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Abstract

Background: Essential proteins are indispensable to the survival and development process of living organisms. To
understand the functional mechanisms of essential proteins, which can be applied to the analysis of disease and
design of drugs, it is important to identify essential proteins from a set of proteins first. As traditional experimental
methods designed to test out essential proteins are usually expensive and laborious, computational methods, which
utilize biological and topological features of proteins, have attracted more attention in recent years. Protein-protein
interaction networks, together with other biological data, have been explored to improve the performance of
essential protein prediction.

Results: The proposed method SCP is evaluated on Saccharomyces cerevisiae datasets and compared with five other
methods. The results show that our method SCP outperforms the other five methods in terms of accuracy of essential
protein prediction.

Conclusions: In this paper, we propose a novel algorithm named SCP, which combines the ranking by a modified
PageRank algorithm based on subcellular compartments information, with the ranking by Pearson correlation
coefficient (PCC) calculated from gene expression data. Experiments show that subcellular localization information is
promising in boosting essential protein prediction.

Keywords: Essential proteins, Subcellular localization information, Modified PageRank algorithm, Protein-protein
interaction networks

Background
Although essential proteins are only a small fraction of
all proteins, they are indispensable to maintain life for an
organism [1, 2]. Without these essential proteins provid-
ing all available nutrients [3], it will lead to lethality of
life. Therefore, reliable identification of essential proteins
is significant for biologists, for that it not only contributes
to understanding the basic requirements for subcellular
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survival, but also plays a key role in practical implica-
tions, such as diseases analysis [4, 5], drug design [6, 7]
and medical treatments [4]. This problem has attracted
enormous amount of researchers, and many experimen-
tal methods have been proposed to predict and discover
essential proteins through gene knock-out [8, 9], gene
knockdown [10–12] and RNA interference [13]. These
methods can provide an accurate prediction of essential
proteins. However, the poor efficiency and high cost of
experimental methods remains a significant challenge. In
addition, for identification of essential proteins in some
complex organisms, especially ones from humans, these
experimental methods are not suitable.
To break through these experimental constraints, some

researchers proposed computational methods to predict
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essential proteins based on features developed in exper-
imental studies. Especially, due to the high-throughput
techniques, abundant data of essential proteins has been
collected, which served as the basis for several studies
that investigate the relationship between characteristics
of experimentally identified essential proteins and their
topological properties in protein-protein interaction net-
works (PPI). With the help of computational methods, the
burden to test all proteins in experiments can be greatly
relieved, so that only tests of top-ranked proteins based
on their score of essentiality are prioritized. Jeong et al.
used centrality-lethality rule to identify essential proteins
in protein-protein interaction networks, whichmeans that
proteins most highly connected in the networks tend
to be essential proteins [14]. Pereira-Leal et al. reported
that there is higher-level correlation among essential pro-
teins compared to that among nonessential proteins [15].
To explain this phenomenon, He and Zhang proposed
the concept of essential protein-protein interactions [16].
These studies support the view that evolution of essential
PPI networks are more conservative than nonessential PPI
networks. Inspired by these studies that explored topolog-
ical features of PPI networks, some researchers proposed
computational methods to identify essential proteins,
based on metrics such as betweenness centrality (BC)
[17, 18], degree centrality (DC) [19], edge clustering coef-
ficient centrally (NC) [20] and so on. However, all these
methods relying on centrality metrics share some limita-
tions. First, PPI networks generated by high-throughput
technologies are often incomplete and contain false pos-
itive interactions [21]. Second, many of these methods
neglect other intrinsic properties of essential proteins. To
overcome these limitations, several methods are proposed
to incorporate these PPI networks with other biological
data. Based on the weighted PPI networks generated by
gene expression profiles, Li et al. proposed an edge-aided
approach named PeC to predict essential proteins [22].
Then Tang et al. proposed a modified approach named as
WDC to improve the prediction performance [23].
Moreover, recently many studies found that the sub-

cellular localization of proteins may play an important
role in identifying essential proteins. Acencio and Lemke
discover that integration of information from multiple
sources including subcellular localization of proteins can
improve the accuracy of essential proteins prediction
[24]. Peng et al. proposed a Compartment Impor-
tance Centrality (CIC) method [25] that incorporate
the subcellular localization information in PPI networks.
One limitation of CIC method is that it may not dif-
ferentiate varieties of the interactions among proteins
of a large community. To overcome this limitation, in
this paper, we propose a novel method that combines
information of subcellular compartments with that of
Pearson Correlation coefficient (SCP), based on weighted

PPI networks to predict essential proteins. Additionally, a
modified PageRank method is proposed to assign weights
in the PPI networks more accurately.
This paper is organized into four sections. Our algo-

rithm is presented in “Methods” section. Numerical
experiments and results analysis are described in “Results
and discussion” section. Several conclusions are drawn
in “Conclusion” section.

Methods
In this section, we will present our method SCP, that
can rank the importance of proteins with computed
scores. The final importance scores of our SCP method
is determined by two components: the results ranked by
our modified PageRank algorithm (MPR) from subcel-
lular localization information, and the results ranked by
Pearson correlation coefficient (IPCC) from gene expres-
sion data:

SCP = λ·NIS(MPR)+(1−λ)·NIS(IPCC), λ ∈[ 0, 1]
(1)

where λ is an adjusting parameter for weighting the two
components. In this paper the parameter λ is set as 0.5.
The MPR is the importance scores computed from mod-
ified PageRank algorithm. The IPCC is the importance
scores predicted by Pearson Correlation coefficient. In
order to predict essential proteins, we propose a novel
algorithm combining MPR with IPCC. We expect that
protein with a higher SCP score would be more likely to
be an essential protein. As the scores of MPR and IPCC
may have different range, they should be scaled into [ 0, 1]
first. We normalize the two importance scores as follows:

NIS(Scorei) = Scorei − min(Score)
max(Score) − min(Score)

,

i = 1, 2, · · · ,N
(2)

MPR importance score of proteins
We first create a weighted PPI networks derived from sub-
cellular compartments information, and then perform a
modified PageRank algorithm on the network to com-
pute importance score of proteins. For most eukaryotes,
the subcellular compartments generate a specific environ-
ment that regulates the biological processes of proteins
within cells. Therefore, knowing the subcellular localiza-
tion of proteins may shed light on understanding the func-
tions of these proteins. Many studies found that proteins
interactions in vivo tend to co-locate in the same cellular
compartment or adjacent compartments [26]. For exam-
ple, 76 percent of protein-protein interactions in yeast
cells are carried out in the same subcellular compartments
[27]. Therefore it may be beneficial to weigh the protein-
protein interactions by subcellular localization, and then
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predict the importance of proteins based on the weighted
protein-protein interactions.
Based on this intuition, we develop ametric to weigh the

protein-protein interactions based on the information of
subcellular localization. We assume that protein-protein
interactions co-located in a small subcellular compart-
ment can be more reliable in predicting essential proteins
than those within a large subcellular compartment.

The importance of subcellular compartments
We model the importance of subcellular compartments
based on their scales. Suppose there are K subcellu-
lar compartments C1,C2, · · · ,CK , and the numbers of
them areNC1 ,NC2 , · · · ,NCK respectively. Then the impor-
tance of subcellular compartment Ci, denoted by ISC, is
defined as:

ISC(Ci) = 1
NCi

, i = 1, 2, . . . ,K (3)

Theweight of protein-protein interactions based on
subcellular compartments
The importance of protein-protein interactions can be
impacted by different subcellular compartments they
share. For a given protein Pi, let SCL(Pi) be the subcellu-
lar compartments where protein Pi located. The weight of
Pi and Pj interaction is denoted by WPPI(Pi,Pj), which is
defined as:

WPPI
(
Pi,Pj

)

=
⎧
⎨

⎩

max
Ci∈SC(Pi,Pj)

{ISC(Ci)}, SCL(Pi)
⋂

SCL(Pj) �= ∅,
min

Ci∈SC(Pi,Pj)
{ISC(Ci)}, otherwise

(4)

where

SC
(
Pi,Pj

)

=
{
SCL(Pi)

⋂
SCL(Pj), SCL(Pi)

⋂
SCL(Pj) �= ∅,

SCL(Pi)
⋃

SCL(Pj), otherwise
(5)

A pair of proteins may be co-located in several
subcellular compartments because many proteins are
annotated by multiple subcellular compartments. Here
SCL(Pi)

⋂
SCL(Pj) means the common subcellular com-

partments that protein Pi and Pj are co-located in. We
assume that a pair of proteins in the smaller subcellular
compartments is most likely to interact with each other
than them in the bigger compartments. Therefore, if a
pair of proteins are co-located in at least one subcellular
compartment, that is SCL(Pi)

⋂
SCL(Pj) �= ∅, we choose

the maximum of the importance of their common sub-
cellular compartments as the importance of the protein-
protein interaction between the two proteins. Otherwise,
the importance between a pair of proteins which do not

share any subcellular compartments will be the mini-
mum of all their subcellular compartments, defined as
SCL(Pi)

⋃
SCL(Pj).

The importance of proteins
By analyzing the weighted protein-protein interaction
network, we can achieve prior estimate on the importance
of each protein. The proteins which have stronger interac-
tions with others to be more important proteins (essential
proteins). Guided by this idea, we sum up all the weights
of protein-protein interactions related to a protein Pi as its
prior importance (denoted by IPSC(Pi)):

IPSC(Pi) =
∑

Pj∈SCL(Pi)
WPPI

(
Pi,Pj

)
(6)

Modified PageRank algorithm
PageRank is one of themost famousmethods that rank the
importance of nodes in networks based on link structures
of nodes. The basic idea of PageRank algorithm is that the
importance of a node is determined by the importance
of their parents nodes and the number of their parents
nodes. Therefore, by analyzing the quantity and quality of
their parents nodes, PageRank algorithm can give a rough
importance estimates for all nodes in networks.
In the classic PageRank algorithm, the importance of

nodes can be defined as follows:

PR(Pi) = α
∑

Pj∈SCL(Pi)

1
L(Pj)

PR(Pj) + (1 − α)
1
N

(7)

whereN is the number of the nodes, and L(Pj) is the num-
ber of outbound links for node Pj, which belongs to the
set of nodes that link to Pi, also denoted by SCL(Pi). α is a
dampening factor set to 0.85 in this paper.
Equation 7 can be re-written in a matrix form as:

PR = M × PR (8)

where

M = αM1 + (1 − α)M2, α ∈ [0, 1] (9)

and

M1(i, j) =
{

1
L(Pj) , if Pj ∈ SCL(Pi),
0, otherwise

(10)

M2 = 1
N
1N×N (11)

We propose a modified PageRank algorithm to calculate
the importance of nodes MPR, defined as follows:

˜MPRk+1 = M̂ × MPRk (12)

Here the modified iterator matrix M̂ is divided into two
matrices:

M̂ = αM̂1 + (1 − α)M̂2, α ∈ [0, 1] (13)
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where sparse hyperlink matrix M̂1 are generated from the
weighted protein-protein interaction networks:

M̂1(i, j)

=
{ WPPI(Pi,Pj)∑

Pk∈SCL(Pi) WPPI(Pi,Pk)
, if Pj ∈ SCL(Pi),

0, otherwise

(14)

and the reset probability matrix M2 comes from the prior
importance of proteins:

M̂2(i, j) = IPSC(Pi)
∑N

k=1 IPSC(Pk)
(15)

Finally, the importance of nodes is normalized as
follows:

MPRk+1 = ˜MPRk+1
∥
∥
∥ ˜MPRk+1

∥
∥
∥

(16)

Pearson correlation coefficient
Pearson correlation coefficient (PCC) is a popular method
to measure linear correlation between two variables. Here
we utilize PCC, derived from gene expression data, to
calculate the importance of protein-protein interactions.
Given gene expression data of two proteins, denoted by
X = (x1, · · · , xm) and Y = (y1, · · · , ym), the importance
of protein-protein interactions between the two proteins
can be calculated as follows:

PCC(X, Y) = Cov(X,Y )

σXσY

=
∑m

i=1(xi − x̄) (yi − ȳ)
√∑m

i=1 (xi − x̄)2
√∑m

i=1 (yi − ȳ)2

(17)

Finally, the importance of each protein Pi, denoted as
IPCC(Pi), is computed by summing up all weights of
protein-protein interaction importance of protein Pi:

IPCC(Pi) =
∑

Pj∈SCL(Pi)
PCC(Pi,Pj) (18)

Results and discussion
In this section, experiments are carried out to evaluate
the effectiveness of our algorithm. We take advantage of
three types of datasets, namely protein-protein interac-
tions data, gene expression data and subcellular localiza-
tion data, to predict essential proteins for Saccharomyces
cerevisiae. We compare the performance of our algo-
rithm SCP against other five methods (CIC, DC, NC, PeC,
WDC) on real dataset of essential proteins. The results
show that our method SCP outperforms the other five
methods.

Experimental data
Protein-protein interactions data
We downloaded protein-protein interaction networks
from the Biogrid database (BIOGRID-3.2.111), which is a
freely accessible database to provide physical and genetic
interactions [28]. The network consists of 6304 proteins
and 81,614 interactions between them.

Gene expression data
The gene expression data of yeast was obtained from the
NCBI Gene Expression Omnibus website. This dataset
was collected at 36 different times from 9335 probes
(uploaded on April 14, 2011), since there is evidence
that the expression of gene is periodic during metabolic
cycle of Saccharomyces cerevisiae [29]. In total 6777 genes
are present in the dataset, some of which have more
than one expression profiles. For genes that have multiple
expression profiles, we select the profile whose average is
maximum.

Subcellular localization data
The COMPARTMENTS database [30] contains subcel-
lular localization information from several data sources,
such as literature, high-throughput microscopy-based
screens, prediction from primary sequence and text min-
ing. The dataset includes 819 subcellular compartments in
total, which was downloaded on April 20, 2014.

Essential protein set
This set of essential proteins were downloaded from DEG
[3], MIPS [31], SGD [32] and SGDP. It contains 1204
essential proteins in all.

ROC curves
The proteins of Saccharomyces cerevisiae are classified
into essential and nonessential proteins, so the prediction

Fig. 1 ROC curves of all methods
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Fig. 2 Number of essential proteins in ranked proteins

of essential proteins is actually a two-class classification
problem. Hence, ROC curve is a proper metric to evaluate
the performance of a binary classifier, plotted at different
thresholds. In an ROC curve, the horizontal axis repre-
sents the values of false positive rate (FPR) and vertical
axis represents the values of the true positive rate (TPR).
The false positive rate is also known as specificity and the
true positive rate is also known as sensitivity or recall.
They are defined as follows:

FPR = FP
FP + TN

(19)

TPR = TP
TP + FN

(20)

Fig. 3 Jackknife curves of all methods

where FP is the number of false positive, which means a
prediction is positive and the actual value is negative. Con-
versely, FN is the number of false negative, which means
the prediction is negative while the actual value is positive.
Then TP is the number of true positive when both the pre-
diction and actual value are positive. TN is the number of
true negative when both the prediction and true value are
negative.
Furthermore, the size of the area under the curve,

named AUC, is used to evaluate the performance of a
binary classifier. Therefore, the larger the AUC value is,
the better classifier is. In Fig. 1, ROC curves are plot-
ted to analyze the top 1204 proteins ranked by all six
algorithms, because our dataset contains 1204 essential
proteins in total. As DC is a simple topological central-
ity algorithm, the AUC for DC is only 0.5570. Then NC

Fig. 4 Precision-recall curves of all methods
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is a method applying the edge-clustering coefficient to
predict essential proteins, which achieves a litter better
performance than DC. PeC and WDC have higher AUC
values than DC and NC since they both incorporate gene
expression data with PPI data to boost classification per-
formance. CIC performs better than PeC, WDC, NC and
DC, since it combines the subcellular localization infor-
mation with other types of data. Lastly, our method SCP
outperforms all the other five methods with a consider-
able margin. This shows the effectiveness of our fusion
method.

Analysis of essential proteins of top ranked proteins
In this section, we attempt to visualize the proportion of
essential proteins in top ranked proteins by all methods,
including our method SCP and other five methods. First,
we rank proteins by their importance scores in descend-
ing order computed by all six methods. Second, we select
the top 1, 5, · · · , 25 percent of all 6304 proteins in their
ranked order as essential protein candidates. Then we
count the number of real essential proteins in these essen-
tial protein candidates according to the golden standard

dataset of real essential proteins. The comparative results
are shown in Fig. 2. From this figure, we can observe that
the SCP outperforms all the other five algorithms on all
six proportions of essential proteins.
In the Fig. 2, let us take the top 1% ranked proteins

as an example: our method achieves considerable margin
compared to other five methods (51 true essential pro-
teins versus 42,32,28,39 and 33 for CIC, DC, NC, PeC
and WDC respectively). In addition, Fig. 2 shows that DC
and PeC performs better at top 1% and 5% than NC and
WDC. However, from top 15 to 25%, the performances
of NC and WDC are better than those of DC and PeC.
The performance of CIC is good except at the top 25%
ranked proteins, when it ranks fourth, and is only better
than DC and PeC. In summary, our method achieves the
best performances consistently at various percentage of
top ranked proteins.

Jackknife curves
In this section, we compare our method with five other
methods by the jackknife curves, which is proposed by
Holman et al. [33] to show the ability to recover known

(a) (b) (c)

(d) (e) (f)
Fig. 5 The comparative results of protein-protein interaction links by six methods. The figure shows the networks of the proteins ranked in top 50 by
all six methods, and the links between them. The pink nodes represent the essential proteins, and the yellow nodes represent the nonessential
proteins. Red, blue and green links represent Noness-Noness, Ess-Noness and Ess-Ess interactions respectively. a CIC. b DC. c NC. d PeC. eWDC. f SCP
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essential proteins. The results are shown in Fig. 3. The
horizontal axis of the jackknife curves represents the
proteins ranked by scores of importance in descending
order from left to right. In this section, we choose the
top 1204 proteins of all the six methods to analyze the
performance.The vertical axis is the cumulative count of
essential proteins. Compared with other five methods, the
AUC of our method is the largest. The Jackknife curves
also reveal that the performance of our method SCP is
better than the other methods.

Precision-recall curves
In this section, we employ precision-recall (PR) curves
to compare the performance of our method SCP with
the other methods. The recall has been defined as the
true positive rate (TPR) in “ROC curves” section. The
precision is defined as follows:

Precision = TP
TP + FP

(21)

To analyze a binary classification, precision is a measure
of the proportion of results that are relevant to the
query, and recall is a measure of the proportion of results
relevant to the query that are successfully retrieved. If
AUC is high, both precision and recall are high. High
score of precision suggests the classifier achieves accurate
results, while high recall indicates the classifier obtains
a majority of all positive results. Because there are
1204 essential proteins in our dataset, we also plot PR
curves to analyze the top 1204 proteins ranked by all six
algorithms. It is shown in Fig. 4 that SCP achieves the best
performance among all the methods.

The analysis of links between top ranked proteins
In this section, we will do some further analysis of the
links between top ranked proteins for all the methods. We
construct small PPI networks based on the top 50 ranked
proteins and the links depending on the whole yeast PPI
networks. The results are shown in Fig. 5. Pink nodes
represent essential proteins, while yellow nodes represent
nonessential proteins identified by six methods. In this
study, 43 essential proteins are obtained by our method
SCP in the top 50 proteins, while for CIC, DC, NC, PeC,
WDC, it is only 33, 22, 23, 34 and 28 respectively. Mean-
while, we analyze the links between top ranked proteins.
As the number of links between top ranked proteins is dif-
ferent for various methods, we calculate the proportion
of the links between essential proteins (Ess-Ess), between
essential proteins and nonessential proteins (Ess-Noness),
and between nonessential proteins (Noness-Noness). In
Fig. 5, red, blue and green links represent Noness-Noness,
Ess-Noness and Ess-Ess interactions respectively. From
the Fig. 5, it is easy to find for SCP, the number of Noness-
Noness interactions is much less than those of the other
methods. For Ess-Ess and Ess-Noness interactions, it is
not easy to distinguish the difference of all the meth-
ods as these kinds of links are too many. Therefore, in
order to show more details of the comparison of SCP and
other methods, many experiments are carried out shown
in Table 1. It shows the proportions of Ess-Ess, Ess-Noness
and Noness-Noness from top 100 to top 400 ranked pro-
teins for all six methods. From the table, it shows SCP
obtained the best performance of all the methods. For
instance, in the top 100 ranked proteins, the proportion
of Noness-Noness for our method is only 4.11%, which
is much lower than other methods, while the proportion
of Ess-Ess for our method is up to 63.58%, which is the
highest of all the methods.

Table 1 Analysis of link proportion

Top Link CIC DC NC PeC WDC SCP

100 Ess-Ess 44.64% 27.82% 18.34% 42.22% 26.43% 63.58%

Ess-Noness 43.21% 45.86% 45.52% 35.91% 44.92% 32.31%

Noness-Noness 12.15% 26.32% 36.14% 21.87% 28.64% 4.11%

200 Ess-Ess 45.91% 26.78% 23.86% 35.74% 34.03% 66.05%

Ess-Noness 41.70% 47.80% 42.88% 35.94% 41.50% 28.21%

Noness-Noness 12.39% 25.33% 33.27% 28.32% 24.46% 5.74%

300 Ess-Ess 45.74% 23.58% 30.33% 37.20% 35.02% 53.90%

Ess-Noness 41.68% 47.01% 42.62% 36.18% 40.96% 35.84%

Noness-Noness 12.58% 29.41% 27.05% 26.62% 24.02% 10.26%

400 Ess-Ess 46.15% 23.74% 30.89% 39.58% 35.35% 51.23%

Ess-Noness 40.94% 46.22% 42.36% 36.39% 40.96% 37.20%

Noness-Noness 12.92% 30.04% 26.75% 24.04% 23.70% 11.56%

(Optimal values are denoted by boldface)
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Table 2 Number of essential proteins in top ranked proteins
from SCP on various value of λ

λ 1% 5% 10% 15% 20% 25%

0 45 173 335 437 521 589

0.5 51 224 399 520 609 714

1 49 216 403 517 603 700

(Optimal values are denoted by boldface)

The analysis of parameter λ

In this section, we discuss the selection of parameter λ.
As the prediction of essential proteins is an unsupervised
learning procedure, we can’t learn a best parameter λ from
the data. Therefore, we only choose λ ∈ {0, 0.5, 1} to
analyze the performance of our algorithm SCP. In reality,
when λ = 0, the results of SCP only come from IPCC.
Conversely, the results will only be calculated by MPR
when λ = 1. In this paper, we chose λ as 0.5, which means
the results of SCP integrate MPR and IPCC. In order to
compare the performance of the method on various λ,
we calculate the number of essential proteins at differ-
ent top percentages of ranked proteins (top 1%, 5%, 10%,
15%, 20%, 25%). From Table 2, it demonstrates that when
λ = 0.5, SCP obtains the best performance. Therefore, in
this paper the parameter λ is set as 0.5. As a result, SCP
successfully integrates the results of MPR and IPCC and
has achieved a great boost on the performance of essential
proteins prediction.

The analysis of the performance of CIC and SCP
In this section, we will analyze the performance of CIC
and SCP. Both CIC and SCP utilize the subcellular local-
ization information to predict the essential proteins, while
SCP also use the information of the gene expression data.
Therefore, we will compare CIC with modified PageR-
ank (MPR), part of our method SCP, which only uses the
subcellular localization information as CIC does to pre-
dict essential proteins. The results are shown in Table 3.
Although the performance of MPR is worse than SCP,
MPR achieves better performance than CIC inmost cases,
except for top 15 and 20 percentages, where the number
of essential proteins identified by MPR is a little less than
those does by CIC.

Table 3 Number of essential proteins in top ranked proteins
identified by CIC, MPR and SCP

Method 1% 5% 10% 15% 20% 25%

CIC 42 209 384 518 608 675

MPR 49 216 403 517 603 700

SCP 51 224 399 520 609 714

(Optimal values are denoted by boldface)

Conclusion
Essential proteins are crucial to the development and sur-
vival of life. Many computational methods are proposed
to detect essential proteins based on biological and topo-
logical features of proteins. In our study, we also found
that integration of information from multiple sources can
boost the identification of essential proteins. Specifically,
the utilization of subcellular localization information
can make a remarkable contribution to the prediction
of essential proteins. In this paper, a SCP method is
proposed, which integrates the ranking function by a
modified PageRank algorithm with weighted subcellular
localization with Pearson correlation coefficient based on
gene expression data. Several experiments are carried out
to compare the performance of SCP with five other meth-
ods in identification of essential proteins. Experimental
results show that our method SCP performs the best
among all six methods.
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