
RESEARCH Open Access

DLAD4U: deriving and prioritizing disease
lists from PubMed literature
Junhui Shen1, Suhas Vasaikar2,3 and Bing Zhang2,3*

From The International Conference on Intelligent Biology and Medicine (ICIBM) 2018
Los Angeles, CA, USA. 10-12 June 2018

Abstract

Background: Due to recent technology advancements, disease related knowledge is growing rapidly. It becomes
nontrivial to go through all published literature to identify associations between human diseases and genetic,
environmental, and life style factors, disease symptoms, and treatment strategies. Here we report DLAD4U (Disease
List Automatically Derived For You), an efficient, accurate and easy-to-use disease search engine based on PubMed
literature.

Results: DLAD4U uses the eSearch and eFetch APIs from the National Center for Biotechnology Information (NCBI)
to find publications related to a query and to identify diseases from the retrieved publications. The hypergeometric
test was used to prioritize identified diseases for displaying to users. DLAD4U accepts any valid queries for PubMed,
and the output results include a ranked disease list, information associated with each disease, chronologically-
ordered supporting publications, a summary of the run, and links for file export. DLAD4U outperformed other
disease search engines in our comparative evaluation using selected genes and drugs as query terms and
manually curated data as “gold standard”. For 100 genes that are associated with only one disease in the gold
standard, the Mean Average Precision (MAP) measure from DLAD4U was 0.77, which clearly outperformed other
tools. For 10 genes that are associated with multiple diseases in the gold standard, the mean precision, recall and
F-measure scores from DLAD4U were always higher than those from other tools. The superior performance of
DLAD4U was further confirmed using 100 drugs as queries, with an MAP of 0.90.

Conclusions: DLAD4U is a new, intuitive disease search engine that takes advantage of existing resources at
NCBI to provide computational efficiency and uses statistical analyses to ensure accuracy. DLAD4U is publicly
available at http://dlad4u.zhang-lab.org.

Keywords: Gene-disease association, Drug-disease association, Literature mining, Web application, Information
retrieval

Background
A key aspect of biomedical research is to study genetic, en-
vironmental, and life style factors associated with human
diseases, symptoms of diseases, and treatment strategies for
diseases. Due to recent technology advancements, disease
related knowledge is growing rapidly. It becomes nontrivial

to find comprehensive answers for simple and common
questions such as “Which diseases are associated with the
MTHFR gene?” and “Which neoplasms have been treated
by pembrolizumab?”. To answer such questions requires
not only retrieving relevant publications through the
PubMed search engine, but also to read, and prioritize dis-
ease lists. The challenge is to prioritize results on-the-fly
without losing precision.
To consolidate disease-related knowledge, many data-

bases have been developed. For example, the Online
Mendelian Inheritance in Man (OMIM) database pro-
vides an authoritative collection of the relationships
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between human diseases and genes [1]. Gene-disease re-
lationships identified from genome-wide association
studies (GWAS) and phenome-wide association studies
(PheWAS) have been carefully curated and documented
in databases such as the Genetic Association Database
(GAD) [2], the GWAS catalog [3], and the PheWAS
catalog [4]. The Comparative Toxicogenomics Database
(CTD) [5] focuses on the effects of environmental com-
pounds on human health and contains manually curated
information about chemical–gene/protein interactions,
chemical–disease and gene–disease relationships. These
databases are valuable resources for the whole biomed-
ical research community. Nevertheless, due to the explo-
sive growth in biomedical literature, manually curated
databases are difficult to update, and incompleteness is
becoming a well-recognized problem [6].
Text mining tools have been developed to computa-

tionally identify disease-related relationships [7–9]. As
an example, COREMINE [10], which is an extension of
PubGene, is a public search engine to identify relation-
ships between biomedical terms, including genes, drugs
and diseases. COREMINE and similar text mining tools,
such as Literature-derived Human Gene-Disease Net-
work (LHGDN) [11] and Bio-Entity Finder and Relation
Extraction (BeFree) [12], usually depend on heavy com-
putation, and the accuracy of the resulted disease-query
relationships has not been systematically assessed.
In addition to text mining, other methods have also

been developed to predict disease-related relationships.
CTD infers new relationships using a “guilt-by-associa-
tion” approach. For example, if gene A shares a curated
interaction with chemical C, and chemical C shares a
curated association with disease B, an association be-
tween gene A and disease B is predicted [13]. Although
many new associations could be inferred based on this
approach, they may include a large number of false
positives.
Here, we describe DLAD4U (Disease List Automatic-

ally Derived for You), a web-based tool for disease re-
trieval and prioritization. DLAD4U is built upon existing
resources at the National Center for Biotechnology In-
formation (NCBI) to gain computational efficiency. The
simple interface of DLAD4U facilitates intuitive tool
usage and easy interpretation of results. We evaluated
the quality of the disease lists generated by DLAD4U
using manually curated “gold standard” lists and com-
pared the performance of DLAD4U with related tools.

Methods
Publication retrieval
DLAD4U uses the eSearch API developed by NCBI to
search the MEDLINE database and to retrieve publica-
tions on the fly [14]. For each query term, eSearch out-
puts an XML file with various types of information. The

XML file is then parsed to obtain a list of PubMed IDs
(PMIDs) associated with the query.

Disease retrieval
Diseases related to the PMIDs are identified using a pre-
computed publication-to-disease link table. To build the
link table, we first acquired PMIDs for all papers pub-
lished since January 1, 1960. Next, we used NCBI’s eFetch
API [14] to retrieve data records for all PMIDs in the
XML format. The XML files include MeSH (Medical Sub-
ject Headings), which is the National Library of Medicine
(NLM) controlled vocabulary thesaurus used for indexing
articles for PubMed. MeSH terms located under C01-C26,
F02 and F03 in the MeSH Tree Hierarchy [14] were used
to determine publication-to-disease relationships. MeSH
terms “Disease”, “Disease Progression”, “Disease Attri-
butes”, and “Disease Models, Animal” were removed
because the lack of specificity. The current
publication-to-disease link table was built on November
17, 2016 and includes 5013 diseases, 13,000,996 publica-
tions, and 13,058,498 publication-to-disease relationships.

Disease prioritization
DLAD4U uses the hypergeometric test to prioritize
retrieved diseases for a query term. For a given query
Q and a disease D, let m be the total number of
publications in the publication-to-disease link table,
among which j publications involve disease D (i.e.,
disease-related publications). Let us further assume
that n out of the m publications are retrieved for the
query (i.e., query-related publications) and k out of
the n involve disease D. Our method calculates the
probability of observing k or more disease D-related
genes when n publications are randomly selected
from m. Disease D is then scored using the following
formula:

SD ¼ − log10 f m; n; j; kð Þ;

where

f m;n; j; kð Þ ¼
Xmin n; jð Þ

i¼k
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For diseases with the same score, we rank them by the
number of publications describing the disease in the link
table.

Web implementation
The DLAD4U user interface was developed in HTML
and PHP languages based on our previously published
GLAD4U framework [15].
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Performance evaluation and comparison
To assess the performance of the DLAD4U algorithm,
we used gene and drug/chemical terms as queries.
Manually curated gene-disease associations in GAD and
gene/drug-disease associations in CTD were used to
establish the gold standard.
We downloaded the GADCDC_data.tsv file from

GAD (https://geneticassociationdb.nih.gov, the data
was frozen as of 09/01/2014). Gene-disease associa-
tions in GAD used MeSH descriptors for diseases.
After parsing the field “MESHDIS”, we obtained the
curated gene-disease associations from GAD. We re-
trieved gene-disease and drug/chemical-disease associ-
ations from the CTD (http://ctd.mdibl.org/downloads/
) on 11/17/2016. Among the 29,645 curated
gene-disease associations in CTD, the vast majority
used MeSH descriptors for diseases, but 5.16% used
OMIM descriptors. To facilitate the integration with
GAD data, we only retained CTD gene-disease associ-
ations using MeSH descriptors for diseases. According
to the “Direct Evidence” code, these associations were
divided into two parts: CTD_curated and CTD_-
inferred. The chemical-disease associations marked as
“therapeutic” in CTD_curated were used as the gold
standard for drug-disease associations. For
gene-disease associations, we used the intersection or
union of CTD_curated and GAD to define gold stan-
dards with different levels of stringency.
For performance comparison, we included CTD_in-

ferred as described above and COREMINE. The disease
names used by COREMINE were mapped to MeSH
terms by “MeSH Browser” [16] or “MeSH ON DE-
MAND” [17] developed by NLM. The “MeSH Browser”
can directly identify the alias of a MeSH term and the
mapping by “MeSH ON DEMAND” is supervised by
biologists.
To evaluate the retrieval performance, we used several

metrics including precision, recall, F-measure, and Mean
Average Precision (MAP). F-measure is calculated as
2pr/(p + r), where p represents the precision defined as
|{relevant diseases} ∩ {retrieved diseases}|/|{retrieved dis-
eases}| and r represents the recall defined as |{relevant
diseases} ∩ {retrieved diseases}|/|{ relevant diseases}|. To
measure precision at a fixed low level of retrieved re-
sults, we calculated precision at the top k retrieved dis-
eases, where k = 10, 50 and 100. The MAP score for a
set of queries is the mean of the average precision scores
for each query:

MAP ¼ 1
Q

XQ

q¼1

AveP qð Þ

where Q is the number of queries, and AveP(q) is the
average precision scores for query q.

Results
DLAD4U user interface accepts any valid queries for
PubMed, and the output results include a ranked disease
list, information associated with each disease,
chronologically-ordered supporting publications, a sum-
mary of the run, and links for file export (Additional file
1: Figure S1). Because the gene-disease associations and
drug-disease associations are the best studied
disease-related relationships, we used gene terms and
drug/chemical terms as queries to evaluate the quality of
the retrieved disease lists.

Gene-disease association distribution
The numbers of gene-disease associations curated by
CTD_curated and GAD are shown in Fig. 1. The overlap
between the two databases was less than 5% of the total
associations. Among the gene-disease associations in the
overlap of GAD and CTD_curated, we calculated the
number of diseases associated with each gene, and 57%
genes were associated with only one disease (Fig. 2). We
labeled this subset of associations as one-to-one
gene-disease associations and the others as one-to-many
gene-disease associations. Because more than half of
gene-disease associations were one-to-one associations,
we focused on these associations first to evaluate the
performance of DLAD4U. Performance on one-to-many
gene-disease associations were evaluated separately.

One-to-one gene-disease associations
For the one-to-one gene-disease associations, we used
the 100 most confident gene-disease associations se-
lected based on the number of supporting publications
provided in the two databases as the gold standard for
the evaluation. For the selected associations, the num-
bers of supporting publications ranged from 2 to 51 in
CTD and 2 to 131 in GAD. We excluded associations
supported by only one publication to avoid irreprodu-
cible gene-disease associations. We used the 100 genes
in these selected associations as queries to evaluate the
quality of retrieved disease lists.
We listed the ranks of the corresponding gold stand-

ard diseases in the disease lists retrieved by DLAD4U,
COREMINE and CTD_inferred, respectively, for the 100
genes in Additional file 1: Table S1. The MAP scores
and the statistics of the rank of corresponding gold
standard diseases can be found in Table 1. Among the
100 genes, 67 disease lists returned by DLAD4U ranked
the corresponding gold standard diseases at the first
place, 77 among the top 2, and 91 among the top 5,
which are all better than results from COREMINE and
CTD_inferred. The higher ranks of gold standard dis-
eases led to an MAP score of 0.77 for DLAD4U, which
is 22% higher than that for COREMINE (0.63) and an
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Fig. 2 The distribution of the number of diseases associated with each gene. This is based on the gene-disease associations reported by both
GAD and CTD_curated
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order of magnitude higher than that for CTD_inferred
(0.08).
For queries where the corresponding gold standard

disease did not rank among the top 5 by DLAD4U, Add-
itional file 1: Table S2 shows the top disease along with
the first 10 supporting publications returned by
DLAD4U. We found strong evidence supporting the re-
lationships between these non-gold standard diseases
and corresponding query genes. For example, DLAD4U
linked the APOB gene to coronary disease with 819 sup-
porting publications and a score of 1819. The APOB
gene encodes the apolipoprotein B (apoB) protein, which
is an important component of many lipoproteins that
are involved in cardiovascular disease. It has been shown
that the apoB/apoA-I ratio is superior to any of the chol-
esterol ratios in predicting the risk of coronary disease
[18]. As another example, DLAD4U linked the BCHE
gene to Alzheimer’s disease with 153 supporting publica-
tions and a score of 380. A meta-analysis based on 56
genetic case-control studies of 12,563 cases and 12,622
controls associated the BCHE gene with Alzheimer’s dis-
ease [19].

One-to-many gene-disease associations
For one-to-many gene-disease associations, we used the
top 10 genes ranked by the count of associated diseases
from the overlap of GAD and CTD_curated as queries
to evaluate the performance of DLAD4U, COREMINE
and CTD_inferred. For the gold standard, we used the
following four criteria:

1: the union of gene-disease associations in CTD_cu-
rated and GAD;

2: the union of gene-disease associations in CTD_cu-
rated and GAD with more than 1 supporting publi-
cation in each database;

3: the intersection gene-disease associations in
CTD_curated and GAD;

4: the intersection gene-disease associations in
CTD_curated and GAD with more than 1 support-
ing publication in each database.

For each query, using corresponding disease lists cre-
ated based on the above mentioned four criteria as gold
standards, we calculated precision, recall and F-measure
of the top 100 retrieved diseases returned by DLAD4U,
COREMINE, and CTD_inferred.
The precision, recall and F-measure of each query are

listed in Additional file 1: Table S3, and the mean values
are listed in Table 2. The mean precision, recall and
F-measure scores of DLAD4U are all higher than those
of COREMINE and CTD_inferred for all four criteria.
The highest mean precision is 0.85 ± 0.10 on criterion 1,
the highest mean recall is 0.86 ± 0.12 on criterion 4 and
the highest F-measure is 0.49 ± 0.08 on criterion 2. With
the stringency increased from criterion 1 to criterion 4,
the mean recall increased from 0.27 ± 0.09 to 0.86 ± 0.12,
while the mean precision decreased from 0.85 ± 0.10 to
0.13 ± 0.05 for DLAD4U. Results from COREMINE and
CTD_inferred showed a similar trend. Both DLAD4U
and COREMINE performed much better than CTD_in-
ferred, consistent with our observations in the study of
one-to-one gene-disease associations.
The precision/recall curves for the genes TNF and

NOS3 are shown in Figs.3 and 4, respectively. Preci-
sion/recall curves for the other eight genes can be
found in Additional file 1: Figures S2-S9. The preci-
sion/recall curve plot of TNF is a typical example of
the 10 genes, in which DLAD4U clearly outperformed
COREMINE and CTD_inferred (Fig. 3). However,
DLAD4U did not always have the leading position in
all conditions. For example, COREMINE had the
leading position with criterion 2 and 3 in the low re-
call zone for NOS3, but the advantage disappeared
with the increase of recall (Fig. 4).
For ranked disease lists in a web-based application,

the number of relevant diseases on the first page is
a major consideration. To measure precision at a
fixed low level of retrieved results, e.g., the top 10
results, “Precision at K” is usually used. For this pur-
pose, precisions for the top 10 (k = 10), 50 (k = 50)

Table 1 Performance evaluation of disease lists retrieved for
one-to-one gene-disease associations

DLAD4U COREMINE CTD_inferred

MAP 0.77 0.63 0.08

Rank of gold standard at top 1 67 50 5

Rank of gold standard at top 2 77 64 7

Rank of gold standard at top 5 91 77 8

Table 2 Overall performance evaluation of disease lists retrieved for one-to-many gene-disease associations

Criterion 1 Criterion 2 Criterion 3 Criterion 4

P R F P R F P R F P R F

DLAD4U 0.85 0.27 0.39 0.72 0.40 0.49 0.30 0.61 0.40 0.13 0.86 0.22

COREMINE 0.70 0.22 0.32 0.56 0.32 0.39 0.25 0.49 0.32 0.1 0.69 0.18

CTD_inferred 0.53 0.16 0.24 0.36 0.19 0.24 0.18 0.36 0.23 0.08 0.54 0.13

P Precision, R Recall, F F-measure
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and 100 (k = 100) diseases were calculated for
DLAD4U, COREMINE and CTD_inferred using all 4
criteria.
All precision values at the top 10, 50 and 100 dis-

eases for each query are listed in Additional file 1:
Table S4, and the corresponding mean precision
values are listed in Table 3. Overall, DLAD4U main-
tained the highest precision at the top 10, 50 and 100
diseases compared to COREMINE and CTD_inferred
based on all 4 different gold standards. For a few

criteria and gene combinations, COREMINE had a
higher precision at the top 10 (NOS3 on criterion 2
and 3, PTGS2 on criterion 3), however, the advantage
disappeared at the top 50 and 100 (Additional file 1:
Table S4). The highest mean precision at the top 10,
50 and 100 occurred with criterion 1 (0.98 ± 0.06,
0.92 ± 0.08 and 0.85 ± 0.10) due to the relatively loose
stringency used in criterion 1. COREMINE and
CTD_inferred also had the best performance with cri-
terion 1 compared to other criteria.

Fig. 3 Precision/recall curves for TNF. Precision/recall curves for DLAD4U, COREMINE and CTD_inferred are colored in red, green and blue respectively.
Different patterns are used to distinguish different criteria

Fig. 4 Precision/recall curves for NOS3. Precision/recall curves for DLAD4U, COREMINE and CTD_inferred are colored in red, green and blue
respectively. Different patterns are used to distinguish different criteria
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Drug/chemical-disease associations
The performance of DLAD4U was further evaluated by
drug/chemical-disease associations. The human curated
drug/chemical-disease associations in CTD_curated
were used as the gold standard. We used the top 100
drug/chemical terms ranked by the count of supporting
publications as queries and the corresponding disease as
the gold standard to evaluate the quality of the retrieved
disease lists.
For each drug/chemical query, the rank of the corre-

sponding gold standard diseases in the disease list
returned by DLAD4U, COREMINE, and CTD_inferred
is listed in Additional file 1: Table S5. Table 4 lists the
MAP scores and rank statistics of corresponding gold
standard diseases for 100 query drugs. The MAP scores
of DLAD4U (0.90) are higher than that of COREMINE
(0.77) and much higher than that of CTD_inferred
(0.15).
Among the 100 drug/chemical queries, 82 disease lists

returned by DLAD4U ranked the corresponding gold
standard diseases at the first place, 90 among the top 2,
and 97 among the top 5, which are all better than results
from COREMINE and CTD_inferred. The 3
drug-disease associations which were not in the top 5
diseases returned by DLAD4U are “Methotrexate” and
“Osteosarcoma”, “Propranolol” and “Tachycardia” and
“Vancomycin” and “Endocarditis, Bacterial” (Additional
file 1: Table S5). We noticed that all these drugs are as-
sociated with multiple diseases in the gold standard, and
the best diseases returned for these drugs were also in
the gold standard.

Discussion
DLAD4U showed better performance in discovering
gene-disease associations and drug/chemical-disease

associations compared with COREMINE and CTD_in-
ferred. COREMINE is a concept-oriented application for
mining existing biomedical literature to build disease
lists [10]. The application attempts to build the relation-
ship between publications and concepts (including dis-
eases) through text mining tools. CTD_inferred predicts
new relationships using a “guilt-by-association” approach
as described in the background section. DLAD4U is
built upon curated publication-MeSH mapping available
from NCBI. Our results underscore the high quality of
this NCBI resource and the limitation of existing com-
putational approaches, especially the “guilt-by-associa-
tion” approach that showed the poorest performance.
We noticed two main reasons for the false-positive

diseases retrieved by DLAD4U. One is the ambiguity of
the query term. For example, “REN” is the gene symbol
of the “renin” gene, and it is also the abbreviation of the
organ “renal”. Furthermore, there is a medical journal
name abbreviated “Ren Fail” (Full name is “Renal Fail-
ure”). When REN is queried, DLAD4U understands it as
both “renin” and “renal”, and returns the related disease
list. Another reason for the false-positives is the incom-
pleteness of the gold standard. The manually curated
gold standard is hard to keep up with the explosive
growth of biomedical publications. Furthermore, the
stringent criteria we used for the gold standard might
also lead to incompleteness. For example, for the gene
“CYP1A1”, the associated disease in the gold standard is
“Prostatic Neoplasms” which is supported by 38 publica-
tions in GAD and 2 publications in CTD_curated. The
query for “CYP1A1” in DLAD4U identified “Lung Neo-
plasms” as the best disease. Although this relationship is
supported by 115 publications in GAD, it is not included
in the CTD-curated, and thus is not included in our gold
standard.
A notable feature of DLAD4U is its flexibility and

user-friendliness. Because the search engine is powered
by PubMed’s API, and the application behaves similarly
to PubMed searches. Although we only used genes and
drugs for performance evaluation, the DLAD4U user
interface accepts any valid queries for PubMed, such as
proteins, pathways, biological processes, environment
factors, life style factors, phenotypes, etc. Diseases can
also be used as query terms to find other related

Table 3 Average precision at top k for disease lists retrieved for one-to-many gene-disease associations

Criterion 1 Criterion 2 Criterion 3 Criterion 4

P@ P@ P@ P@ P@ P@ P@ P@ P@ P@ P@ P@

10 50 100 10 50 100 10 50 100 10 50 100

DLAD4U 0.98 0.92 0.85 0.90 0.82 0.72 0.63 0.43 0.30 0.46 0.22 0.13

COREMINE 0.89 0.77 0.70 0.73 0.66 0.56 0.49 0.33 0.25 0.28 0.16 0.10

CTD_inferred 0.74 0.61 0.53 0.55 0.41 0.36 0.28 0.22 0.18 0.20 0.10 0.08

P : Precision

Table 4 Performance evaluation of disease lists retrieved for
drug/chemical-disease associations

DLAD4U COREMINE CTD_inferred

MAP 0.90 0.77 0.15

Rank of gold standard at top 1 69 56 5

Rank of gold standard at top 2 86 74 11

Rank of gold standard at top 5 97 91 22
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diseases. DLAD4U can screen and identify related publi-
cations, retrieve relevant disease information, rank these
diseases and finally send the result back to users. The
output of DLAD4U is a simple list of diseases relevant
to the query term along with supporting publications. In
addition, DLAD4U is almost maintenance-free by using
PubMed’s API. With frequent publication-to-disease link
table update, which is automatable, DLAD4U would be
up-to-date with current literature because queries are
performed directly against the MEDLINE library.
Because of its simplicity and flexibility, DLAD4U has

broad applications in biomedical research. For example,
colorectal cancer researchers interested in microsatellite
instability (MSI), a hypermutable phenotype with known
clinical relevance in colorectal cancer, may use DLAD4U
to identify additional cancer types with the same MSI
phenotype to perform a multi-cancer study on this im-
portant phenotype. A query in DLAD4U returned colo-
rectal cancer as the top hit, and other top-ranking
cancers included stomach cancer, endometrial cancer,
and breast cancer. Interestingly, a recent pan-cancer
study of MSI based on whole-exome data from The Can-
cer Genome Atlas (TCGA) project also identified these
four cancer types as the most MSI-prone among all 20
tumor types studied [20]. As another example, querying
DLAD4U using Abemaciclib, an FDA-approved drug for
hormone receptor–positive, human epidermal growth fac-
tor receptor 2–negative advanced or metastatic breast
cancer, revealed its potential effectiveness in glioblastoma
[21]. These examples demonstrate that DLAD4U can fa-
cilitate the design of studies on multiple diseases with
shared molecular or clinical phenotypes as well as drug re-
purposing studies.

Conclusions
We have developed DLAD4U, a new, user-friendly dis-
ease search engine. DLAD4U takes advantage of existing
resources at NCBI to provide computational efficiency
and uses statistical analyses to achieve high accuracy.

Additional file

Additional file 1: This archive contains the additional figures and tables
for DLAD4U: driving and prioritizing disease lists from PubMed Literature.
Table S1. The Rank of corresponding good standard in disease lists for
one-to-one gene-disease associations. Table S2. Top 1 disease retrieved by
DLAD4U and not listed in gold standard. Table S3. Overall quality of the
retrieved disease lists for one-to-many gene-disease associations.
Table S4. Comparison of retrieved disease lists by precision at top k for
one-to-many gene-disease associations. Table S5. The Rank of corresponding
good standard drug in the disease lists. Figure S1. DLAD4U interface.
Figure S2. Precision/recall curves for MTHFR gene. Figure S3. Precision/recall
curves for IL6 gene. Figure S4. Precision/recall curves for TNF gene.
Figure S5. Precision/recall curves for TGFB1 gene. Figure S6. Precision/
recall curves for ACE gene. Figure S7. Precision/recall curves for PTGS2
gene. Figure S8. Precision/recall curves for SOD2 gene. Figure S9. Precision/
recall curves for IL1B gene. (PDF 5291 kb)
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