). The simulated trajectories use also the space freed by the obstacle while the
predicted trajectories enter the slits of the original channel
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Fig. 8 Simulated (required) and predicted trajectories for a selection of 20 RBCs in a simulation with stiff cells (channel A). The simulated trajectories
(red) are taken from simulation A50c. As we can see, the stiff RBCs are unable to pass through the narrowest slits of the channel and block it. The
predicted trajectories were calculated using the system of bases trained on the simulation A50a, in which the regular RBCs moved fluently through
all the slits of the original channel

Figures 9, 10 and 11 present the mean, minimum
and maximum deviation (error) of the RBC center posi-
tions for each pair of trajectories in the three individual
experiments as a function of the number of iterations.
Figure 12 shows the mean, minimum and maximum devi-
ation (error) for channel B.

Comparison to predictions using fluid streamlines
A simplified modeling approach is to simulate the cell
movement as movement of tracers - points following the
fluid streamlines. While such results are less accurate
than full simulations with elastic cells, they can also be
used as predictions of cell movement. We compared the

Fig. 9 Prediction error is calculated as the distance of RBC centers for all simulated cells from A50b and centers predicted by a system of bases
trained on A50a. For the first 1000 iterations, the average error is less than 2.3μm, corresponding to about 2% of the channel length and 1/3 of the
RBC diameter. In the first 2000 iterations, the average error does not exceed 3% of the channel length and half of the RBC size. The highest average
error is at the order of the cell size
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Fig. 10 The removal of middle obstacle affects the trajectory differences. The prediction errors for the modified channel have risen approximately
two times compared to the errors in Figure 9. After the first 1000 iterations, the average error value is 166% and after the first 2000 iterations 191% of
the corresponding values in Fig. 9

predictions given by neural networks with the predictions
obtained using fluid streamlines.

The fluid information is available only in the lattice
nodes and therefore a trilinear interpolation was used
to obtain the fluid velocity at the positions of the cell
centers.

Every 1000 time steps (100 μs), a prediction

xp = xc + 100yi (12)

was made for each cell, where xp is the predicted position,
xc is the current position and yi is the interpolated cell
velocity calculated from fluid velocity.

Fig. 11 Changing the cell stiffness has a surprising effect on the trajectory differences. Due to the fact that the majority of cells in the channel
passage utilise the sufficiently wide slit on the top of the channel, the average error value is very similar to the baseline comparison of simulations
A50a and A50b. The differences in the simulations are reflected in the maximum error. Its rapid linear growth corresponds to the deviation of the
predicted trajectories from the simulated trajectories of the stuck RBCs
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Fig. 12 Prediction error calculated as the distance of RBC centers from simulation B177f and centers predicted by a system of bases trained on
B177e. The error values are large at first glance. This is due to the fact that the RBCs in channel B are moving more than 20 times faster than the cells
in the channel A. If we reduce the errors 20-fold, they reach 50–60% of the error values in Fig. 9

It is possible to calculate the error in position from
known values as ||x − xp||2, where x is the actual position
of the cell. Then we calculate the mean error ē over all cells
in the simulation A as

ē = 1
ncells

ncells∑
i=1

||xi − xi
p||2. (13)

Intuitively, this number can be interpreted as distance
(in μm), which represents a radius defining a ball around
the predicted position, where we can reasonably expect
the cell center in the next time step.

In the channel A, the fictitious cells moving along the
trajectories predicted by the fluid streamlines travel sig-
nificantly faster than the simulated cells. This is caused
by the fact that the channel is flat, only few microm-
eters high, with four fluid discretization points in the
z-direction. Due to the parabolic flow profile, the fluid
velocity in the center of the channel, which is taken for the
cell velocity when making the prediction, is higher than
the velocity 1μm above or below the center – these are the
approximate z-coordinates of the majority of cell nodes.
Consequently, the simulated cells which feel the fluid in
these IBPs are effectively carried by smaller velocities.

To approximate this effect, we calculated the predicted
cell velocity by weighing three different fluid velocities
according to the number of membrane nodes with the
given z-coordinates. We checked how many of the 141
cell membrane nodes were closer to the center than to
the positions offset by 1 (30 nodes) and weighted the
maximum velocity accordingly (by a factor 30/141). The

remaining 111 nodes were used to equally weigh the upper
and lower velocities (by a factor 55.5/141 each). These are
approximations, since the actual z-coordinate of all nodes
varies during the simulation, but they are reasonably pre-
cise on the average:

yi = 55.5yi
u + 30yi

c + 55.5yi
l

141
, (14)

where yi is the approximated cell velocity used in Eq. (12),
yi

c is the fluid velocity at the cell center [ x, y, z], yi
u is the

fluid velocity at [ x, y, z + 1] and yi
l is the fluid velocity at

[ x, y, z−1]. The weights add up to 141, which corresponds
to the 141 nodes used for discretization of the cell mem-
brane. The predicted trajectories were then calculated
using these velocities.

This method is still imperfect, with large mean error
ē = 0.009, which represents about 60% relative
error (with respect to the average distance covered by
a cell over the same time period, which was 0.015
μm) and suggests that one should look for alternative
approaches in nontrivial cases like this one. The posi-
tions calculated from velocities obtained using a sys-
tem of bases (A50a) give average error ē = 0.00183,
which represents about 12.2% relative error that is much
better.

For comparison, in the box channel B, with 177 cells
and no obstacles, the mean local prediction error using
streamlines is ē = 0.0166, which represents about 4% rel-
ative error (with respect to the average distance covered
by a cell: 0.42 μm).
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Discussion
The output of the neural network is a system of bases B.
Some of the computational time and resources saved in
the process of its creation (compared to performing exten-
sive replications and modifications of model simulations)
are then used for fast and computationally easy calcula-
tion of required information. Here we discuss the basic
possible use cases of this approach.

Local prediction
Using Eq. (10), we can calculate the predicted velocity of
the RBC center y at any position x of the microfluidic
device using the system of bases B. This prediction allows
us to determine and use the RBC velocity even at positions
where there were no blood cells in the simulation or where
we cannot obtain information from experimental data.
Consider also the important opposite situation, in which
the velocity predicted by the neural network includes and
cumulates the information about movement of multiple
cells passing through a given position and its vicinity and
thus determines the typical velocity value at this location.

The information about velocity helps to answer some
questions when examining properties of a given channel
or simulation, such as expected frequency of RBC-rare
cells collisions near obstacles used for rare cells capture
[29] or estimate of rare cell velocity when it is carried by a
stream of nearby RBCs. The cell velocity at various places
in the channel may also be important when considering
the possible cell damage [30] or serve as a proxy when
identifying cell types using narrow parts of channels [31].

Prediction of cell trajectory
The predicted velocity of RBC center at a given position
can be used for calculation of the center position (and
thus RBC position) in the next time step. In our case, we
chose to use the time step equal to the time step, in which
we obtained the RBC data (which was 1000 times coarser
than the simulation time step). It is possible though to use
a finer time step when necessary.

By repeating this calculation, it is possible to use the
neural network to create a trajectory of a fictitious cell
from an arbitrary position. Short trajectory segments can
be predicted with a good accuracy and thus be used for
tracking specific RBCs during video processing of bio-
logical experiments. It is a very useful information since
especially in higher hematocrits one often encounters cell
overlap and after the subsequent separation, the cells have
to be re-identified and broken trajectories connected.

The ability to predict cell positions at larger distances
and times can improve the efficiency and accuracy of
the tracking algorithms. The neural network for such
predictions can be trained either on a simulation exper-
iment if we can reasonably ensure its correspondence
to the biological experiment or on data from partial

video processing, where the cell movement data come
from the non-problematic time sequences of the video
recordings [32].

Generation of artificial datasets
If we increase the length of the predicted trajectory, we
get less precise predictions, but we can examine the prop-
erties of cell trajectories even in locations, where we do
not have simulation data. If needed, we can generate an
artificial RBC trajectory through the whole microfluidic
device. Consequently, by creating such trajectories for a
new seeding of sufficiently many RBCs, we can create
a replication of a simulation experiment. The computa-
tional time needed to obtain such results using the predic-
tion abilities of the system of bases is at least two orders of
magnitude shorter than the time needed to perform a new
simulation experiment. The computational times, includ-
ing the training of the system of bases for the experiments
described in this work, did not exceed few tens of minutes.

Characterization of channel and simulation
The trained system of bases can be also considered as
a certain description of global properties of a simulation
experiment or microfluidic device, in which the experi-
ment was performed. In [32] we can see several results
confirming this statement. Comparison of parameters and
properties of neural networks trained on data from both
computational and biological experiments can serve as
an efficient tool for verification of consistency of these
experiments.

Extension to other types of data
The applications mentioned so far considered a system of
bases for a position of the RBC center and its velocity.
Using a similar approach described in [14] and [33], it is
possible to obtain data about other RBC characteristics,
which describe the general cell properties, e.g. rotation
and inclination, or more specific properties, e.g. period-
icity in velocity, rate of deformation, in the individual
experiments.

Including these types of data significantly expands the
capabilities of this approach, while from the formal, math-
ematical point of view it is just a different interpretation
of a system of vectors, which serve as the input and output
of the neural networks. The proposed learning method
for the system of bases can be almost mechanically trans-
ferred to other, more specialized data.

Conclusions
Many problems are waiting for extreme-scale high per-
formance computer systems. Harnessing the power of
machine learning and starting to answer some of these
questions might prove a more accessible path. Neural
networks have already been successfully used for cell
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detection in images and for cell classification of shapes
of healthy cells, for recognizing the infected cells among
the healthy cells and in a few other problems. Our work
shows a new application that concerns the characteristics
of flow.

The system of bases can be used for predictions of cell
trajectories. This is helpful in several ways. Firstly, for
image processing, since the recordings are often imper-
fect, and trajectories constructed from detected cells are
broken into several parts due to undetected cells in
some frames (due to cell-overlap or various other rea-
sons. Predictions can be used to correctly connect the
fragmented trajectories. The predictions can also help
create new data, since after training they can success-
fully predict a trajectory of a new fictitious cell that
was not part of experiment, at arbitrary position in the
channel.

The system of bases can also be used to efficiently create
new datasets with the same characteristics as the sim-
ulated computational experiments or image-processed
biological experiments. This can be useful for further
statistical analysis.

Moreover, comparing parameters and properties of net-
works trained on data from different experiments (be
they computational or biological) can help us distinguish
between them. This can be useful for determining how
well the simulated model corresponds to the experiment,
but also to check for inconsistencies among the experi-
ments themselves.

While this work focused on position and velocity data,
it can be easily extended to other types of data and thus
be useful tool in elucidating the processes happening in
blood flow.
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24. Cimrák I, Gusenbauer M, Jančigová I. An ESPResSo implementation of
elastic objects immersed in a fluid. Comput Phys Commun. 2014;185(3):
900–7.

25. Cell-in-fluid Research Group Webpage. http://cell-in-fluid.fri.uniza.sk.
Accessed 28 Jan 2020.

26. Arnold A, Lenz O, Kesselheim S, Weeber R, Fahrenberger F, Roehm D,
Košovan P, Holm C. ESPResSo 3.1 - molecular dynamics software for
coarse–grained models. In: Griebel M, Schweitzer MA, editors. Meshfree
Methods for Partial Differential Equations VI, Lecture Notes in
Computational Science and Engineering, vol. 89; 2013. p. 1–23. https://
doi.org/10.1007/978-3-642-32979-1_1.

27. Geuzaine C, Remacle JF. Gmsh: a three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities. Int J Numer
Methods Eng. 2009;79(11):1309–31.

28. Shannon CE. A mathematical theory of communication. Bell Syst Tech J.
1948;27(4):623–66.
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