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Abstract

Background: Finding peptides with high binding affinity to Class I major histocompatibility complex (MHC-I)
attracts intensive research, and it serves a crucial part of developing a better vaccine for precision medicine.
Traditional methods cost highly for designing such peptides. The advancement of computational approaches reduces
the cost of new drug discovery dramatically. Compared with flourishing computational drug discovery area, the
immunology area lacks tools focused on in silico design for the peptides with high binding affinity. Attributed to the
ever-expanding amount of MHC-peptides binding data, it enables the tremendous influx of deep learning techniques
for modeling MHC-peptides binding. To leverage the availability of these data, it is of great significance to find
MHC-peptides binding specificities. The binding motifs are one of the key components to decide the MHC-peptides
combination, which generally refer to a combination of some certain amino acids at certain sites which highly
contribute to the binding affinity.

Result: In this work, we propose the Motif Activation Mapping (MAM) network for MHC-I and peptides binding to
extract motifs from peptides. Then, we substitute amino acid randomly according to the motifs for generating
peptides with high affinity. We demonstrated the MAM network could extract motifs which are the features of
peptides of highly binding affinities, as well as generate peptides with high-affinities; that is, 0.859 for HLA-A*0201,
0.75 for HLA-A*0206, 0.92 for HLA-B*2702, 0.9 for HLA-A*6802 and 0.839 for Mamu-A1*001:01. Besides, its binding
prediction result reaches the state of the art. The experiment also reveals the network is appropriate for most MHC-I
with transfer learning.

Conclusions: We design the MAM network to extract the motifs from MHC-peptides binding through prediction,
which are proved to generate the peptides with high binding affinity successfully. The new peptides preserve the
motifs but vary in sequences.
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activation map
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Background
Introduction
The genetic heterogeneities and polymorphisms across
different individuals contribute substantial factors of dif-
ferent responses to the same drug or medicine. One of
the ultimate goals of the precision medicine is hence to
fabricate personized medicines. The human major his-
tocompatibility complex (MHC), coded by a region on
chromosome six, serves essential roles in the immune sys-
tem and this region is highly polymorphic. The MHC gene
family code a class of proteins, which are often referred
to as MHC molecules. They recognize and bind to anti-
genic peptides (the binding moiety is called epitope) and
present it to the cell surface for interacting with TCR
(T cells receptor), then induce the immune response [1].
MHC gene family consists of three subgroups, class I,
class II, and class III. MHC-I and MHC-II bind with spe-
cific peptides. MHC-I molecules have closed ends so that
the specific binding peptide fragments only contain 8-11
residues. MHC-II molecules have open ends and bind
longer peptide fragments, which usually contains 14-18
residues. MHC-II-peptides binding is more complicated
to model due to the groove of MHC-II only matches a
portion of the peptide called binding core.

Studying the specific features of MHC-peptides bind-
ing is of great significance to understand the mechanisms
of immune response, develop immune epitopes and drug
discovery [2]. Due to the high cost and complicate pre-
processing in the experimental method, in recent years,
various machine learning algorithms are widely applied
to extract binding features. Meanwhile, increased compu-
tational power and data availability boost the adhibition
of deep learning. Deep learning is developing rapidly
and now is with increasing importance in the field of
biomedicine [3]. For example, in proteomics field, Pcons2
[4] and Deep-RBPPred [5] are proposed; in predict-
ing enhancers and regulatory regions, DanQ [6], Basset
[7], DeepSEA [8] and DeepMotif [9] etc are proposed.
Notably, researchers prefer deep learning to predict the
binding affinity between the peptide and MHC and pro-
posed different neural networks such as HLA-CNN [10],
MHC nuggets [11], MHCflurry [12] and netMHCpan [13]
in recent years.

Another important perspective is binding motifs. These
motifs are characterized primarily by the requirement
for a few properly spaced and essential primary anchor
residues [14].

Here, we propose an MHC and peptide binding Motif
Activation Mapping Network (MAM Network) to gen-
erate new peptides of high binding affinity in silico
with the binding prediction and binding activation map.
In the binding prediction and activation map, we predict
whether the peptide is a binder (or non-binder) and calcu-
late the contribution of each site to the binding affinities.

To generate peptides, we substitute amino acid at the posi-
tion with the lowest score according to the contributions.

Our model incorporates several important features. We
emphasis fine-tune application in transfer learning when
extended to another which can be extended to multiple
types of MHC. Further, generating new high-affinity pep-
tides cannot only expand the present data set but also
provide large resources for further studies.

In summary, we propose here:

1 A well-performed binding probability prediction
network called MHC-CNN which reaches to state of
the art.

2 A novel motifs activation map model that build the
mapping from components of the peptide to its
binding probability with MHC molecule.

3 Two transfer learning methods were applying on
prediction and generation of small datasets, which
also reveals the similarities of binding mechanism
among various MHC molecules.

4 A well-performed generator that can generate
brand-new peptides with high affinity.

Related work
Researchers study the MHC-peptides interaction for
decades, the obtained insights advance in our understand-
ing of the immune system, scientific treatment of diseases
and the development of new drugs.

Binding affinity prediction
Existing related works are mainly on binding affinity pre-
diction. Reach et al. (2002) [15] propose PSSM (Position-
specific scoring matrix) for predicting the MHC-peptides
binding affinity and conducted a preliminary test. The
PSSM is a representative matrix, which is the cornerstone
of MHC-peptides binding research. Based on MHC class
II has more complicated binding pattern than class I, the
peptides are longer and more difficult to predict. Nielsen
et al. (2004) [16] propose the Gibbs sampling method
for the prediction of MHC-II-peptides binding affini-
ties. Peters and Sette (2005) [17] supplement the SMM
algorithm (Stabilized Matrix Method) and transform the
binding affinity prediction problem into a matrix-vector
regression problem.

Hidden Markov Models (HMM), Support Vector
Machines (SVM) and artificial neural networks (ANN),
are also developed for binding affinities prediction.
Machine learning algorithms can build more complex
nonlinear models to achieve better prediction perfor-
mance in the MHC-peptides binding affinity prediction.
For example, ANN can capture the complex inter-
relationships in the non-linearity in the s, which is
suitable for classification and recognition tasks as well
as motifs extraction. ANN-based prediction models
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have emerged such as netMHCpan [13], netMHCIIpan
[18] and MHCflurry [12]. Most of these models only
include one or two full-connect layers, with the opti-
mizing different network structures and parameters,
ANNs take advantages of flexibility and adaptability. ANN
approaches are outstanding for its accuracy, but lack of
explanatory. In the field of MHC binding, the HLA-CNN
[10] which uses three convolutional layers and two fully-
connected layers with word embedding for encoding,
leading to the total accuracy is over all the traditional
methods and shallow neural networks. MHCpred [19]
with the structure of deep char-RNN, which applies three
LSTM (Long Short-Term Memory) layers and adaptively
finding the appropriate parameters to enable the model
to learn the hidden features more efficiently. The con-
vMHC [20], which uses more than three convolutional
layers and inputs MHC sequence and its 3D structure
data as supplementary information to predict the bind-
ing domain of MHC molecule. Similarly, in the broader
field of protein-ligand prediction, Matthew R uses deep
CNN model to pose prediction and virtual screening by
3D-structure data and chemical data [21].

Deep learning in pharmacy design
Biomarker identification and drug design are the emerg-
ing fields for deep learning application [22]. Molecu-
lar modeling based on deep learning could generate
a large number of potential and useful compounds,
mainly reducing both cost and time than the traditional
methods. Increasing data availability reveals deep learn-
ing is a promising way to design new drugs effectively.
In published researches, generation of the new drug with
deep learning has achieved encouraging results. Such as
Dru-GAN, produce compelling medicines in PubChem
[23, 24] using autoencoder and molecular fingerprinter
information. Marwin et al. attempt to use RNN and
Q-learning to generate new molecular [25]. In the field of
chemical synthesis, using HMMs to simulate the homol-
ogy molecular is a general way of creating a molecu-
lar [26]. It is also getting essential to use the attention
model to search for the essential structure in chemical
reaction [27, 28].

As far as we know, the generation of potent peptides has
not been studied yet but there are a lot of works research-
ing the specific MHC-peptides binding motifs. NNAlign
is a method that has been used for the identification of lin-
ear motifs in biological sequences [29]. Deepfit [30] also
is used to predict motifs in DNA. Bruno et al. propose a
method to predict the motif of the peptide by MS (mass
spectrometry) data in MHC-peptide binding field [31].

Methods
First, we collect the data and filter out the invalid data
and noise. To the proposed model for a certain MHC,

we divide the peptides belongs to the MHC into training
and testing. Then, we represent each amino acid of the
peptides with a 15-dimension vector, and thus, represent
each peptide of k residues into a 15×k matrix. With this
representation, we training binary classifiers with differ-
ent random initialization and then average all the trained
models. To generate new peptides, we extract weights
from the trained network and calculate the contributions
to the binding affinities of each amino acid at each site.
Then, we generate new peptides according to the muta-
tion methods. Besides, we apply the transfer learning to
the well-trained network to other alleles small datasets
with fine-tune or zero-shot strategy.

We propose the MHC-peptide binding motifs activa-
tion mapping network (MAM network) which can learn
the weights through the binder vs. non-binder prediction
training process then map the weights to extract binding
motifs and generate new peptides. As shown in Fig. 1, the
framework of our network mainly consists of Embedding,
prediction, generation steps. Now we will introduce the
details of our network.

Embedding
The one-hot encoding method or the k-mer encoding
method in deep learning have disadvantages that the
results are too sparse to converge or too simple to carry
characteristics. Therefore, deep learning needs more suit-
able encoding methods, a recently encoding method in
NLP has been used in many fields, such as word embed-
ding [32–35], which is a non-sparse coding method that
takes contextual information into account. Word embed-
ding has been proven to be the most efficient encod-
ing method among various encoding methods in deep
learning [36]. Consequently, followed by Vang et al.
[10], we encode each amino acid into a 15-dimension
vector and transfer a set of peptides into a matrix of
batch_size×peptide_length× 15.

MHC-CNN predictor
As shown in Fig. 2, MHC-CNN predictor consists of the
following components.

Convolutional layer
Binding motifs are critical to the MHC-peptide binding
affinities and many methods are proposed to identify
the motifs [37–39]. However, the existing sequence-
based methods are incapable to recognize and locate
these motifs well. One of the main reasons is that
these motifs are convoluted and cryptic: sites may
have a tight connection with adjacent sites. Therefore,
to extract these motifs, we adopt the CNN to ana-
lyze the peptide sequences comprehensibly. CNN-based
method is adopted to extract feature including the spa-
tial relationship in computer vision [30, 40]. Notably,
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Fig. 1 Pipeline of our Motifs Activation Map network. Embedding step is to encode each amino acid into a 15-dimension vector. Prediction step is to
predict the binding probability from 0 (non-binder) to 1 (binder) and the weights of MAM network. Our MAM network is to calculate the contribution
scores at each site then generate new peptides with mutating the amino acid with lowest contribution score. Here we take 9-mer as an example

CNN-based networks are already applied to the predic-
tion of MHC-peptides binding affinity [20, 41]. Neverthe-
less, existing studies only focus on high accuracy without
uncovering the binding mechanisms which the network
learned. We ought to focus on the interpretability of the
network.

When deciding on the layers of the network, an impor-
tant issue is to take the overfitting into account. Due
to the shortage of data, a deep learning method should

be cautiously applied to avoid overfitting. Therefore, we
apply a shallow network. The network contains two one-
dimension (1-D) convolutional layers representing fea-
tures from a low level and high level, respectively. The first
convolutional layer contains 16 filters and second convo-
lutional layers contain 32 filters. The strides and kernel
sizes of both layers are one and seven. These values are
small due to that the length of peptides binding to MHC-I
is usually short.

Fig. 2 MHC-CNN predictor (The prediction part of our MAM Network). Two 1-D convolution layers are used to extract the hidden features. Global
average pooling layer is to replace fully-connected layer and calculate the weights of every feature. Then two dense layer is to merge the features
from two levels into one final binding score. The input of our predictor is peptide’s representation matrix while the output is the binding probability.
Here we take 9-mer as an example
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Global average pooling layer
Many CNN networks adopt the fully-connected (FC) layer
after the convolutional layers. However, fully-connected
layer mitigates the spatial features [42]. Besides, it is hard
to explain the fully connected layers which will lead to the
black box problems. To preserve the ability of localization
in convolutional layers and meanwhile to avoid the loss
of explainability, we decide to use global average pooling
(GAP) layer instead of fully connected layer.

A GAP layer has the following advantages. First, we can
interpret how each filter contributes to the MHC-peptides
binding affinity. Second, it reduces a large number of
parameters of the fully connected layer and thus reduces
the risk of overfitting. Third, it makes no restrict to the
size of input data, which denotes that we can use this work
to deal with the peptide with any length while the fully
connected layer can only adopt one certain dimension.
The GAP network is represented by the formula below:

c =
∑

j
(Mj · p(Fj)), (1)

where c denotes the total feature contributions of a certain
level while Mj denotes the contribution weights. Function
p(.) is 1*1 pooling layer and Fj denotes the jth feature in
last convolutional layer. The contribution parameters are
learned by backpropagation.

We use a dense layer, which owns one weight without
bias as our GAP layer.

Multi-level Feature combination
Prior experiments indicate the high-level hidden features
solely cannot address the prediction problem and gener-
ation process well. It may be due to that the high-level
hidden features (or tight features) do not reveal the real
motifs completely. Hence, multi-level features need to be
applied to our network. To better incorporate the vari-
ous features’ contribution from different levels, we apply
the voting method [43] to merge different level hidden
features. The multi-level merging model is given by

P = sigmoid
(

∑

i
Wi · ci

)
, (2)

where P is the final predicted probability of assuming that
this peptide is a binder to the certain MHC molecule. The
value of P ranges from 0 to 1; where the peptide is pre-
dicted as the binder when the P value approaches 1 and
as non-binder when the P value approaches 0. Wi denotes
the weight for ith level hidden feature while ci denotes
the ith hidden feature. sigmoid(.) stands for the activation
function as sigmoid function.

Model averaging merge
In this study, we train multiple models with different ran-
dom initialization and save the graph when there’s no

improvement for training. Then we choose the averaging
method to merge both prediction results and site scores
results.

Loss function
Since we aim to extract the motifs through learning, we
only use 0 and 1 to represent the peptide is binder (which
IC50, an experimental measurement to quantify the bind-
ing affinity, is less than 500 nM) or non-binder (which
IC50 is more than 500 nM). In this way, the binding prob-
ability prediction will be a binary classifier. The binary
cross-entropy [44] loss function is chosen for our network
loss function.

Generation
Binding motifs will be essential to generate peptides with
high binding affinity. The first step is to calculate the con-
tribution of each amino acid of peptides at each position.
We extract the weights from the well-trained network for
mapping the contribution vector to the binding affinity,
which is shown as the weights extraction flow in Fig. 1 (the
dotted line in purple).

Motifs activation map layer
When the neural network learns the contribution weights
in a different level and different features, how to con-
struct a map (or a connection) from the hidden features
to the contributions of each site is important. The high
contribution of the site reveals the motifs in the peptide-
MHC binding mechanism. Inspired by Class Activation
Map method [45], we design Motifs Activation Map
layer(MAM layer) according to the formula below:

Sk =
∑

i
mi ·

∑

j
(Wij · (Fijk)) (3)

h � sign(Sk), (4)

where sk is the contribution value of kth site that stands
for contribution to the binding probability, Fijk is the jth

hidden feature of kth site (the kth out of the whole length of
peptide) in the ith level. Wij is the contribution weight for
the jth hidden feature of the ith level. mi stands for the ith

level contribution weights from the merge layer. Formula 3
shows how to get the precise site rank in each peptide. h is
defined as the high contribution of each site. We define h
in Formula 4 and we think the site which exhibits negative
contribution to the affinity scores cannot be the motifs.
Figure 3 shows the calculation process of low level’s sites
contribution. Low-level CNN feature is output from the
first convolutional layer, and weights are called from the
well-trained network (the dotted line in purple).
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Fig. 3 The visualization of our low-level Motifs Activation Map
network. Take the example of one 9-mer peptide, converting to the
feature matrix with the shape of 9× 16 (16 is the kernel size of the first
1-D convolutional layer) out from the first convolutional layer. The
representation of the site, 9, is preserved. Then using the W1 matrix to
add each feature from the low-level weight and collect together.
Then the feature matrix of size 9× 1. As the low-level feature with
respect to sites, to get the final site rank, we give a weight for low level
and then merge all levels feature matrices together. the final result’s
shape is still 9*1, we preserve the length through the calculating of
sites contribution vector and it provides intuitive information for us to
compare the contribution to the binding probability of each site

Mutation
After getting the contribution of each site of the peptide,
we can extract the motifs from the MHC-peptide bind-
ing mechanism. To generate a new peptide of high binding
affinity, the next step is to preserve the motifs and mutate
the other amino acids in the peptide. But before creating
the new peptide, we need to explain a biological or chem-
ical conclusion drawn by other scholars “The non-motifs
sites contribute little to the MHC-Peptide binding [46]”.

According to this conclusion, if we fix these motifs and
mutate other sites with other amino acids, we can generate
new peptides with high binding affinity for sure. Specifi-
cally, we rank the score list of each site in a peptide and
convert the amino acid on the site with the lowest score to
other amino acids randomly. Notably, the peptides choos-
ing for generation only are those predicted to be binders
(that is, the value of IC50 is less than 500 nM).

Transfer Learning
Through the method mentioned above, we can gain
many new generational high binding affinity peptides to

a specific MHC. However, how can we use this method
in other MHC? Comparing with the known abundant
peptide datasets of the HLA-A*0201, other MHC-peptide
pairs are only discovered a little and the peptide amount
is not sufficient that they cannot be trained from scratch
(it will quickly cause overfitting). Thus, a new training
method needs to be proposed for the MHC with a small
dataset.

According to the property of MHC [46], some are
related and similar (aka subtype) while others are alien-
ated. This provides insights that we ought to use similar
motifs to represent the binding mechanism of peptides
and similar MHCs.

Basing that two structure similar MHC molecules have
the similar binding mechanism to peptides, we can make
a reasonable inference that two structure similar MHC
molecules have similar motifs. Therefore, we decide to
use two transfer learning method to the different MHC
according to their relationship to the most significant
dataset from allele HLA-A*0201. For the alienated MHC
molecule, we take advantage of the fine-tune method
while for the similar MHC, we exert the direct transfer
method (also known as zero-shot learning method [47]).

Results
We downloaded the MHC-I peptide datasets from the
IEDB [48]. We filtered, processed, and prepared the data
according to the guidelines in Vang’s work [10]. The
amount of highly-binding-affinity peptides of different
allele subtypes varies substantially. The 9-mer peptides
of HLA-A*0201 are 13,088 while the 9-mer peptides for
HLA-A*0206, HLA-B*2705, HLA-A*6802, and Mamu-
A1*001:01 are only 3062, 1966, 3764 and 899, respectively.
To demonstrate the MAM model, we choose the rep-
resentative MHC alleles as HLA-A*0201, HLA-A*0206,
HLA-B*2705, HLA-A*6802, and Mamu-A1*001:01 with
8-mer to 11-mer peptide lengths. These MHCs will help
us to evaluate the model comprehensively.

We have two subproblems, the first is binding affinity
predictions, and the second is peptide generation,

For MHC datasets in human such as HLA-A*0201,
HLA-A*0206, HLA-B*2705, and HLA-A*6802, we use an
IEDB independent dataset for both binding affinity pre-
diction and peptide generation which leads to the propor-
tion of training dataset and testing dataset is approximate
to 0.99:0.01 (These details of IEDB set are introduced
in [10]). The IEDB numbers of these datasets are IEDB
1029824, 1028790, IEDB 1029125 and IEDB 1028790
respectively.

For MHC datasets in animals (like Macaca rhesus), such
as Mamu-A1*001:01, we split the dataset into 0.95:0.05 for
binding affinity prediction and peptide generation; that is,
95% peptides belong to the training set and 5% of peptides
belong to the testing set for prediction and generation.
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We slightly increase the proportion of testing dataset here
in order to better evaluate the generation performance
under these datasets. Basing the fact that inputting the
training dataset for generating peptides will lead to over-
performance, therefore testing dataset is inputted into
the generator for convincing performance evaluation. As
the datasets in Macaca rhesus (like Mamu-A1*001:01)
are generally smaller than those in human, so we slightly
increase the proportion of testing dataset from 0.01 to
0.05. As a consequence, we generate a reasonable amount
of peptides for the following analysis and evaluation.

Training details
The network is built with Keras library [49]. The program
is run on a 1080ti. Most of the training process termi-
nated within 400 epochs. Each model takes advantage of
early stopping method with patience = 20, which means
the training will stop when 20 epochs have no improve-
ment. The training time is between 5 min to 10 min for 10
times random initialization. We also use l2 regularization
(0.01) and dropout method to restrict kernels and avoid
over-fitting. The details of our model are in Table 1.

Evaluation criteria
1) SRCC, AUC

We use Spearman’s rank correlation coefficient
(SRCC) and area under the receiver operating
characteristic curve (AUC) to evaluate the
performances.

2) high-affinity rate
High-affinity rate depicts the proportion of
high-affinity peptides among the total generated
peptides, and the binding affinity values are from the
result of IEDB prediction source

Table 1 Architecture of MHC-CNN network

Type Notes

Input layer

Embedding(each site vec dim = 15) Finally build N*15 matrix(N is the
mer number in peptide, N is 9
denotes 9 mer)

Conv1D[filter_size=16,
filter_length=7] + LeakyReLU(0.3)

Low-level feature

Dropout(0.25)

Conv1D[filter_size=32,
filter_length=7] + LeakyReLU(0.3)

High-level feature

Dense layer1(1) without bias Global averaging Pooling network,
input is the first Conv1D

Dense layer2(1) without bias Global averaging Pooling network,
input is the second Conv1D

Dense layer3(1) without bias Fusion of the different level GAP
layers(aka voting method)

Sigmoid [prediction]

(http://tools.iedb.org/mhci/). All the options are all
default except the MHC allele type and peptide
length. We regard IC50 is less than 500 nM as
high-affinity peptides, which is the common
conversion adopted by the community [10, 18]. We
use the high-affinity rate as the evaluation criteria for
generated peptides.

Evaluation of network architectures
The evaluation of network architectures is shown in
Tables 2 and 3. Table 3 shows, the highest AUC is from two
convolutional layers with multiple feature fusion model.
The SRCC score of 2CNN+FC is the highest among all
the candidates, but the AUC is less than our proposed
network (0.56 to 0.593).

For the generation performance, comparing with ran-
dom generation, all the models reach higher scores.
It provides us with insights that all the models we
proposed have the ability to generate high-affinity
peptides.

As to the high-affinity rate, with the increment of the
number of layers, the score decreases to a low value (from
0.813 to 0.481). The model fusion method can outper-
form others greatly. It is mainly because a fixed length
CNN may extract feature with a certain size and it is
inadequate to recognize the standard motifs which have
a complex spatial relationship. Accordingly, we apply the
multi-feature fusion method.

Moreover, the SRCC, AUC and the high-affinity rate
are connecting tightly. High SRCC and AUC mean high-
affinity which reveals that our model has ability to extract
meaningful motifs.

Evaluation of generated peptides between various k-mers
and MHCs
We focus on the peptide generation problem in this work.
As an intermediate result, we evaluate the binding affinity
prediction. Table 4 demonstrated that our model outper-
forms the state of the art methods in terms of AUC. This

Table 2 Binding Affinity Prediction Performances of different
network architectures

Model SRCC AUC

2CNN+FC 0.178 0.56

2CNN + GAP 0.083 0.554

1CNN + GAP 0.119 0.575

2CNN + muti-GAP 0.117 0.576

3CNN + GAP 0.139 0.59

The training dataset is HLA-A*0201 while the test dataset is IEDB 1029824
HLA-A*0201 segmented from HLA-A*0201. FC denotes full-connected layer. SRCC
stands for Spearman’s rank correlation coefficient and AUC stands for area under the
receiver operating characteristic curve. All the models are well-trained. “A CNN+B
GAP” represents A CNN layers and B Global Pooling Layers in the feature caught
part. The “2CNN + muti-GAP” is our final MHC-CNN predictor

http://tools.iedb.org/mhci/


Xiao et al. BMC Bioinformatics 2018, 19(Suppl 19):516 Page 20 of 188

Table 3 Generation Performances of different network
architectures

Model high-affinity rate

2CNN + GAP 0.756

1CNN + GAP 0.813

2CNN + muti-GAP 0.859

3CNN + GAP 0.481

random data 0.05

The dataset is HLA-A*0201. Except for the random data model, all the model is a
variety of MAM network. High-affinity rate denotes the fraction of peptides with
high affinity in all the generated peptide. Random data is to create data randomly at
all sites. GAP stands for global averaging pooling. “A CNN + B GAP” represents A
numbers of CNN layer and B numbers of Global Pooling Layer in the feature
extraction part. All the definitions we mentioned are the same

indicated that the prediction model has a great potential
in the generation or other relative areas. The prediction
and the generation problems own similar features.

Table 5 displays the results of the zero-shot transfer
learning with initial learning dataset as A*0201. The most
significant improvement is the generated peptides for
B*2705, and the second one is the peptides of Mamu-
A1*00101. It is evident that the MHC has a farther dis-
tance to the A*0201 is the one which shared fewer motifs
with A*0201. For examples, the results for A*0206 have
a better performance than A*6802, the results of HLA-A
alleles (A*0201, A0206, A*6802) are better than HLA-B
(B*2705), and the human alleles are better than mam-
malian alleles (Mamu-A1*001:01). After fine-tuning, the
transfer learning has a much better performance which
suggests the models have a good extendibility; that is, and
after fine-tuning, the farther MHC alleles from the initial
dataset have a more significant improvement of the high-
affinity rate and fine-tune method aids to catch the motifs
to the specific MHC.

Usually, the relations between human’s MHCs are
tighter than those between human and animals. From
Fig. 4, though HLA-A alleles still have higher high-affinity
rates than B*2705 (HLA-B allele) and Mamu-A1*001:01
(rhesus macaque allele), Mamu-A1*001:01 have a higher
high-affinity rate than HLA-B allele B*2705 with cer-
tain lengths. It mainly due to the HLA-B dataset with

Table 4 Prediction performance comparison of our MHC-CNN
with other networks

Model SRCC AUC

NetMHCpan [52] 0.071 0.546

sNebula [53] 0.06 0.539

HLA-CNN [10] 0.178 0.56

MHC-CNN 0.117 0.576

All the training dataset is HLA-A*0201 while the testing dataset is IEDB 1029824
HLA-A*0201 segmented from HLA-A*0201. MHC-CNN denotes our best
performance network architecture: 2CNN+multi GAPs. The bold face denotes the
best performance of the column

Table 5 Transfer learning methods for representative MHC alleles

MHC allel SRCC AUC high affinity
rate1

transfer
learning
method2

Improvement3

A*6802 0.499 0.817 0.9 fine-tune 0.61

0.058 0.537 0.29 zero-shot

A*0206 0.458 0.778 0.75 fine-tune 0.08

0.378 0.73 0.67 zero-shot

B*2705 0.701 0.929 0.92 fine-tune 0.92

0.167 0.602 0 zero-shot

Mamu-
A1*001:01

0.755 0.943 0.839 fine-tune 0.809

0.256 0.65 0.03 zero-shot

A*0201 0.117 0.576 0.859 originally

*The length of the peptides for training transfer learning is nine.
1The high-affinity is scored by http://tools.iedb.org/mhci/.
2There are two types of transfer learning. Fine-tune indicates keeping training on the
basis of the original model with a smaller learning rate ( 1

10 learning rate). Zero-shot
indicates that direct transferring without further training. Originally indicates the
model is the well-trained model that all the transfer learning is based on.
3the Improvement stands for the increase of high-affinity rate from zero-shot
transfer method to fine-tune method

high-affinity is more insufficient than HLA-A dataset and
datasets from mammiferous MHC alleles.

Evaluation on the motifs extraction
Based on the results in Table 5, we collect the gener-
ated peptides to demonstrate the network ability in motifs
extraction. As the training set is all from HLA-A*0201’s
9-mer dataset, we firstly generate 9-mer peptides, and
after fine-tuning, we generate 10-mer peptides. To eval-
uate the performance of motifs extraction, we use all the
generated peptides to produce the heatmap, boxplot, and
sequence logos as shown in Fig. 5.

Fig. 4 Performance of the generation method for different length
peptides. X-axis represents the length of generated peptides while
Y-axis is the high-affinity rate of generated peptides. Different colors
indicate the peptides are generated from different MHC datasets. All
the peptides are generated through zero-shot transfer learning upon
the original trained model of A*0201 allele

http://tools.iedb.org/mhci/
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(a) (b) (c)

(d) (e) (f)
Fig. 5 The top row represents heatmap (a), boxplot (b) and seq2logo (c) of HLA-A*0201 allele’s new peptides with 9 lengths generated from the
well-trained network while the bottom row represents heatmap (d), boxplot (e) and seq2logo (f) of 10-mer peptides generated using fine-tune
method corresponding to same allele. In heatmap, the horizontal axis indicates the site of peptide and the vertical axis indicate each peptide from
the testing dataset, each pixel denotes the contribution of a certain site on the certain peptide to its binding affinity, where the lighter color is, the
more contribution it represents. In the boxplot, each box collects all the contribution of peptides in the certain site and find out the average
contribution to the binding affinity. We believe the site is important to this length peptide’s binding affinity if only the average is greater than zero.
And in sequence logos, on the vertical, the logo distribution intuitively depicts the amino acid frequencies on each site of the peptides

As shown in Fig. 5a, we can observe the color is much
lighter in columns 1, 2, 8 and 9 than the color in column
3, 4 and 7, which suggests in the most generated peptides
with 9 lengths, the site 1, 2, 8 and 9 contributed more
important to the binding affinity, and the sites 3, 4 and 7
contributed less to the binding affinity.

Compared with Fig. 5b, we can find that sites 1, 2, 8 and
9, which are regarded as more important from heatmap.
The site 3, 4 and 7 contributed less, the average is less than
zero. The boxplot also support the observations. After
analyzing from heatmap and boxplot, we can quickly con-
clude how each site influences on the binding affinities of
the peptides to HLA-A*0201.

In sequence logo of Fig. 5c, we can conclude the amino
acid frequency of each site, which suggests the amino
acid contributions in each site to the binding affinity,
which is directly called from network’s training. Combin-
ing Fig. 5a, b, c, we can figure out the specific amino
acids at certain sites of 9-mer peptide contributed to
the binding affinity, which we called the motifs. For
example, to site 9, Valine (“V”) is the most contributory
while Leucine (“L”) and Isoleucine (“I”) rank the second
and third, respectively. We can conclude Leucine (“L”)

at site 2, Valine (“V”) and Leucine (“L”) at site 9 largely
influence the binding affinity between 9-mer peptides and
HLA-A*0201.

Similarly analyzing on the 10-mer peptides from HLA-
A*0201, combining Fig. 5d, e, f we can figure out the
important site as 1, 2, 9 and 10. At site 2, Leucine (“L”) is
much important, while to site 10, Leucine (“L”) and Valine
(“V”) are both important.

Figure 5 shows motifs extraction by the network for the
HLA-A*0201 dataset. To understand the motifs of other
MHC dataset, we collect the HLA-A*0206 9-mer, HLA-
B*2705 9-mer, and Mamu-A1*001:01 9-mer datasets to
separately fine tune the present network and generate
the peptides. We also use these peptides to produce the
heatmap, boxplot and sequence logos as shown in Fig. 6.

From Fig. 6a, Leucine (“L”) at site 2, Leucine (“L”)
and Valine (“V”) at site 9 largely contribute to the bind-
ing affinity between 9-mer peptides and HLA-A*0206.
From Fig. 6b, the number of sites with average posi-
tive score is about 5, and the sequence logo shows great
variety at each site (every amino acid’s frequency dis-
tribute evenly), so the motifs of HLA-B*2705 are numer-
ous and unlike motifs of HLA-A*0201 and HLA-A*0206.
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Fig. 6 The heatmaps, boxplots and seq2logoes of HLA-A*0201, HLA-A*0206, HLA-B*2705 and Mamu-A1*001:01 allele’s new 9-mer peptides with 9
lengths generated from the well-trained network using fine-tune method. After separately fine-tuning from the well-trained network, we generate
some 9-mer peptides with high-affinity to certain representative MHC, and they are (a) HLA-A*0206, (b) HLA-B*2705 and (c) Mamu-A1*001:01. The
instructions of heatmap, boxplot and sequence logos see Fig. 5’s legend in detail

Figure 6c indicates only Leucine (“L”) and Isoleucine (“I”)
at site 9 largely influence the binding affinity between
9-mer peptides and Mamu-A1*001:01. The Threonine
(“T”) at site 2 and Proline (“P”) at site 3 are outstanding
in sequence logos, however, they do not contribute to the
high-affinity, as we can conclude from the heatmap and
boxplot that the site 2 does not have positive contribution
to the binding affinity.

Separately compared with the observed motifs from
HLA-A*0201 9-mer peptides, the motifs in HLA-A*0201
(Leucine at site 2, Valine and Leucine at site 9) and HLA-
A*0206 (Leucine at site 2, Leucine and Valine at site 9)
are very close. But motifs of HLA-B*2705 and Mamu-
A1*001:01 much differ from motifs of HLA-A*0201.
Basing HLA-A*0201 and HLA-A*0206 both belong to

same supertype HLA-A2 because of they share common
binding features to peptides, we think the motifs extracted
from our network are similar to the features and they are
in accordance with the aggregation of supertype A2.

Discussion
In this section, we would like to discuss the effectiveness
of deep learning in MHC-Peptide binding issue.

Is deep learning suitable for an MHC-Peptide binding
problem?
We think this answer is yes. But we ought to use them in
a more reasonable and circumspect way rather than abuse
this method. As far as we know, deep learning methods do
not outperform the traditional method greatly [41] and if
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those who do not be familiar with the parameter tuning,
he may probably get a worse result. Moreover, due to the
limitation of the data, deep learning method are consed.

But why we still focus on the deep learning method?
The answer is the explainability of deep learning. With the
help of feature visualization methods, we can visualize the
relation between various locations which can not be easily
drawn from a human. That is one of the advantage of deep
learning.

Conclusion
Summary
We design the network for both predicting the bind-
ing probability and extracting motifs to produce new
peptides. Also, our experiment demonstrates that our
algorithm can generate new peptides with high binding
affinity, which in turn indicates motifs are available and
reasonable with good performance.

Future work
As for the future work, the proposed topics are as follows:

• Expanding the application of the network to peptides
of MHC-II, basing the core combination region in the
binding between MHC-II and peptides, I’m sure the
performance will be perfect in motifs extraction.

• Improving the generation method. The present
generated approach largely depends on the present
peptides data, what if directly generating new
peptides after learning the binding motifs? We think
using more advanced generators to help with peptides
generation will be the next objective for further
researchers. For example, generative adversarial
network [50] and adversarial autoencoder [51].

• Adding more information of the binding between
MHC and peptides for better modeling the
MHC-peptide binding mechanism, e.g. MHC
sequence and PDB structure’s information [21].
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