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Abstract

Background: Although the etiology of chronic lymphocytic leukemia (CLL), the most common type of adult
leukemia, is still unclear, strong evidence implicates antigen involvement in disease ontogeny and evolution. Primary
and 3D structure analysis has been utilised in order to discover indications of antigenic pressure. The latter has been
mostly based on the 3D models of the clonotypic B cell receptor immunoglobulin (BcR IG) amino acid sequences.
Therefore, their accuracy is directly dependent on the quality of the model construction algorithms and the specific
methods used to compare the ensuing models. Thus far, reliable and robust methods that can group the IG 3D
models based on their structural characteristics are missing.

Results: Here we propose a novel method for clustering a set of proteins based on their 3D structure focusing on 3D
structures of BcR IG from a large series of patients with CLL. The method combines techniques from the areas of
bioinformatics, 3D object recognition and machine learning. The clustering procedure is based on the extraction of
3D descriptors, encoding various properties of the local and global geometrical structure of the proteins. The
descriptors are extracted from aligned pairs of proteins. A combination of individual 3D descriptors is also used as an
additional method. The comparison of the automatically generated clusters to manual annotation by experts shows
an increased accuracy when using the 3D descriptors compared to plain bioinformatics-based comparison. The
accuracy is increased even more when using the combination of 3D descriptors.

Conclusions: The experimental results verify that the use of 3D descriptors commonly used for 3D object
recognition can be effectively applied to distinguishing structural differences of proteins. The proposed approach can
be applied to provide hints for the existence of structural groups in a large set of unannotated BcR IG protein files in
both CLL and, by logical extension, other contexts where it is relevant to characterize BcR IG structural similarity. The
method does not present any limitations in application and can be extended to other types of proteins.
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Background
The concept of molecular similarity underlies a methodol-
ogy where molecules are grouped together based on their
biological effects, physicochemical properties and three-
dimensional structures [1]. Considering that the three-
dimensional (3D) protein structure plays a pivotal role
in protein functional characterization [2], the comparison
of the three-dimensional (3D) molecular structures is a
key technique in a variety of applications such as protein
function prediction, computer aided molecular design,
rational drug design and protein docking [3].

In the absence of known structure, alternative
approaches such as comparative modeling can pro-
vide a 3D model of a protein, related to at least one
experimentally determined protein structure. The most
comprehensive examples of these approaches are SCOP
[4] and CATH [5], protein structure classification
databases that were established to address the evolu-
tionary relationships between protein structures. They
are widely used as a benchmark for novel protein struc-
ture comparison methods and as a training dataset for
machine learning algorithms focused on protein struc-
ture classification and prediction [6]. Their rationale is
that protein structures are conserved during evolution
and the existence of a protein family would facilitate the
identification of related proteins through similarities in
their structures [7].

Techniques that define similarity between 3D structures
can be classified into three categories, i.e. (1) superpo-
sition of protein structures where alignment between
equivalent residues in not given a priori [8], (2) feature
representation of protein spatial profile in multidimen-
sional vectors [9] and (3) time series formed by the
alteration of the protein tertiary structure [10].

In the first category, the structural similarity is deter-
mined by scaling, rotation, transformation and then
super-positioning [11]. Numerous scoring functions have
been proposed towards the definition of the positional
deviations of equivalent atoms upon rigid-body super-
imposition. Aligners were implemented with the abil-
ity to identify similarities between proteins with large
conformational changes. Various metrics for comparing
and scoring identity between two protein structures are
employed but the most commonly used are p-values
[12] and root mean square deviation (RMSD) [2]. High-
lighted aligners in this category are represented in Table 1.
Although this type of approach is very effective, it is a
computationally expensive and time consuming method.

The second approach includes all the shape-based
methods. In shape-based approaches, the protein is
treated as a 3D object and represented by a multidi-
mensional vector that uniquely characterizes the object.
Consequently the comparison between feature vectors is
characterized by lower complexity and higher accuracy.

Table 1 Distance metrics that measure the average distance
between the atoms of superimposed proteins

Similarity metric Method or software

RMSD MAMMOTH [55] , LGA/GDT [56]

p-value [57]

SAS score & GSAS score [58]

TM-score TM-align, Fr-TM-align [59]

S score MatAlign [60]

STRUCTAL score LOVOalign [61]

Q-score SSM [62]

Similarity search is committed through global or local
features. The global features are computed by the trans-
formation of euclidean space into a metric space that
measures the pairwise distances between the points of the
3D objects. The global features are invariant to the defor-
mations of the 3D object. The local features are computed
on each key-point of the surface by accumulating pair-
wise relations among oriented surface points into a local
histogram [3].

The last method is related to the comparison between
time series. According to this type of methodology, pro-
tein structures are translated into polygonal chains [13].
The aforementioned transformation of the 3D object to
a feature vector reduces object complexity and it can be
handled as a time series [10]. Protein tertiary structures,
such as the alpha-carbon atoms along the backbone of
a protein, essentially form a 3D polygonal chain and a
natural measure for comparing the geometric similarity
estimates the similarity between the structures.

The current work aims to categorize chronic lym-
phocytic leukemia (CLL) patients based on their 3-
dimensional protein structures of the clonotypic B cell
receptor immunoglobulin (BcR IG) amino acid (IG)
sequences following on the shape-based approach. In the
paragraphs that follow, the corresponding state-of-the-art
analysis is presented.

Geometrical descriptor vectors able to achieve very fast
comparisons especially for applications of virtual screen-
ing are described in [14, 15]. Spin Images [16] and Shape
Histograms [17] are methodologies in molecular surface
representation [18]. The former is related to local 2D
descriptors while the later exploits the global geometric
properties of the molecules. Efforts for the implemen-
tation of multi-view methods [19, 20] of molecular sur-
face representation were proved insufficient in proteins
in cases without symmetries. Computational approaches
that address the significance of small variations between
3D protein structure of high similarity are conducted in
the methodologies of [21–23].

Pattern recognition establishes approaches that extract
moments from the 3D object. Zernike moments were
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applied in [24] for a feature representation on a Position-
Specific Scoring Matrix (PSSM). Zernike moments
descriptors were utilized to extract features in each
protein PSSM forming a 42-dimensional feature vector.
Finally, machine learning methods called PCVM where
applied to accomplish classification. A similar method
that implements Legendre moments to predict protein-
protein interactions is described in [25]. Zernike descrip-
tors provide a rotation invariant ability to the protein
shape comparison as they do not necessitate structural
alignment. Additionally, they allow other characteristics
of a protein surface, such as electrostatic potentials, to
be incorporated into the descriptor vector [26]. Zernike
moments can be applied in several problems related to
protein structures with satisfactory results. Regarding
moment extraction, 2D Polar-Fourier coefficients [27] and
2D Krawtchouk moments [28] create a rotation invari-
ant feature vector by taking as input the volume of the
3D object. Spherical Harmonics [29] are widely used for a
large scale of structural similarity comparison. Although
the formation of an orthonormal 1D vector allows fast
comparisons, they present an inaccuracy in the results
that is connected to the alignment parameters.

Rigid object methodologies are inherently limited by
ignoring the flexibility of the molecule. To overcome this
limitation, approaches that respect the shape deformation
of molecules were utilized. The two main categories on
feature extraction of non-rigid approaches are: a) global-
shape-based [30, 31] and b) local-shape-based methods
[32–34]. The former usually is used to create a metric
where Euclidean space or Euclidean metrics are trans-
formed into pairwise distances between points of the 3D
object surface. The aforementioned points are invariant
to deformations of the 3D object. The final descriptor
vector is formed by the feature histograms of the dis-
tances. Local-shape-based methods sample the surface
and extract descriptors for each of the sampled local
regions. When the local descriptors are extracted then
a feature-based methodology is implemented in order to
translate them into global. Besides the discriminative abil-
ity between the proper local shape descriptors, they also
satisfy significant criteria such as fast descriptor extrac-
tion, compactness and rotation invariance.

The motivation of this study was to examine the abilities
of global and local 3D descriptors for pairwise distance
calculation, instead of applying bioinformatics-specific
similarity scores. We hypothesized that their high capabil-
ity in describing general 3D structures could be applied to
the comparison of 3D protein structures. The structures
for analysis emerged from the primary sequences of the
clonotypic BcR IG of patients with CLL.

CLL is the most common adult leukemia, with still
unclear etiology. That said, primary and 3D structure-
based reasoning strongly implicates antigen selection in

disease ontogeny and evolution [35, 36]. Molecular cat-
egorization of CLL patients based on BcR IG sequence
similarity has so far been addressed using bioinformatics
methods of structural similarity calculation [35, 37]. The
novelty of the approach proposed herein lies in the combi-
nation of current state-of-the-art bioinformatics methods
with the extraction of features arising from 3D object
recognition methods. The most up-to-date 3D predic-
tion structure algorithms were implemented to construct
patients’ models. The proposed combined methodology
achieves an efficient grouping of CLL patients in accor-
dance to their biological and clinical features, especially
in light of the recently identified stereotyped subsetsb
[37, 38]. The results confirm the original hypothesis that
the combination of bioinformatics-specific techniques,
such as TM-align, and general-purpose 3D descriptors
achieves a high discriminative power compared to using
only bioinformatics-specific methods.

Methods
In Fig. 1, a pipeline diagram presents the layers that com-
pose the proposed methodology. The method is separated
in three main levels, i.e (1) primary data collection, (2)
creation of the 3D protein structures and (3) 3D protein
structure comparison method. A baseline method raised
from pure bioinformatics approaches was utilized as a
benchmark for validation.

Extensively, the baseline benchmark consists of the fol-
lowing steps. First, the original BcR IG heavy and light
amino acid sequences of 925 CLL patients were trans-
formed to 3D protein models, using state-of-the-art pro-
tein structure prediction tools. This resulted in a set of
protein models in PDB format. For each pair of models,
structural alignment was carried out and a structural sim-
ilarity score was computed. The TM-align and TM-score
algorithms were used for the alignment and the similarity
score computation, respectively. A similarity matrix was
formed to consider the similarity scores between every
pair of models. The matrix was was ultimately used to
organize the proteins into clusters, using various existing
clustering methods.

The proposed method modified this baseline approach
by replacing the bioinformatics related TM-score to a sim-
ilarity metric between a pair of models with 3D descrip-
tors originated from the field of 3D object recognition.
Specifically, the Fast Point Feature Histograms (FPFH)
[39], 3D Shape Context (3DSC) [40], Radius-based Surface
Descriptors (RSD) [41], Viewpoint Feature Histograms
(VFH) [42] and a combination of the above local descrip-
tors where applied to the 3D structures in order to extract
the appropriate features for the comparison. The descrip-
tors were compared using the root mean square deviation
(RMSD) distance metric. The distance for every pair of
models was computed and all results were incorporated
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Fig. 1 Block diagram illustrating the proposed methodology

into a distance matrix, which was finally used to model
clustering.

Structural alignment
The TM-align algorithm [43] identifies the best
structural alignment between protein pairs by com-
bining the TM-score rotation matrix and Dynamic
Programming (DP). When comparing two protein
structures, the second model is rotated and trans-
lated appropriately, until the maximum alignment
between the two structures is achieved [44]. The
Kabsch algorithm, a method for calculating the optimal
rotation matrix that minimizes the RMSD between
two paired sets of points performed the structure
comparison.

The alignment process includes alignment over the sec-
ondary structures of the BcR IG sequences, based on
the gapless matching of the IG sequences, and alignment
using an equally weighted combination of the previously
extracted results. Heuristic iterations were applied, mean-
ing that the steps were repeated until the alignment
became stable and the highest TM-score was achieved.
The TM-score is calculated as:

TMscore = Max

⎡
⎢⎣ 1

LTarget

Lalign∑
i=1

1

1 +
(

di
d0(LTarget)

)2

⎤
⎥⎦ (1)

where, LTarget is the length of the target protein that the
source protein is aligned to, Lalign is the number of aligned

parts, di is the distance between the ith pair of residues,
and d0 (LTarget) is given by the equation:

d0(LTarget) = 1.243√LTarget − 15 − 1.8 (2)

3D descriptors used
The proposed method is based on the extraction of 3D
descriptors from the raw PDB files. Considering a pair
of PDB files, they are first aligned in space and then 3D
descriptors are extracted from them. The descriptors cap-
ture specific geometric properties of the distribution of
the atom positions. The following four types of descrip-
tors have been considered:

• Fast Point Feature Histogram (FPFH - local
descriptor)

• 3D Shape Context (3DSC - local descriptor)
• Radius-based Surface Descriptor (RSD - local

descriptor)
• Viewpoint Feature Histogram (VFH - global

descriptor)

The above descriptors are briefly described in the
following sections. In order to apply the descriptors, the
proteins are considered as 3D point clouds, where each
point of the cloud corresponds to a protein atom. For the
conducted experiments presented in this paper, the imple-
mentations contained in the PCL C++ library [45] were
used for these descriptors.
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Fast point feature histogram (FPFH)
The Fast Point Feature Histogram (FPFH) [39] represents
the angular variations in the neighborhood of each point
in the input point set. It is a modification of the Point
Feature Histogram (PFH) descriptor [46], towards faster
computation and smaller size. The PFH descriptor con-
siders the k-neighborhood around each query point i.e.
atom. For each pair of points in the neighborhood, a coor-
dinate system is formed by the pair of points and the
surface normals at these points, and 3 measures of angular
variation between the points and the normals are com-
puted. The histogram of these measures computed for all
pairs of points in the neighborhood constitutes the PFH
descriptor for the query point.

In the FPFH descriptor, instead of considering all pairs
of points within the neighborhood of the query point, only
the relationships between the query point and its neigh-
bors are initially considered. The resulting histograms
constitute an intermediate Simplified Point Feature His-
togram (SPFH) descriptor for each point. The final FPFH
descriptor is computed by adding the SPFH descriptors of
the neighbors of the query point, weighted by their inverse
distance to the query point:

FPFH(p) = SPFH(p) + 1
k

k∑
i=1

1
di

SPFH(pi), (3)

where p is the query point, k is the number of its nearest
neighbors, pi is the i-th nearest neighbor point, and di is
the distance between p and pi.

The resulting FPFH descriptor for a query point is a
33-dimensional vector, being more compact than the orig-
inal PFH descriptor, as well as faster to extract. The FPFH
descriptor is invariant to position, scale and orientation,
as the original PFH descriptor. However, due to numeri-
cal limitations, FPFH may not be completely invariant to
rotation in certain cases. For this reason, the protein files
are aligned prior to computing the FPFH descriptors, in
order to ensure that there is no rotational variance.

3D shape context (3DSC)
The 3D Shape Context (3DSC) [40] descriptor describes
the distribution of points around each point of a point
cloud. Considering each point p of the point cloud, the
support region of p is defined as a sphere centered at p.
The orientation of the sphere is determined by the surface
normal at p. The support region is divided into bins, deter-
mined by uniform divisions in the two angular dimensions
(azimuth and elevation) and logarithmic divisions along
the radial dimension.

The 3D division of the support region defines the bins of
a histogram of point counts within this region. The value
of the (i, j, k) bin, where i, j and k are indexes of the angular
and radial position of the bin, is computed by counting the

points of the point cloud that fall within the bin. However,
the contribution of each point pi within the support region
is weighted by the following factor:

w(pi) = 1
ρi

3
√

V (i, j, k)
, (4)

where V (i, j, k) is the volume of bin (i, j, k) and ρi is
the density of the points around pi. The density is com-
puted by counting the points within a sphere of radius δ

around pi.

Radius-based surface descriptor (RSD)
The Radius-based Surface Descriptor (RSD) [41]
describes the region around a point by approximating the
local surfaces with spheres and estimating the minimum
and maximum radii of the fitted spheres. Considering a
point p and a point of its neighborhood pi, the two points
can be thought as lying on a sphere of radius r. Since
infinite spheres pass through the two points, the one that
also respects the surface normals at the two points is
selected. If the distance between the two points is d and
the angle between their surface normals is α, then the
radius of the fitted sphere can be computed using the
formula for determining the length of a sphere chord:

d = r
√

2 − 2 cos a (5)

For computational efficiency reasons, the radius is com-
puted from d and α using just the first terms of the
Taylor expansion of the above equation. After comput-
ing the radii of the spheres for every neighbor of point
p, the minimum and maximum ones are kept and used
as the descriptor for p, thus obtaining a very compact yet
discriminating descriptor.

Viewpoint feature histogram (VFH)
The three above descriptors are local descriptors, i.e.
they compute a vector representation for each point in
the point cloud of the 3D object considered. The View-
point Feature Histogram (VFH) [42] is a global descriptor,
describing the whole point cloud. The VFH descriptor
is conceptually based on the FPFH descriptor. Instead of
computing FPFH descriptors for each point of the point
cloud and its neighborhood, a single FPFH descriptor is
computed for the object’s centroid, considering all the
points of the point cloud as its neighbors.

This central descriptor constitutes one part of the VFH
descriptor. The other part considers the histogram of the
angles between the normals at each point of the point
cloud and a fixed direction, determined by a fixed view-
point, outside the point cloud. First, the vector from the
viewpoint to the object’s centroid is computed and then
the angles between this vector and each of the normals of
the point cloud are used to construct an angle histogram.
This histogram constitutes the second part of the VFH
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descriptor. Considering a fixed direction from the view-
point to the centroid, instead of considering the direction
from the viewpoint to each point in the point cloud
ensures scale invariance. However, the VFH descriptor is
not rotation invariant, since it depends on the object’s
pose relative to the viewpoint. However, the advantage of
the VFH descriptor is the compactness offered by a global
descriptor, as it represents the whole object with a single
vector.

Distance matrix calculation
After extracting the 3D descriptors from a pair of aligned
proteins, a distance measure can be calculated between
them, quantifying their structural differences in the corre-
sponding descriptor space. In the general case, a descrip-
tor extracted from protein i, is a set of vectors Fi =
{fi,1, fi,2, . . . , fi,L}, where L is the number of points in the
protein’s 3D model. The feature vector for point k of pro-
tein i is a vector fi,k ∈ R

D, where D is the descriptor
dimensionality, which is generally different for different
descriptor types. The above formulation fits well with the
local 3D descriptors, such as FPFH, 3DSC and RSD, since
they consist of a feature vector for each point in the 3D
point cloud. However, the same formulation can be used
for global descriptors, such as VFH, as well, if the global
descriptor is considered as a local descriptor extracted
from only a single point. Thus, in the following, the same
formulation is used for all types of descriptors.

In order to compare between the descriptors of two pro-
teins, a distance measure that can assess the difference in
space between two sets of points needs to be used. The
Root Mean Square Deviation (RMSD) distance metric has
been used hereby for this purpose. The RMSD metric
is commonly used for the comparison between protein
structures, by computing an average of the point-to-point
differences among the protein atoms. However, hereby it
is not used to compare the actual 3D coordinates of the
atoms, but instead the high-dimensional coordinates of
the extracted feature vectors for each pair of points. The
RMSD distance metric between proteins i and j is defined
as follows:

RMSD(Fi, Fj) =
√√√√ 1

L

L∑
k=1

||fi,k − fj,k||2, (6)

where || · || denotes the Euclidean distance. In case that
the descriptor type is a global one, such as VFH, i.e.
L = 1, the RMSD metric is reduced to the Euclidean dis-
tance between the descriptors vectors. The smaller the
RMSD metric, the closer the corresponding proteins are,
in terms of their similarity with respect to the correspond-
ing descriptor type.

The RMSD distance is computed between every pair of
proteins in the considered dataset, so that a square sym-
metric distance matrix is computed. This distance matrix
can then be provided as input to clustering algorithms.

Clustering methods
In order to cluster the proteins in groups of similar char-
acteristics with respect to the various types of descriptors
considered, the following clustering methods have been
used:

• k -medoids
• hierarchical agglomerative
• DBScan

The k-medoids method is similar to the k-means clus-
tering method, with the difference that it uses a distance
matrix as input instead of vectorial representations of
the objects to cluster. The k-means method proceeds by
guessing at the cluster center positions within the feature
space, and gradually updating them, in order to fit bet-
ter with the available data. In k-medoids, no feature space
is defined, so there is no notion of cluster center posi-
tions. Instead, only a distance matrix is provided as input,
encoding the similarities and differences among objects.
In such a case, the role of cluster centers is played by
representative objects from the set of objects themselves,
called medoids. At the beginning, the set of medoids is
selected arbitrarily, e.g. randomly, from the set of objects
in the dataset. The objects are grouped by assigning each
object to the closest one, in terms of the distance matrix
used. Then, through an iterative procedure, the medoids
are updated, selecting more representative objects, so that
they are better fitted with the other objects. Considering
each group of objects, the object with the smallest sum of
distances from the other objects in the group is selected
as the group medoid.

The hierarchical agglomerative clustering method is a
bottom-up clustering approach, building gradually larger
clusters of data, in a hierarchical manner. At the begin-
ning, each data point is considered as a separate cluster.
At each iteration, the two clusters that are nearest to each
other are merged into a single cluster. The procedure con-
tinues until all clusters are merged into a single cluster,
containing all data points. The distance between two clus-
ters is hereby defined as the mean value of the pairwise
distances between each pair of points in the two clusters.
Hierarchical clustering results in a tree-like representation
of the data. Cutting the tree at a specified height results in
clustering the data at different granularities. In this paper,
the height of the cutting is determined by specifying the
number of desired clusters.

DBScan is a density-based clustering method, which
does not require the number of clusters to be known from
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the beginning. It starts from an arbitrarily chosen point
and considers its ε neighborhood. If it is in a dense part, it
forms a cluster, also cotaining the ε neighborhoods of its
neighbor points. The procedure is repeated for each point
in the cluster, until no other point can be considered as
being near the points of the cluster. Then, another point is
selected, to begin a new cluster. DBScan uses two param-
eters: the neighborhood size ε and the minimum number
of points in the neighborhood, in order to characterize the
neighborhood as dense.

All the above clustering method do not require the
objects to be represented by vectors; they only need dis-
tances to be defined between objects. This fits well with
the local 3D descriptors used hereby, since a protein is
not represented by a single feature vector, but rather by
a set of feature vectors, one for each point in the protein
model. However, the representation as sets of vectors does
allow the definition of distances among proteins, e.g. using
the RMSD measure, as described above, which makes the
above methods suitable. Another approach would be to
use the distance matrix as the input to methods such as
multidimensional scaling, in order to map the proteins
to points in a low-dimensional space, before performing
traditional clustering methods such as k-means. How-
ever, this could potentially lead to information loss, if the
selected space dimensionality does not correspond to the
underlying intrinsic dimensionality of the points. Using
the distance matrix directly as input overcomes this issue.

The k-medoids and the hierarchical agglomerative
methods require the number of clusters to be a priori pro-
vided as an input parameter. However, in the exploratory
task of examining a set of proteins for clusters, the num-
ber of clusters to be discovered is not known. A method
that can also determine the number of clusters in the data
is needed. In this paper, this issue is overcome by perform-
ing the clustering several times, considering a range of
number of clusters and selecting the one that maximizes
a certain clustering quality criterion. The average silhou-
ette width has been used hereby as this clustering quality
criterion. Considering a protein i, let αi be the average dis-
tance of protein i to all other proteins of the same cluster.
Let also bi be the minimum of the average distance of pro-
tein i to the proteins of all other clusters. The silhouette
width for protein i is defined as:

si = bi − αi
max {αi, bi} (7)

The silhouette width takes values in the range from -
1 to 1. Values close to 1 mean that bi is large and αi
is small, which means that object i is very close to the
other objects of its cluster, while at the same time it is far
away from the objects of the other clusters. This in turn
means that object i has been correctly clustered. On the
other hand, values close to -1 mean that the object would

be more properly assigned to another cluster. Consider-
ing the average silhouette width for all objects provides a
measure of the clustering quality. Large values of the aver-
age silhouette width mean that the clustering produced
compact and clearly divisible clusters. Thus, seeking for
the number of clusters that achieves the largest average
silhouette width is equivalent to seeking for the num-
ber of clusters that is most appropriate to describe the
underlying data.

Combination of descriptors based on their clustering
performance
In addition to the individual descriptor types (FPFH,
3DSC, RSD and VFH), a combination of them has also
been considered. The various descriptor types are diverse
in form, since they may be local or global and also con-
tain vectors of different dimensionalities. This makes the
process of combining them not straightforward. How-
ever, since the input to the clustering algorithm is not the
descriptors themselves but rather the distance matrices
produced from them, a natural way to combine the multi-
ple descriptors is by merging their corresponding distance
matrices.

Let Dm be the distance matrix associated with descrip-
tor type m. The combined distance matrix D is defined as
the weighted sum:

D =
∑

m
wmDm, (8)

where the sum is over all descriptor types considered. Two
different approaches have been examined for the defini-
tion of the weights used in the sum. The first approach
is to consider them all equal to 1. This creates a distance
matrix where the distance for a pair of proteins is the sum
of the distances computed for this pair using the vari-
ous descriptor types. Taking this sum implicitly considers
that all descriptor types are equal in terms of discriminat-
ing power. In reality, some descriptor types may be more
suitable for clustering the protein datasets than others. In
order to handle such differences, the second approach is
to consider unequal weights for the sum, ones that reflect
the discriminating power of the descriptors. Hereby, the
average silhouette widths of the clusterings produced by
the different types of descriptors have been used as the
weights. The higher the average silhouette width of a clus-
tering, the more fitting the clustering is for the underlying
data, i.e. the more descriptive the corresponding descrip-
tor may be for the protein set. Thus, using a high average
silhouette width as a weight for the sum, would mean that
more importance is given to the corresponding descriptor
while computing the combined distance matrix.

Note that the average silhouette width of a clustering
also depends on the number of clusters. The maximum
average silhouette width computed for a descriptor type,
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using a range of cluster numbers has been used as the
weight for this descriptor.

Results
For the experimental evaluation of the proposed
methodology, two different protein model datasets were
formed. The clusters were evaluated externally and
internally in order to obtain cluster accuracy and quality
respectively.

Datasets
The datasets derive from BcR IG sequences obtained from
925 CLL cases diagnosed according to the iwCLL cri-
teria [47]. Following established bioinformatics methods,
137/925 cases were found to belong to subsets with
stereotyped i.e. (quasi)-identical BcR IG, hereafter des-
ignated as stereotyped subsets [48, 49]. As a first step,
we examined a dataset including BcR IG sequences from
cases belonging to six well-characterized stereotyped sub-
sets. As a second step, we analyzed BcR IG sequences
from all cases, stereotyped and non-stereotyped. The first
dataset was deployed as ground truth for the evalua-
tion of the proposed method. Hence the second dataset
formed for unsupervised clustering applications. The
number of CLL sequences in each dataset is described in
Table 2. The subset size distribution of the dataset con-
sisting of only the stereotyped BcR IG is summarized in
Table 3.

Regarding the BcR IG structure prediction, the C-PIGS
method was used, which is based on the Prediction of
Immunoglobulin Structure (PIGS) [50] approach. In the
PIGS web server, antibody VL and VH framework regions
were used as input parameters. The sequence identity
within both chains was examined with the threshold of
80%. If the aforementioned criterion was not satisfied then
the two templates with the highest sequence similarity,
measured by the Blosum24 score [51] of both the light and
heavy chain were utilized. The H3 loop was always mod-
eled using the template with the best sequence similarity;
the other loops were modeled using a different template
only if the corresponding loop in the framework template
did not display the same length and canonical structure
of the target loop. Finally, the C-PIGS models were built
by remodeling the H3 loop of the PIGS models using the
template identified by the approach developed in [52]. An
out-standing study of the customized PIGS methodology
is described by [53].

Table 2 Datasets description

Dataset Patients Predefined subsets

D1 137 6 (D1.A ∼ D1.F)

D2 925 N/A

Table 3 Subset size distribution in the annotated dataset

Subset Type Size

1 IGHV clan I/IGKV1(D)-39 38

2 IGHV321/IGLV3-21 42

4 IGHV4-34/IGKV2-30 22

6 IGHV1-69/IGKV3-20 12

7 IGHV1-69/IGLV3-9 12

8 IGHV4-39/IGKV1(D)-39 11

Clustering of annotated proteins
In order to evaluate the accuracy of clustering using the
3D descriptors, a first round of experiments was con-
ducted, using the annotated dataset. Each type of 3D
descriptor was used to cluster the data into 6 clusters,
as many as the ground truth subsets in the annotated
dataset. The resulting clusterings were compared to the
ground truth clustering, i.e. the one where each cluster
corresponds to the established protein subset. The same
procedure was also performed using the TM-score for
clustering.

The k-medoids, Agglomerative Hierarchical clustering
and Density-based spatial clustering of applications with
noise (DBSCAN) methods were used to cluster the data
using the extracted descriptors. After extracting descrip-
tors from each pair of aligned proteins, the RMSD dis-
tances between each pair of descriptors is computed,
forming a square distance matrix. This matrix is used as
the input to the clustering methods.

In order to compare the resulting clusterings to the
ground truth clustering, the Rand index was used. The
Rand index measures the number of agreements between
the two compared clustering, over all pairs of points. Con-
sidering a set of N objects S = {o1, o2, . . . , oN }, e.g. a
set of proteins, and two partitionings of this set, X =
{X1, X2, . . . , Xm}, partitioning the objects into m groups,
and Y = {Y1, Y2, . . . , Yn}, partitioning the objects into n
groups, the Rand index is computed as follows:

R = a + b(n
2
) , (9)

where a is the number of pairs in S that are grouped in
the same cluster in X and in the same cluster in Y, while
b is the number of pairs in S that are grouped in different
clusters in X and in different clusters in Y. The denomina-
tor is the number of pairs of objects in S, and is equal to
n(n−1)

2 . In other words, the Rand index measures the per-
centage of pairs that have been clustered in the same way
in both clusterings, over all possible pairs of objects. The
Rand index takes values from 0 to 1, with 1 meaning that
the two clusterings are the same, while 0 means that the
two clusterings are completely different.
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The results of the multiple clusterings are summarized
in Table 4. With the exception of the VFH descriptor, all
individual 3D descriptors manage to produce clusterings
that are very close to the ground truth one, achieving
accuracies from 77 to 89.5%. The accuracies of the 3D
descriptors are larger than the accuracy achieved with the
method using the TM-score for clustering. This shows
that exploiting the 3D structural information encoded in
3D descriptors commonly used in the area of object recog-
nition achieves an improvement compared to using tra-
ditional structural information. Regarding the individual
3D descriptors, the RSD descriptor achieves the highest
accuracy. The VFH descriptor achieves the least accuracy
compared to the other descriptors. This can be attributed
to the fact that it is a global type of descriptor, hence a
lot of information regarding local variations of the points
in the protein is discarded, thus losing discriminating
capacity.

The table also includes the results produced using
the combined distance matrix, considering either equal
weights for the combination or weights based on the sil-
houette width. The combination of descriptors achieves
the maximum accuracy for all types of clustering consid-
ered, reaching 89.7% compared to the ground truth for the
k-medoids clustering. This demonstrates that combining
3D descriptors manages to produce clusterings that are
more accurate than using the individual descriptors. This
is an expected result, since inaccuracies of one clustering
can be filtered out when considering multiple clusterings
at once.

The comparative analysis of the clustering methods also
demonstrated that the agglomerative and DBScan meth-
ods achieved lower accuracy than the k-medoids method.
For this reason, the k-medoids method is selected for the
rest of the present study.

In the results of Table 4, a fixed number of 6 clusters
was considered for clustering using any of the descriptor
types; it was chosen as this is the number of stereotyped

Table 4 Comparison of clustering accuracy (Rand index)
between TM-score and the various 3D descriptors (6 clusters) for
the 137 protein structures

Method K-medoids Agglomerative DBScan

TM-score 85.40% 58.25% 71.23%

FPFH 89.10% 86.59% 88.40%

3DSC 88.00% 78.60% 86.20%

RSD 89.5% 77.32% 84.67%

VFH 83.20% 65.62% 76.31%

Combined
Silhouette Weights

89.70% 87.42% 88.67%

Combined
Equal Weights

89.00% 85.51% 88.82%

The highest accuracy is highlighted

subsets existing in the annotated dataset. However, some
subsets may be further subdivided into smaller categories,
due to finer differences between their BcR IGs, which
were not reflected in the annotation by experts. In order to
compensate for this, the same experiments were repeated,
but using an optimal number of clusters for each type of
descriptor. This optimal number of clusters was computed
based on an internal measure of cluster compactness,
namely the average silhouette width, as described in the
“Methods” section. Considering a single type of descrip-
tor, several clusterings were computed, using a range of
number of clusters from 3 up to 25, in order to determine
the number of clusters that achieves the largest average
silhouette width. An example of such a determination of
the optimal number of clusters is depicted in Fig. 2, for the
FPFH descriptor, where the number of clusters achieving
the largest average silhouette width is 9.

Table 5 summarizes the clustering accuracy results for
the annotated dataset, when using the optimal number
of clusters, computed separately for each descriptor type.
Allowing the number of clusters to vary provides more
freedom to the clustering algorithm to cluster the data
based on their intrinsic clusters. This allows smaller clus-
ters to emerge, resulting in larger numbers of clusters than
the ground truth ones, ranging from 7 to 9. However,
this freedom allows the clustering algorithms to group the
proteins more accurately, thus resulting in higher values
for the Rand index. Using this type of analysis with the
silhouette-based combination of the descriptors achieves
a 92.2% accuracy with respect to the ground truth protein
separation.

As an illustration of the clustering performance, Fig. 3
presents the computed clusters graphically. Each vertical
bar corresponds to one of the computed clusters. Each
bar is constructed from small rectangles, each one rep-
resenting a single protein. The higher a vertical bar, the
more proteins are contained in the corresponding clus-
ter. The colors assigned to each protein correspond to the
different ground truth subsets. It can be observed that,

Fig. 2 Determination of optimal number of clusters for the FPFH
descriptor
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Table 5 Comparison of clustering accuracy between TM-score
and the various 3D descriptors (optimal number of clusters) for
the 137 protein structures

Method Num. clusters Rand index

TM-score 8 89.7%

FPFH 9 89.3%

3DSC 9 89.5%

RSD 7 92.0%

VFH 8 85.3%

Combined silhouette weights 7 92.2%

Combined equal weights 7 90.2%

The highest accuracy is highlighted

most of the proteins have been correctly clustered, with
few exceptions. Moreover, the clustering method discov-
ered 7 clusters, instead of 6, splitting stereotyped subset
#2 (green-blue color) into two clusters (indexes 4 and 7).
The reason behind this separation is probably the pattern
of somatic mutations in the immunoglobulin heavy-chain
variable region gene (IGHV).

Clustering of all BcR IGs
The procedure followed for clustering the annotated
dataset was repeated, this time using the whole BcR IG
protein dataset, including both stereotyped (annotated)
and non-stereotyped (non annotated) cases. For each type
of descriptor, the optimal number of clusters was first
determined, using the maximum average silhouette width

method. Then, the proteins were clustered using the k-
medoids method with the optimal number of clusters.

The performance of the various clusterings was evalu-
ated using two types of measures. The first is the average
silhouette width itself, which is a measure of the clus-
ter compactness and separation. In general, clustering is
based on the assumption that the underlying data form
compact clusters of similar characteristics. Larger aver-
age silhouette width means that the result of a clustering
algorithm consists of compact clusters which are well sep-
arated from each other, i.e. probably close to the actual
data distribution. A small average silhouette width means
e.g. that one of the clusters discovered by the clustering
algorithm could be separated in two clusters, or that some
of the discovered clusters could be merged together. The
average silhouette width is an internal evaluation measure,
in the sense that it uses only information contained in the
dataset, without assuming any knowledge of ground truth
class labels or clusterings.

The second type of evaluation measure is the Rand
index, which is an external measure, in the sense that
it makes use of ground truth knowledge. The evaluation
using the Rand index is similar to the evaluation of the
annotated dataset in the previous section, by comparing
the produced clusterings to the ground truth clustering.
However, only the annotated BcR IG were used for the
computation of the Rand index. In other words, after com-
puting a clustering of all proteins, both annotated and
unannotated, we wanted to evaluate how well they have
been clustered by examining the clustering distribution

Fig. 3 Clustering of the annotated protein dataset, using the combined descriptors method
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of the annotated ones, within the whole clustering. The
results of the clustering are summarized in Table 6.

To evaluate the quality of the applied clustering methods
of BcR IG 3D models, we included in our cohort 137 cases
originating from 6 CLL stereotyped subsets namely sub-
sets #1, #2, #4, #6, #7 and #8. The reason for this approach
was that (i) stereotyped, highly homologous BcR IG pri-
mary sequences are anticipated to produce overall similar
3D structures, hence providing a reference for evaluat-
ing the developed workflow; and, (ii) these subsets are
well characterized in terms of both biological and clinical
properties [38]. Subset size distribution was as described
in Table 3.

Next, we assessed the reasons behind the separation of
subsets #1 and #2 into 2 different clusters each. As men-
tioned above, stereotyped subset #1 sequences express
different IGHV genes that belong to the same phyloge-
netic clan. Indeed, the utilization of a different IGHV gene
was most likely the reason behind the separation of subset
#1 models. In more detail, 7/8 (88%) of subset #1 mod-
els assigned to cluster 3 expressed the IGHV5-10-1 gene,
whereas 27/29 (93%) of subset #1 models in cluster 6 uti-
lized genes belonging to the IGHV1 gene subgroup. In
regard to subset #2 models, the reason behind the separa-
tion was probably the pattern of somatic mutations within
the IGHV gene. More specifically, 9/15 (66%) of subset #2
models from cluster 4 exhibited the presence of somatic
mutations within the FR1 region of the Ig heavy chain
sequence. In contrast, none of the subset #2 models in
cluster 9 carried such a mutation.

We assessed the efficacy of each individual clustering
algorithm as well as the “combined” method regarding
their potential of biological significance through evalu-
ating the distribution of these 137 stereotyped BcR IG

Table 6 Comparison of clustering accuracy between TM-score
and the various 3D descriptors (optimal number of clusters) for
the 925 protein structures

Method Num. clusters Avg.
silhouette
width

Rand index

TM-score 4 0.001 60.0%

FPFH 14 0.070 88.9%

3DSC 13 0.057 89.3%

RSD 9 0.056 83.9%

VFH 7 0.006 76.3%

Combined
silhouette
weights

15 0.071 90.2%

Combined equal
weights

14 0.069 90.8%

The highest accuracy is highlighted

3D models across different clusters. At the level of indi-
vidual descriptors, the best results were observed in the
case of the 3DSC clustering method, yet, the most robust
results were obtained through the combined approach.
In detail, the combined method led to the assignment of
stereotyped BcR IG 3D models in 9/15 clusters with the
following distribution, as also illustrated in Fig. 4:

• cluster 1 contained 18/22 (82%) subset #4 models,
• cluster 2 contained 11/11 (100%) subset #8 models

along with a single (4%) subset #4 model,
• cluster 3 contained 8/38 (21%) subset #1 models,
• cluster 4 contained 15/42 (36%) subset #2 models,
• cluster 5 contained 9/12 (75%) subset #7 models,
• cluster 6 contained 29/38 (76%) subset #1 models,
• cluster 7 contained 12/12 (100%) subset #6 models

and a single (8%) subset #7 model,
• cluster 8 contained 2/12 (17%) subset #7 models, and

finally,
• cluster 9 contained 27/42 (64%) subset #2 models, a

single (3%) subset #1 model as well 3/22 (14%) subset
#4 models.

Therefore, we focused our analysis on the results
obtained with the combined method. Relevant to men-
tion, our cohort of non-stereotyped IG models was rep-
resentative of CLL in terms of BcR IG heavy and light
gene repertoire properties and, thus, largely informative.
In specific, IGHV3 gene subgroup cases predominated
(395/788, 50.1%) followed by IGHV4 (186/788, 23.6%)
and IGHV1 cases (151/788, 19.2%). In regard to the IG
light chain expression, around 2/3 of cases expressed
kappa light chains (507/788, 64.3%), as reported for CLL.
As mentioned above, the "combined" clustering method
ended up with the formation of 15 clusters. The dis-
tribution of BcR IG 3D models was not equal among
different clusters whose size ranged from 26 to 98 models
(average: 52.5, median: 53 models). Interestingly, cluster
9 consisted exclusively of 31 stereotyped models, whereas
clusters 10-15 did not contain any stereotyped Ig 3D
models.

In detail, cluster 1 besides containing the majority (82%)
of subset #4 models included mostly (38/40, 95%) non-
stereotyped BcR IG 3D models of the IGHV4 gene sub-
group. From these, most models (25/38, 66%) expressed
the IGHV4-34 gene, as in the case of subset #4 models.
Cluster 2 comprised all subset #8 models and a single
(4%) #4 model. This was not unexpected, since both sub-
sets express IGHV4 subgroup genes (IGHV4-39 versus
IGHV4-34, respectively) and carry the IgG heavy chain
isotype, in itself a rarity for CLL [54]. Besides stereotyped
models, cluster 2 contained IGHV4 models (51/59, 86%)
from which the majority expressed the IGHV4-39 gene,
which is characteristic for subset #8. Clusters 3 and 6
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Fig. 4 Clustering of both the combined annotated and unannotated protein dataset, using the combined descriptors method

contained subset #1 models as well as non-stereotyped
models utilizing IGHV genes from the same phylogenetic
clan (Clan I: IGHV gene subgroups 1, 5 and 7) with the
frequencies being 100% and 84%, respectively. Clusters
4 and 9 consisted of subset #2 models. Non-stereotyped
models assigned to cluster 4 utilized IGHV genes from
the IGHV3 subgroup (85%) with the most frequent gene
being IGHV3-21 (7/51, 14%) as in subset #2, whereas
cluster 9 did not contain any non-stereotyped models.
Cluster 5 contained the majority of subset #7 models
(75%). Non-stereotyped models in this cluster expressed
BcR IG utilizing IGHV1 subgroup genes, predominated by
IGHV1-69, the hallmark of subset #7. Cluster 7 contained
all subset #6 models and a single model of subset #7: a pos-
sible explanation for this is that both subsets express the
IGHV1-69 gene. Again, non-stereotyped models mostly
expressed the IGHV1-69 gene. Cluster 8 contained a
small fraction (17%) of #7 models. In this case, the same
trend was not followed and most non-stereotyped models
expressed IGHV3 genes with the most prominent being
the IGHV3-23 gene. Clusters 10, 11 and 13-15 comprised
IGHV3-expressing models yet different genes predomi-
nated in each cluster: IGHV3-23, IGHV3-7, IGHV3-30,
IGHV3-48 and IGHV3-30, respectively. Finally, cluster 12
contained models of the IGHV4 subgroup with the most
frequent gene being IGHV4-34. In terms of light chain
usage, we observed a dominance of either the kappa (clus-
ters 1-3, 5-8, 10-12, 14) or the lambda (clusters 4, 13, 15)
light chain.

According to our results, the clustering of BcR IG 3D
models reflected to very great extent the classification of

IG molecules based on the primary sequences of both the
heavy and the light chains of the Ig molecule. Indeed, each
individual cluster was characterized by the predominance
of a single IGHV gene subgroup and a specific light chain
isotype.

Discussion
In this work, a novel method of clustering BcR IG pro-
tein 3D structures is introduced. The method underlines
the significance of the combination between classic bioin-
formatics methods with 3D descriptors that goes beyond
the realm of bioinformatics. The proposed methodology
relies on a combination approach based on local descrip-
tors. Two approaches of combination have been used,
one using equal weights and another using silhouette
widths as weights. Both performances perform better than
using the individual descriptors. However, a clear com-
parison between the two approaches cannot be made yet.
When clustering the 137 annotated protein structures,
the silhouette-based approach achieved higher accuracy,
while the equal weights approach achieved slightly higher
accuracy when clustering the 925 structures. Further
investigation on the suitability of each approach for differ-
ent datasets is considered as future work.

Methodology evaluation succeeded through the dataset
separation to ground truth and test set. The ground
truth was formed by the well-established CLL stereo-
typed subsets and the test set from the unlabeled struc-
tures that result from C-PIGS methodology. As final
analysis level, a clustering of significant external accu-
racy and internal quality resulted. Overall, our findings
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support that the innovative workflow described here
enables robust clustering of 3D models produced from
BcR IG primary sequences from patients with CLL. Fur-
thermore, they indicate that CLL classification based on
stereotypy of BcR IG primary sequences is likely also ver-
ified at the IG 3D structural level. More generally, this
approach can be implemented to the analysis of BcR
IG amino acid sequences in any domain of immunology
ranging from normal, autoreactive and malignant B cell
populations.

Conclusions
A novel BcR IG protein 3D structure comparison tech-
nique is proposed for determining the local structural
similarity between the 3D models. The method’s general-
izability was demonstrated by applying it to two different
datasets: one labeled, formed by 137 protein structures
that belong to six well-established CLL stereotyped sub-
sets, and one mainly unlabeled, formed by 925 (includ-
ing the cases that belong to stereotyped subsets) protein
structures.

Local and global 3D descriptors where tested and the
optimal combination of the local descriptors was selected,
based on their performance regarding the average silhou-
ette width. The combination of the local-based descrip-
tors derived from the structurally aligned parts is used
to compute an overall distance matrix, which is then
used as input for the clustering procedure. The combined
descriptor presented Rand Index 89.7% and 92.2% in clus-
tering the labeled data to six and the optimal number of
clusters, respectively. The higher accuracy in the optimal
cluster number is justified by the biological meaning in
data. Additionally, the clustering results of the unlabeled
data revealed 90.8% accuracy in the optimal cluster num-
bers. These results support that the innovative workflow
described here enables robust clustering of 3D models
produced from BcR IG sequences from patients with
CLL. The established methodology can be expanded in
different types of 3D protein structures.

The selection of the appropriate 3D descriptor is an
issue worth studying further. In future work, methods
of time series analysis in combination to 3D descriptors
will be examined. More specifically the implementation
of Fréchet distance and Dynamic Time Warping will be
examined on estimating the distance between the 3D
models in combination to 3D descriptors.
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