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Abstract

Background: Previous studies have suggested deep learning to be a highly effective approach for screening lead
compounds for new drugs. Several deep learning models have been developed by addressing the use of various
kinds of fingerprints and graph convolution architectures. However, these methods are either advantageous or
disadvantageous depending on whether they (1) can distinguish structural differences including chirality of
compounds, and (2) can automatically discover effective features.
Results: We developed another deep learning model for compound classification. In this method, we constructed a
distributed representation of compounds based on the SMILES notation, which linearly represents a compound
structure, and applied the SMILES-based representation to a convolutional neural network (CNN). The use of SMILES
allows us to process all types of compounds while incorporating a broad range of structure information, and
representation learning by CNN automatically acquires a low-dimensional representation of input features. In a
benchmark experiment using the TOX 21 dataset, our method outperformed conventional fingerprint methods, and
performed comparably against the winning model of the TOX 21 Challenge. Multivariate analysis confirmed that the
chemical space consisting of the features learned by SMILES-based representation learning adequately expressed a
richer feature space that enabled the accurate discrimination of compounds. Using motif detection with the learned
filters, not only important known structures (motifs) such as protein-binding sites but also structures of unknown
functional groups were detected.
Conclusions: The source code of our SMILES-based convolutional neural network software in the deep learning
framework Chainer is available at http://www.dna.bio.keio.ac.jp/smiles/, and the dataset used for performance
evaluation in this work is available at the same URL.
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Background
In recent years, not only in vivo and in vitro but also
in silico analysis, especially machine learning, which can
predict chemical properties, has become increasingly
important for chemical analysis. For example, predicting
compound-protein interaction facilitates the screening of
new lead compounds for drug discovery.
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In the case of in silico analysis, several digital file formats
are defined to enable computers to read chemical com-
pounds. Among these formats, MOL, SDF, Fingerprints,
and SMILES (Simplified Molecular Input Line Entry Sys-
tem) are the most widely used. MOL is a file format that
represents a compound in the form of a graph connection
table: each node represents an atom and the edges are the
bonds between atoms. SDF is an extended version of MOL
for writing multiple compounds into one file.

A “fingerprint” is a vector that represents a property
of a chemical compound. Many methods for creating
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fingerprints have been reported. The launch pad we nor-
mally use for all fingerprints is 2D fingerprint to indicate
what kind of partial structure the compound possesses.
In this regard, the most commonly used algorithm is the
extended-connectivity fingerprint (ECFP, also known as
the circular fingerprint or Morgan fingerprint) [1]. This
algorithm first searches the partial structures around each
atom recurrently, then assigns an integer identifier to each
partial structure, and writes this as a binary vector by
using a hash function. Potentially, an infinite number of
structures exist in the chemical space; consequently, ECFP
requires vectors with a large number of bits (usually 1024–
2048 bits). A more advanced version of the algorithm, 3D
fingerprint, encodes 3D information, including the molec-
ular shape and electrostatics. For example, ROCS (Rapid
Overlay of Chemical Structures) uses “color” features
defined by a simple force field [2]. A related method
is USR (Ultrafast Shape Recognition), which calculates
the 3D similarity without an alignment of chemical
structures [3].

SMILES, which was proposed by Weininger [4], is cur-
rently widely recognized and used as a standard repre-
sentation of compounds for modern chemical information
processing. SMILES provides a linear notation method to
represent chemical compounds in a unique way in the
form of strings over a fixed alphabet. SMILES uses spe-
cific grammar and characters to describe all the atoms and
structure of a chemical compound. SMILES can strictly
express structural differences including the chirality of
compounds. Such a linear structure of SMILES repre-
sentation, referred to as a SMILES string, enables the
straightforward application of convolutional neural net-
work (CNN) to virtual screening of chemical compounds
and identification of functional substructures, which we
name chemical motifs.

Chemical analysis with machine learning continues to
be actively researched and is motivated by contests such as
the Merck Molecular Activity Challenge 2013 and TOX 21
Challenge 2014, at which the results obtained with deep
neural networks were superior to those achieved with
other architectures [5, 6]. However, these methods do
not make full use of the capability of deep learning.
Deep learning typified by CNN would benefit from the
capability of automatically acquiring the features from
data as much as possible instead of manually devising
the features. This capability (known as representation
learning) became a springboard for the development of
machine-learning-based fingerprinting techniques focus-
ing on the graph structure of compounds as an alterna-
tive to manually-designed fingerprints [7–9]. Duvenaud
et al., [10] defined a way to generalize fingerprints with
a backpropagation convolutional network. Kearnes et al.,
[11] improved fingerprints by using graph convolution.
These methods are useful to aim for the goal of acquiring

fingerprints by machine learning. However, they have one
or more limitations: (1) some models can input only a set
of compounds with fixed structure, (2) some cannot dis-
tinguish among stereoisomers, and (3) most importantly,
the graph structure is in general not a data structure of
grid-like topology, such as two-dimensional images (2-D
grid of pixels), for which CNN could be used effectively.

The above observations led us to propose a new
approach using the SMILES linear representation of
chemical compounds to apply CNNs for the classifica-
tions of chemical compounds and the detection of chem-
ical motifs. A string is the simplest grid-like (1-D grid)
structure, and molecular sequences such as DNA and
protein sequences are also strings. CNNs have already
been applied to the classification of DNA sequences and
extraction of a sequence motif conserved among the DNA
sequences [12–16]. In these methods, by employing one-
hot coding representation of four DNA nucleotides, a
filter (kernel) with a one-dimensional convolution opera-
tion applied to a sequence can be considered a position
weight matrix for representing a motif. The filters are
learned by training CNNs on positive and negative sam-
ples of sequences such as those obtained in experiments
on chromatin immunoprecipitation with high-throughput
sequencing (ChIP-seq) [16]. Here, a “one-dimensional”
convolutional operation for sequences is interpreted as
scanning the input sequence only in one direction along
the sequence with a filter of the same width (dimension)
as that of the distributed representation of input (see
Fig. 1a). Now, our approach is straightforward to simply
apply one-dimensional CNN to the SMILES strings rep-
resenting chemical compounds for the classification of
these chemical compounds and extraction of the chemical
motifs (structures) conserved among the compounds (see
Fig. 1b).

We experimented with the TOX 21 dataset and evalu-
ated the results by using the ROC-AUC score. The eval-
uation showed that our method, one-dimensional CNN
using the SMILES representation, was superior to the
ECFP fingerprint methods and graph convolution method
[11]. Furthermore, several important known structures
(motifs) such as protein-binding sites were detected from
the learned filters in the one-dimensional CNN.

Another advanced feature of CNN is representation
learning [17]. Representation learning is a procedure in
which the effective features can be automatically discov-
ered in the process of machine learning. Thus, representa-
tion learning enables us to extensively obtain new finger-
prints or descriptors for compounds that fit the prediction
model (e.g., prediction of binding to a certain protein).
Furthermore, it is possible to extract the “chemical motif,”
which is an important functional substructure (e.g., the
site at which a protein could bind). We showed that the
new fingerprints discovered by representation learning
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Fig. 1 Chemical motif detection by CNN in comparison with sequence motif detection. a One-hot coding representation of four DNA nucleotides, a
filter (kernel) with a one-dimensional convolution operation that is considered a position weight matrix for representing a motif. b The same
strategy for applying one-dimensional CNN to SMILES linear representations of chemical compounds and the extraction of learned filters to
discover the chemical motifs

based on SMILES representation provided a richer chem-
ical space that enabled the accurate discrimination of
compounds, whereas existing methods using ECFP were
unable to express the properties of compounds. Here,
“chemical space” is a term often used in the place of
“multi-dimensional descriptor space”.

Methods
In this section, we describe a new convolutional neural
network (CNN) based on the SMILES notation of com-
pounds. An overview of our CNN is shown in Fig. 2. The
main idea of our method is that we represent a SMILES
string as a distributed representation termed a SMILES
feature matrix, and apply CNN to the matrix in a way
similar to the application of conventional CNNs to image
data. Our CNN transforms the SMILES feature matrix
into a low-dimensional feature vector termed the SMILES
convolution finger print (SCFP). We construct classifica-
tion models for compounds by using the SCFP as input

for subsequent fully connected layers. In addition, we
propose a novel method for extracting the acquired fea-
ture representation from our CNN as a form of “chemical
motif.”

SMILES notation for representing chemical compounds
SMILES uses two sets of symbols: a set of atomic sym-
bols and a set of SMILES original symbols. In SMILES
representation, atoms are represented by their atomic
symbols, and double bonds are written using “=” and
triple bonds using “#”, both of which are original SMILES
symbols. Rings are represented by breaking one of the
bonds in each ring, and the presence of the ring is indi-
cated by appending an integer to each of the two atoms
of the broken bond. The presence of a branch point is
indicated by a left-hand bracket “(” and the right-hand
bracket “)” indicates that all the atoms in that branch have
been visited. We refer to a SMILES representation of a
chemical compound as a SMILES string for the chemical
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Fig. 2 Overview of our CNN. The SMILES string of a compound is represented as a feature matrix. CNN has multiple layers consisting of two
convolutional and pooling layers with a subsequent global pooling layer. CNN is applied to the feature matrix and produces a low-dimensional
feature representation (actually, 64-dimensional vector) termed the SCFP. Classification models are constructed by using SCFP as input for
subsequent fully connected layers

compound. For example, the SMILES string for Aspirin
is CC(=O)OC1=CC=CC=C1C(=O)O. Although ambigu-
ity may occur in that a compound may be represented
in more than one way using SMILES (generic SMILES),
we use a normalization algorithm to ensure that one sin-
gle SMILES representation is derived from one compound
(this approach is also known as unique SMILES, canonical
SMILES, or absolute SMILES) [18].

SMILES feature matrix
The input used for the CNN consists of a distributed
representation of a SMILES string, which comprises a
sequence of feature vectors representing the symbols that
occur in the SMILES string.

First, the input compound is represented by a SMILES
string. Next, for each symbol in the SMILES string, a
feature vector that is a distributed representation of the
symbol is calculated. Each feature vector consists of 42
features, of which 21 features are used as symbols for
atoms, and the remaining 21 features are used for original
SMILES symbols. Each dimension in the 21-dimensional
vector for an atom consists of the type of atom, and its
degree, charge, and chirality, and each 21-dimensional
vector for an original SMILES symbol is a one-hot vector
that is a distributed representation of 21 original SMILES
symbols. Note that one-hot vector is a binary vector with
a single high (1) bit and all the others low (0). The 42
elements are listed in Table 1. Numerical values related
to atomic substance quantities such as degree, charge,

and chirality were calculated using the program RDKit
(version: 2016.09.4) [19]. The length of the feature matrix
is set to the maximum length of SMILES strings for com-
pounds in a given dataset (400 in this study). In the feature
matrix for SMILES strings of which the length is shorter
than the maximum length, all the blank parts were padded
with 0 to retain the input size. The resulting distributed
representation is a two-dimensional feature matrix with
the fixed size of (400, 42).

CNN
Figure 2 shows the architecture of our CNN. We used
multiple layers consisting of two convolutional and pool-
ing layers with a subsequent global pooling layer. In the
first convolutional layer, we used filters with the same
width as that of the SMILES feature matrices (i.e., 42).
This ensured that convolution was performed only for
the direction of SMILES strings. In the global pooling
layer, we used global max pooling [20]. Our CNN has sev-
eral hyperparameters including the window size of filters,
the number of filters, and others. These hyperparameters
were summarized in Table 2, and determined by using
Bayesian optimization, GpyOpt [21].

The output of the global pooling layer is a 64-
dimensional vector that we named SCFP. We can con-
struct a prediction model by using SCFP as input for fully
connected layers. Specifically, we constructed a model
that connected the SCFP and the output layers with one
hidden layer. The model was trained using mini-batch
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Table 1 Features

Feature Description Size

Atom 21

Atom type H, C, O, N, or others 5

NumHs Total number of H atoms attached to it 1

Degree Its degree of unsaturation 1

Charge Its formal charge 1

Valence Its total valence 1

Ring Whether it is included in a ring 1

Aromaticity Whether it is included in an aromatic structure1

Chirality R, S, or others 3

Hybridization s, sp, sp2, sp3, sp3d, sp3d2, or others 7

SMILES original symbol 21

( Branch start 1

) Branch end 1
[

Atom or atom group start 1
]

Atom or atom group end 1

. Ionic bond 1

: Aromatic bond 1

= Double bond 1

# Triple bond 1

\ cis 1

/ trans 1

@ Chirality (above or below) 1

+ Cation (positive ion) 1

- Anion (negative ion) 1

Ion charge Numbers show ionic charge (2-7) 6

Start Numbers show ring start 1

End Numbers show ring end 1

stochastic gradient descent. Optimization was achieved
by using Adam [22] with a learning rate of 0.01. All
weights were initialized by a normal distribution with a
mean of 0 and a standard deviation of 0.01. Other details
are provided in Table 2.

We implemented our CNN using Python 3.5.2 and
Chainer v1.24.0 [23].

SMILES convolution fingerprint (SCFP)
Our CNN can be used not only as a prediction method
but also as a method to compute a fingerprint. The 64-
dimensional vector computed by the convolutional layers
is a kind of fingerprint in the sense that it contains chem-
ical structure information from a SMILES feature matrix
(Fig. 2). In this regard, we designate this vector as the
SMILES convolutional fingerprint (SCFP). Once the net-
work is trained, we can compute SCFP for any compound

Table 2 Model hyperparameters

Hyperparameter Considered values

1st convolution

No. of filters [1, 1024]

Window size [1, 51]

Stride size {1,3,5}

Padding {None, Half of window size}

1st pooling

Type {Max, Average}

Window size [1, 51]

Stride size {1,3,5}

Padding {None, Half of window size}

2nd convolution

No. of filters [1, 1024]

Window size [1, 51]

Stride size {1,3,5}

Padding {None, Half of window size}

2nd pooling

Type {Max, Average}

Window size [1, 51]

Stride size {1,3,5}

Padding {None, Half of window size}

Global pooling {None, Max pooling}

Output layer {softmax, sigmoid}

Activation function {ReLU, Leaky ReLU, Parametric ReLU}

Minibatch size {32, 64, 128, 256, 512}

Batch normalization {None, after conv.}

Dropout {None, before output}

Optimizer {Adam, AdaGrad}

Learning rate {0.0001, 0.001, 0.01, 0.1}

Loss function {Mean squared error, Cross entropy}

not limited to those included in the training data. We
propose to use SCFP as an alternative to conventional fin-
gerprints such as ECFP. The advantage of SCFP over ECFP
is that it can represent important features acquired from
training. For example, if the network is trained for classi-
fying the ligands of some protein, SCFP will represent the
features that are important for discriminating the ligands
from other compounds. This is in contrast to ECFP, which
considers fixed types of features regardless of their appli-
cation context. In the “Results” section, we demonstrate
this nature of SCFP through its application to chemical
space analysis.

Chemical motif
Another merit of our CNN is its interpretability; i.e., it
enables us to visualize the acquired features in SCFP as the
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substructures of an input compound. Since SCFP is com-
puted by global max pooling, one dimension of SCFP cor-
responds to one of the filters in the second convolutional
layer. As shown in Fig. 3, this allows us to associate each
dimension with the substructure of an input compound
by tracing back through the network. If a certain dimen-
sion takes a large value, it means a large contribution
of the corresponding filter, thereby indicating the impor-
tance of the associated substructure. From this aspect, we
designate such a substructure as the “chemical motif.” The
analysis of chemical motifs facilitates the interpretation
of prediction results by the network. For example, when
we conduct ligand prediction, we can visualize and inter-
pret chemical motifs as important substructures for ligand
binding.

In practice, each dimension of SCFP may have a
different value scale, making it difficult to compare
across dimensions for identifying large-contribution fil-
ters. Thus, we normalize SCFP by the following proce-
dure. First, we compute SCFP for all compounds in a
given dataset. Then, we look at the values in the global
max-pooling layer, and calculate their mean and variance
for each filter over all compounds. Finally, we transform
SCFP into Z-scores for each dimension by using the mean
and the variance of the corresponding filter. For detect-
ing chemical motifs, we focus on those dimensions of
SCFP with Z-scores larger than 2.58 (i.e., 99% percentile).
Note that this normalization procedure is only used
for detecting chemical motifs, but not for training and
prediction.

Dataset and performance evaluation
In this study, we used the TOX 21 dataset [24] to eval-
uate the performance of our CNN. The TOX 21 dataset
was originally created for the TOX 21 Challenge 2014,

a competition of machine-learning methods for com-
pound classification problems, and it has commonly been
used as a benchmark dataset in many previous studies.
The dataset contains information about whether approx-
imately 8000 compounds would bind to 12 proteins.
Tables 3 and 4 summarize the dataset. It consists of 12
subdatasets, each of which contains “active” and “inac-
tive” compounds obtained from a specific experimental
assay, and is divided into three types of data: “Train”,
“Test”, and “Score”. The “Train” data are intended to be
used as training data for machine-learning models. The
“Test” data are intended to be used for the validation of
models (e.g., hyperparameter optimization). The “Score”
data are intended to be used for the final evaluation
of model performance. Note that this nomenclature is
not consistent with the standard terminology in machine
learning: “Train”, “Test”, and “Score” data correspond to
training, validation, and test data, respectively, in standard
machine-learning terminology.

We evaluated the performance of the model by using
the area under the receiver operating characteristic curve
(ROC-AUC), which is a commonly used measure for
evaluating the performance of classifiers. The ROC-AUC
takes a value from 0 to 1, where a higher value indicates
a more accurate classification between active and inactive
compounds.

Results
Cross validation
We first trained and evaluated our CNN by using five-fold
cross validation, giving several statistics such as compu-
tation time, memory usage, and convergence speed. We
combined the three types of data (“Train”, “Test”, and
“Score”) in the TOX 21 dataset into a single dataset, and
performed a five-fold cross validation for the combined

Fig. 3 Detection of chemical motifs. Each dimension of SCFP is associated with the substructure of an input compound by tracing back through the
CNN
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Table 3 TOX 21 assays

Subdataset qHTS assay target

NR-AR Androgen receptor using the MDA cell line

NR-AR-LBD Androgen receptor ligand binding domain

NR-ER Estrogen receptor α using the BG1 cell line

NR-ER-LBD Estrogen receptor α ligand binding domain

NR-AhR Aryl hydrocarbon receptor

NR-Aromatase Aromatase enzyme

NR-PPAR-γ Peroxisome proliferator-activated receptor γ

SR-ARE Antioxidant response element

SR-ATAD5 Luciferase-tagged ATAD5 in human embryonic kidney cells

SR-HSE Heat shock response

SR-MMP Mitochondrial membrane potential

SR-p53 p53 response

dataset. We continued the training until 300 epochs while
measuring the ROC-AUC for validation. On average, the
training took about 36 sec per epoch with several giga-
bytes of memory, and the ROC-AUC was converged at
around 20 epochs. The detailed statistics for each sub-
dataset is shown in Table 5.

We compared the ROC-AUC obtained by our model
with conventional methods for compound classification
problems. Specifically, the employed methods were: the
logistic regression using ECFP as input, the random for-
est using ECFP as input, the deep neural network using
ECFP as input [25], and the graph convolution proposed
in [11]. The performance of our model was better than
these existing methods (Fig. 4).

Table 4 TOX 21 dataset

Subdataset Train Test Score

Active Inactive Active Inactive Active Inactive

NR-AR 380 8982 3 289 12 574

NR-AR-LBD 303 8296 4 249 8 574

NR-ER 937 6760 27 238 51 465

NR-ER-LBD 446 8307 10 277 20 580

NR-AhR 950 7219 31 241 73 537

NR-Aromatase 360 6866 18 196 39 489

NR-PPAR-γ 222 7962 15 252 31 574

SR-ARE 1098 6069 48 186 93 462

SR-ATAD5 338 8753 25 247 38 584

SR-HSE 248 7722 10 257 22 588

SR-MMP 1142 6178 38 200 60 483

SR-p53 537 8097 28 241 41 575

Table 5 Summary of training statistics

Subdataset Time (s/epoch) Memory (MiB) Convergence (epoch)

NR-AR 121.7 6551 15

NR-AR-LBD 12.9 6459 19

NR-ER 36.0 2763 17

NR-ER-LBD 37.7 2309 25

NR-AhR 13.3 1475 33

NR-Aromatase 15.2 6317 20

NR-PPAR-γ 2.7 4413 23

SR-ARE 16.7 1615 18

SR-ATAD5 74.7 4581 21

SR-HSE 49.0 3047 15

SR-MMP 40.3 3427 9

SR-p53 8.3 1211 11

The computation time is measured with a GPU server with NVIDIA Tesla P100 SXM2
16GB

Comparison with the winning model of TOX 21 challenge
2014
Next, we studied the potential of our CNN as a clas-
sification method by comparing its accuracy to that of
the winning model of the TOX 21 Challenge 2014 [24].
For this purpose, we constructed a model where a fully-
connected hidden layer is used between the SCFP and
the output layers. We optimized the number of hidden
units as well as the number and the size of filters in the
first and the second convolution layers by using Bayesian
optimization, GpyOpt [21].

We evaluated the performance of our model based on
the same procedure as in the TOX 21 Challenge 2014.
Specifically, we used the “Train” and the “Test” data to
determine the hyperparameters, then evaluated the ROC-
AUC using the “Score” data.

We compared our model to DeepTox [6], the winner
method of TOX 21 Challenge 2014. The DeepTox authors
used five variations of their model as follows: deep neural
network (DNN) using only ECFP, DNN using ECFP and
“DeepTox features” (proposed by the DeepTox authors),
support vector machine (SVM) using ECFP and DeepTox
features, random forest (RF) using ECFP and DeepTox fea-
tures, and elastic net (ElNet) using ECFP and DeepTox
features. In the DeepTox DNN model, the activation func-
tion of the hidden layers is ReLU, the sigmoid function is
used for the final output, the mini-batch size is 512, and L2
regularization and dropout are used to prevent overfitting.
DeepTox uses thousands of features consisting of 2500
in-house toxicophores features which comprise substruc-
tures previously reported as toxicophores, 200 in-house
scaffold features that include the most common scaffolds
that appear in organic molecules, and other 18 sets of
features (the supplementary material of [6]).



Hirohara et al. BMC Bioinformatics 2018, 19(Suppl 19):526 Page 90 of 188

Fig. 4 ROC-AUC of our model compared with those reported by previous studies. (Left) ROC-AUC averaged for 12 subdatasets were compared
between our model (blue) and previous studies (gray). (Right) ROC-AUC of our model for each subdataset

Table 6 shows the results of the comparison of these
models. On average, the ROC-AUC of our model was bet-
ter than DNN using only ECFP, but slightly lower than
those of the models using ECFP and “DeepTox features”
except ElNet.

Chemical space analysis with SCFP
To demonstrate that SCFP can be used as an alterna-
tive to conventional fingerprints, we conducted a chemical
space analysis using SCFP. Specifically, we computed the
SCFP for all compounds in the SR-MMP subdataset, and
performed dimension reduction with multi-dimensional
scaling (MDS). We also conducted a similar analysis
using ECFP (length=1024, radius=2). Figure 5 com-
pares the produced chemical space between SCFP and
ECFP. In the chemical space produced by SCFP, active
and inactive compounds were discriminated clearly. In

contrast, ECFP failed to discriminate between the two
groups in the chemical space. These results suggest that
the expressive power of SCFP is stronger than that of
ECFP for the chemical space analysis of the SR-MMP
subdatasets.

Our results are especially surprising given the fact that
the number of dimensions of SCFP (64) is much smaller
than that of ECFP (1024). Although ECFP is often repre-
sented as a high-dimensional vector, the distance between
fingerprints is not always proportional to the similarity
of compounds because of hash collision. On the other
hand, each element of SCFP represents the contribution
of the corresponding substructure acquired from training.
This means that the model preferentially extracts the sub-
structure that greatly contributes to the label classification
problem.

Table 6 Comparison of our CNN and DeepTox (the winning model of the TOX 21 Challenge 2014)

Input Model Ave. AR AR-LBD ER ER-LBD AhR Aromatase PPAR-γ ARE ATAD5 HSE MMP p53

SMILES Matrix CNN 0.813 0.789 0.793 0.776 0.765 0.905 0.786 0.791 0.754 0.803 0.835 0.928 0.832

ECFP DNN 0.768 0.850 0.690 0.840 0.760 0.660 0.720 0.700 0.730 0.860 0.810 0.820 0.780

ECFP+DeepTox DNN 0.837 0.778 0.825 0.791 0.811 0.923 0.804 0.856 0.829 0.775 0.863 0.930 0.860

ECFP+DeepTox SVM 0.832 0.882 0.748 0.799 0.798 0.919 0.819 0.856 0.818 0.781 0.848 0.946 0.854

ECFP+DeepTox RF 0.820 0.776 0.812 0.770 0.746 0.917 0.806 0.827 0.810 0.786 0.826 0.945 0.835

ECFP+DeepTox ElNet 0.803 0.788 0.692 0.765 0.805 0.897 0.763 0.805 0.778 0.768 0.844 0.924 0.818

Our CNN takes SMILES feature matrices as input, while DeepTox uses ECFP and its original features
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Fig. 5 Chemical space analysis of the SR-MMP subdataset. SCFP (a) and ECFP (b) computed for all compounds in the dataset were plotted by MDS

Detection of chemical motifs
Even though the prediction accuracy of our CNN was
not substantially superior to that of the state-of-the-art
method, our method has the advantage that it enables us
to extract learned feature representation in the form of a
chemical motif. Here, we present the analysis of chemi-
cal motifs using the NR-AR subdataset. We applied active
compounds to our CNN, and detected chemical motifs
as described in the “Methods” section. Figure 6 shows
examples of the detected chemical motifs. These examples
show that each filter corresponds to a distinct chemi-
cal motif in the compounds. Specifically, the filters 61,
0, and 2 represent, respectively, a steroid-like substruc-
ture (Fig. 6a), a substructure similar to a carboxy group
(Fig. 6b), and a substructure similar to a tert-butyl group

(Fig. 6c). By using this motif analysis, we can interpret
these chemical motifs as important substructures for the
NR-AR dataset, i.e., the binding of compounds to the
androgen receptor (Table 3). Indeed, the steroid skeleton
has been known as an important structure for the binding
of the androgen receptor.

Discussion
In this paper, we proposed a new CNN for analyzing
chemical compound data. The CNN uses a SMILES-based
feature matrix in a similar way to conventional CNNs for
image data. We also developed a novel method for extract-
ing acquired feature representation from our CNN as a
form of chemical motif. Furthermore, we demonstrated
that the analysis of chemical motifs greatly facilitates
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Fig. 6 Examples of learned filters and chemical motifs for the NR-AR subdataset. a Filter 61 and corresponding chemical motifs on different
compounds. b Filter 0 and corresponding chemical motifs on different compounds. c Filter 2 and corresponding chemical motifs on different
compounds

the interpretation of prediction results, highlighting the
important substructures in a compound.

When used as a classification model, our CNN achieved
higher accuracy than existing methods in the five-fold
cross validation experiment (Fig. 4). In the TOX 21 Chal-
lenge 2014 experiment, our model was more accurate than
DNN using only ECFP, but slightly less accurate than the
models using ECFP and DeepTox features (Table 6). These
“DeepTox features” significantly contributed to improving
the accuracy of classification models. In this sense, SCFP
automatically acquired by representation learning outper-
formed the previously well-used ECFP, but has not yet
reached the performance of handcrafted DeepTox features
especially tailored to TOX 21 Challenge.

SMILES feature matrices contain the structural proper-
ties of each atom (e.g., valence) in addition to the one-hot
vector representing the atom symbol (Table 1). Although
the one-hot vector has been commonly used as features
to represent symbols in string data in machine learning,
we did not simply follow such a strategy in this study.
This is because the property of an atom changes sub-
stantially depending on its structural environment in a
compound. For example, the property of a carbon atom
is different depending on whether it is in a benzene ring,
or is bonded to an oxygen atom. On the other hand,
different kinds of atoms may have a similar property if
they belong to the same family (i.e., group of elements
in the periodic table), and their structural environments
are similar. SMILES feature matrices were designed to
capture this behavior by using the structural properties
of atoms.

The merit of SMILES convolution is that it is unneces-
sary to specify substructures in advance as input features.

Even when there is no prior knowledge about impor-
tant substructures, our CNN can automatically acquire
chemical motifs by representation learning. Moreover,
since our CNN obtains important substructures preferen-
tially, the size of the SCFP can be kept small (i.e., 64 in
this study). This is in contrast to ECFP, which requires
large-sized vectors for considering all possible substruc-
tures, but has limited expressive power due to hash
collision.

In the analysis of chemical motifs, our CNN suc-
cessfully detected a steroid-like chemical motif that has
been known as an important structure for the bind-
ing of androgen receptors (Fig. 6a). The other detected
motifs can be considered as candidates for novel skeleton
structures for androgen receptors. Therefore, our pro-
posed method has potential not only as a classification
method, but also as a means of providing clues for drug
discovery.

Since the detection of chemical motifs is based on fil-
ters, the size of the detectable chemical motifs is limited by
the window size of filters. Specifically, the maximum motif
size is 2k1 + k2, where k1 and k2 are the window sizes in
the first and second convolutional layers, respectively (i.e.,
21 in this study; Fig. 3). However, as observed in Fig. 7,
multiple filters may represent slightly distinct overlapping
substructures and their combination may represent an
entire motif. Thus, we expect the detection of large chem-
ical motifs to be possible by the combined analysis of these
filters.

The TOX 21 dataset is highly imbalanced between the
number of active compounds and the number of inac-
tive compounds. We attempted the following methods to
resolve this imbalance.



Hirohara et al. BMC Bioinformatics 2018, 19(Suppl 19):526 Page 93 of 188

Fig. 7 Filters representing similar chemical motifs. Each filter represents a similar but slightly different chemical motif

• The learning rate was multiplied by a constant only
for the positive data so that the positive data could be
learned strongly.

• Only for active compounds, a compound was
described also in non-canonical SMILES so that the
number of positive examples was increased.

However, both methods did not contribute to improve the
accuracy.

Conclusions
In this study, we designed a feature matrix based on
SMILES linear notation of compounds and applied it to
our CNN where the convolution operation was performed
only in one direction along the SMILES string. The perfor-
mance of our CNN based on SMILES string was superior
to that of the conventional fingerprint method used for the
virtual screening of chemical compounds. In addition, the
use of motif detection with learned filters not only enabled
important known substructures such as protein-binding
sites but also substructures of unknown functional groups
to be detected. Using the TOX 21 Challenge as bench-
mark, we achieved performance comparable to that of the
current winning model. Furthermore, multivariate anal-
ysis confirmed that the chemical space consisting of the
features learned by SMILES-based representation learn-
ing were able to adequately express a rich feature space
that enabled the accurate discrimination of compounds.
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