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Abstract

Background: Visualizing the complex probability landscape of stochastic gene regulatory networks can further
biologists’ understanding of phenotypic behavior associated with specific genes.

Results: We present PRODIGEN (PRObability DIstribution of GEne Networks), a web-based visual analysis tool for the
systematic exploration of probability distributions over simulation time and state space in such networks. PRODIGEN
was designed in collaboration with bioinformaticians who research stochastic gene networks. The analysis tool
combines in a novel way existing, expanded, and new visual encodings to capture the time-varying characteristics of
probability distributions: spaghetti plots over one dimensional projection, heatmaps of distributions over 2D
projections, enhanced with overlaid time curves to display temporal changes, and novel individual glyphs of state
information corresponding to particular peaks.

Conclusions: We demonstrate the effectiveness of the tool through two case studies on the computed probabilistic
landscape of a gene regulatory network and of a toggle-switch network. Domain expert feedback indicates that our
visual approach can help biologists: 1) visualize probabilities of stable states, 2) explore the temporal probability
distributions, and 3) discover small peaks in the probability landscape that have potential relation to specific diseases.
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Background
Gene regulatory networks encode those interactions
among genes and proteins that regulate cellular processes,
such as the expression of messenger RNA (mRNA). These
interactions dictate the expression levels of genes as well
as the production of particular proteins, and thus play
a critical role in regulating biological functions, from
metabolism to cell differentiation. Such networks typically
involve small copy numbers of the molecular species and
large differences in the species reaction rates. Because of
these factors, the network interactions have a stochastic
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nature [1–3], i.e. they are unpredictable through the influ-
ence of a random variable. Modeling the stochasticity of
genetic circuits is an important field of research in sys-
tems biology, and can help elucidate the mechanisms of
cell behavior, which in turn can be the basis of diseases.
These models can further enable predictions of important
phenotypic cellular states.
The computational study of stochastic properties in

gene networks is, however, a challenging task. Ordi-
nary and stochastic differential equations methods may
be inadequate in computing accurately the dynamic and
steady state probabilistic behavior of gene networks [4],
while the Gillespie stochastic simulation algorithm [5]
is exact, but can fail in capturing rare events [6–8].
However, the formulation of the discrete Chemical
Master Equation (CME) can be used to analyze the
dynamics and stochastic nature of gene regulatory
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networks with low copy number of species. The CME
framework can allow, for example, for the dynamics
and stochasticity of a network with small copy num-
bers of molecular species to be fully described by prob-
ability distributions in both the state space and time
space.
However, the analysis of these probability distributions

is difficult due to their spatiotemporal and multidimen-
sional nature, and due to the typically large number
of simulations run under varying settings. Moreover,
stochastic network researchers often emphasize that what
is of biological significance is often not of statistical
significance — numerical analyses often miss small or
rare events of particular biological relevance. A visual
approach can help, in contrast, in mining the network
dynamics through the landscape defined by these prob-
ability distributions. For example, visualizing the num-
ber, location, and behavior of probability peaks could
indicate the number of stable states for a given net-
work and set of model parameters. We note that the
state of the art reports in stochastic network modeling
only employ visualization post facto. Our collaborators
indicate that once the researchers know what they are
looking for, they typically use a plotting software like
R or Matlab to generate explanatory projection images
and animations of the peaks. However, no visual tools
exist to support the exploratory analysis of simulated
data.
In this paper, we introduce a web-based visual anal-

ysis tool for the exploration of time-varying proba-
bility landscapes over the state space in stochastic
networks. PRODIGEN (PRObability DIstribution of GEne
Networks) supports the exploration of probability dis-
tributions in both state and time space. PRODIGEN
captures probability distributions with projections at mul-
tiple levels, such as spaghetti plots for one dimensional
projection and enhanced heatmaps for two dimensional
projection. The main contributions of this work are as
follows:

• We provide a description of the domain data and
tasks in stochastic biological network modeling and
analysis.

• We propose several visual encodings to represent the
probability landscape in multiple dimensions,
including one dimension, two dimensions, and three
dimensions.

• We implement an interactive web-based visual
explorer, PRODIGEN, that combines these visual
encodings to enable the exploration of probability
distributions across both state and time.

• We evaluate the visualization system through case
studies and report a summary of the feedback
provided by domain experts.

Related work
Stochastic network modeling. The discrete chemi-
cal master equation (dCME) provides a fundamental
framework for studying stochasticity in molecular-level
networks. Because of the multi-scale nature of many
networks, directly solving dCMEs is intractable due
to the exploding size of the state space. To address
this limitation, the ACME (Accurate Chemical Master
Equation) algorithm [9, 10] was introduced as an opti-
mal algorithm for the exhaustive enumeration of discrete
microstates. The algorithm is based on the decomposi-
tion of stochastic reaction network into multiple inde-
pendent components called buffer queues, each governed
by its own birth-death process. The approach has the
advantage of more effective usage of the overall finite
state space, rapid estimation of errors, and estimation of
required buffer size in order to maintain pre-defined error
tolerance.
Several systems have been tested with the ACME

method, which we also employ in this work. The
steady state and time-evolving behavior has been previ-
ously computed for several biologically important net-
works, including the genetic toggle switch model, the
phage-lambda epigenetic circuit, and the 16-node MAPK
cascade [9–11]. The samemethod has been used for mod-
eling important stochastic network motifs such as Single
Input and Coupled Toggle Switch Modules [12].

Probability distribution visualization. Currently,
there are only a few systematic ways of visualizing
probability distributions at every location and time. The
distribution data in 2D space is typically encoded by a 2D
color map. Kao et al. [13, 14] present a number of methods
for visualizing 2D probability distributions. They color a
scale field to provide an overall impression of distribution
data sets over a 2D spatial domain. Luo et al. [15] extend
existing visualization methods, such as pseudocolor, to
support such distribution data. Potter et al. [16] present
a visualization system called ProbVis for exploring differ-
ences between distributions across a spatial domain. They
also use a color map to encode the distance measure. 3D
projections suffer however from overlap problems. To
circumvent this problem, in this work we color-encode
probability values on a 2D map, respectively as height.

Heatmaps in biostatistics. Heatmaps have been tradi-
tionally used to display statistical data, from gene expres-
sion and metabolomics to urban and network evolution
data [17–20]. In general, heatmaps are used to describe
the variables which can be considered as a function of
two inputs represented by the rows and columns. We use
similar heatmaps representations, in which both rows and
columns represent the location in each dimension, and the
cell shows the probability value at a particular location in
two dimensions.
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Spaghetti plots in ensemble visualization. The com-
putation process used in this biology problem generates
spatial distribution datasets across multiple time steps.
By extension, these datasets can be regarded as ensem-
ble data — a collection of multiple related but different
datasets, such as simulations in general. Several tech-
niques have been proposed for ensemble visualization.
Spaghetti plots, overlaying plots of individual ensem-
ble members, are a well-known technique for visualizing
system flows, including flows in biology, medicine, and
meteorology. Obermaier and Joy [21] state that spaghetti
plots, as a feature-based visualization, provide an overall
impression of the whole ensembles and allow compar-
isons between ensemble members. Luo et al. [15] present
the use of spaghetti plots in meteorology. Potter et al.
present Ensemble-Vis [22], a framework to support the
visual analysis of ensemble space data. Sanyal et al. pro-
pose Noodles [23], a coordinated-view visualization tool,
for visualizing weather ensemble uncertainty. In addition
to novel uncertainty visualization techniques, they imple-
ment spaghetti plots for observing the model uncertainty.
Wu and Zhang [24] introduce spaghetti plots for visualiz-
ing ensemble uncertainty. Ferstl et al. [25] present a new
approach that extends spaghetti plots to extracted ensem-
ble flows. Similar to these works, we adopt spaghetti plots,
but in a new context.

Methods
In this work we follow the nested visualization design
model [26, 27], beginning with the domain characteriza-
tion step.

Data and task analysis

Stochastic networkmodeling
The study of stochastic gene regulatory networks is a chal-
lenging topic, as the system modeled may be large in
both the state space and time. Recent developments of the
ACME method [9, 10] enable reduction of the state space
from O(bn) to

(∏
j
(b+nj

nj
))
,
∑m

j=1 nj = n, where n is the
number of species,m is the number of Molecular Equiva-
lence Groups (MEGs)— the number of molecular species
subgroups in the network, such that member species of
a subgroup can be transformed into each other through
one or more mass-balanced reactions, nj is the number
of species belonging to group MEGj, and b is the maxi-
mum number of molecules in MEGj. A buffer of size b
is assigned to each of the MEGs involved in the model.
These developments allow optimal enumeration of the
state space for the system.
We briefly discuss the state space over which we visu-

alize the probability landscape. Assume a system con-
tains n molecular species xi, and m buffers of size
C(xj). The ACME method assigns a buffer of size

C(xj) to MEGj. The state space size is then equal
to the product of m combinations of

(C(x1)+n1
n1

) ×(C(x2)+n2
n2

) × · · · × (C(xm)+nm
nm

)
, where × denotes a simple

multiplication.
A microstate sk of the system, where k ∈ (1,N), is

defined by the combination of numbers ofmolecules (copy
numbers) of every species (nk(x1), nk(x2), . . . nk(xn)). The
state space is formed by all the possible microstates that
the system can visit from a given initial condition. The
state space table (Table 1) displays a microstate as a single
row, for a total of N microstates.
Each row of the probability matrix shown in Table 2

contains the probability values of the corresponding state
(row) in the state space table (Table 1) over time. Pij rep-
resents the probability value of state si at time tj, and Pij is
a float value between 0 and 1. The sum of the probabilities
of all the microstates at any particular time is equal to 1.
The combination of data stored in Tables 1 and 2 rep-

resents one simulation of a system that consists of m
molecular species with the state space size of N across T
time steps.
In this multidimensional probability space, the biol-

ogy researchers are interested in identifying both global
and local probability peaks. Global peaks are in general
easily detected. However, local peaks are difficult to
notice, when they exist, because they have low probability
values. The number of peaks and their probability val-
ues can be computed analytically; however, analyzing the
locations of peaks requires visualization.
The domain experts have been working with systems

that may contain at most 16 molecular species, but over
1 million microstates across thousands of time steps. A
system may feature tens of parameter settings, which
in turn produce tens of simulations. In this work we
use two stochastic network models: a toggle switch sys-
tem and a transcription regulation network. The tog-
gle switch system features two genes, each expressing
one protein, with 120 respectively 240 maximum copy
number. The transcription network contains three genes
which express each one protein. Both proteins and genes
(DNA molecules) are reactants in the reaction systems of
biomolecules.

Table 1 The state space of a system with nmolecular species xj
and Nmicrostates si . ni(xj) denotes the copy number of
molecular species xj at state si

Copy number
Molecule species

x1 x2 . . . xn

States s1 n1(x1) n1(x2) . . . n1(xn)

s2 n2(x1) n2(x2) . . . n2(xn)

. . . . . . . . . . . . . . .

sN nN(x1) nN(x2) . . . nN(xn)
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Table 2 The probability matrix displays the probability
distributions over Nmicrostates across T time steps

t1 t2 . . . tT

s1 p11 p12 . . . p1T

s2 p21 p22 . . . p2T

. . . . . . . . . . . . . . .

sN pN1 pN2 . . . pNT

Sum 1 1 1 1

Task analysis
Through multiple interviews and observation sessions
with the domain experts, we identified a set of four task
groups related to the exploration of the time-varying
probability landscape in a stochastic system. Given a sim-
ulation run of a stochastic gene regulatory network, the
identified tasks are as follows:

• T1: Display the overall plots of probability
distributions at multiple dimensional levels: for
example, for each molecular species in one
dimensional projection and for the combination of
any two molecular species in two dimensional
projection.

• T2: Discover peaks in multiple dimensional
projections. Identify the number of peaks and their
probability values. Observe and inspect small, local
peaks.

• T3: Identify the locations of peaks at multiple
dimensional levels. The “location” denotes a
collection of corresponding states in the state space.

• T4: Track temporal changes of the system. Observe
the probability landscape changes over time,
including the number of peaks and their locations.

Based on the visual data analysis taxonomy [27], we
match these task groups with four taxonomy categories:
Present: T1, T4, Discover: T2, T3, Explore: T2, T4, and
Identify: T2, T3.
In addition to the functional requirements outline

above, we also identified nonfunctional requirements,
such as scalability of the system, learnability, and
availability of the system on the web.

Data acquisition and preprocessing
The simulation results from domain experts are stored in
groups of text files: one state space text file in the for-
mat shown in Table 1, and T (time) probability files. Each
probability text file, shown by each column in Table 2,
encodes the probability distribution over the state space
at a particular time step. The size of a single probability
file in a system with a state space size of 680430 is roughly
18MB.
Because the probability distributions can be high-

dimensional while still having a spatial distribution, we

preprocess the data through dimensionality reduction to a
lower space which can be used for visualization. Further-
more, due to the importance of peaks to the user tasks,
we explicitly compute and detect these structures. Due
to the large-scale of the data, we pre-process the data
offline when reducing the dimension of the state space
for visualization. In contrast, peak detection is computed
online.

Dimensionality reduction. Because the probability
distributions of stochastic networks can be potentially
defined over a space higher than 2 dimensions, we explore
dimensionality reduction via aggregation and projection.
To map the data visually, we compute projections to one
dimension and to two dimensions, which is commonly
done and accepted in the target domain; an additional
projection to three dimensions and visualization using
volume rendering was attempted and discarded during the
prototyping stage.
To project the landscape defined by the probability dis-

tributions to one dimension, we aggregate the microstates
with the same copy number of a particular protein to form
a new state space in one dimension. We repeat the aggre-
gation process for each species of proteins. For example, in
the 2-gene toggle switch system, we obtain two probabil-
ity distributions over two 1D state spaces: one for protein
A and the other for protein B.
To project the probability landscape to two dimensions,

we aggregate the microstates for which the combinations
of the copy numbers of any two proteins are the same.
For example, consider a 3-protein example with only two
states possible in the case of 0 copies of protein 1 and
0 proteins for protein 2: state (0,0,0) of probability 0.05
and state (0,0,1) of probability 0.05. The new aggregated
state (0,0) will have probability 0.1. We repeat the pro-
cess for all possible combinations of any two proteins
in order to obtain multiple 2D state spaces. For exam-
ple, the 2-gene toggle switch network only has one 2D
state space, while a regulatory gene network with three
genes consists of three state spaces projected to 2D, and
a network with four genes would include six 2D state
spaces.

Peak detection. To detect the peaks, we use a gradi-
ent estimate approach. We compare all the states to their
neighbors, as projected to one dimension. If a state has
higher probability value than both its neighbors and its
value is above a threshold of 1e-12 (empirically deter-
mined based on the simulation threshold for error), the
state is defined as a peak. Since the probability distribution
along each species dimension is independent, the number
of peaks in the entire system is multiplied by the num-
bers of peaks in each dimension. The peak locations in the
system are all the combinations of species locations. The
process of peak detection is completed online.
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Visual design
We have designed the visual analysis tools through a par-
allel prototyping approach, during which multiple low to
mid-fidelity prototypes were sketched in parallel, and pre-
sented for feedback to the domain experts. The domain
experts are particularly attuned to surface plots of prob-
ability distributions, as indicated by their use of “land-
scape” terminology. However, such plots do not capture
directly temporal features: time series of 3D surface plots
are usually generated as a movie to display the tempo-
ral changes. Thus, visual representations with temporal
features embedded were of particular interest. As part of
this process, we exploredmultiple potential visual designs,
including star plots, small multiples, animation, space-
time-cubes, volume renderings and variations of topo-
graphic maps, and converged towards those encodings
which best preserved features of interest (such as peaks
and temporal behavior) while avoiding occlusion.
The final prototype of PRODIGEN (Fig. 1) consists of

a multi-view design with several visual components: 1) a
spaghetti plot view that shows the temporal changes of
probability values for every gene; 2) a small multiple 1D

heatmap view; 3) a small multiple enhanced 2D heatmap
view which displays the probability distributions over
the state space projected to two dimensions; 4) a peak
glyph view which represents the corresponding states
of all the probability peaks detected in the system; and
5) a small multiple 3D surface view. The information
shown in the heatmaps and peak glyphs changes accord-
ing to the user-selected time step, as the user drags a
time slider. We describe in detail each visual component
below.

Ensemble spaghetti plot view
Spaghetti plots have been traditionally used to visualize
ensemble data; each single plot represents an individ-
ual ensemble member. Color-coding may also be used
to differentiate members. In this work, we extend the
spaghetti concept to specific simulations over time: by
extension, each “ensemble” member represents the prob-
ability behavior at a particular time point. The horizontal
axis represents the copy numbers of molecules, while
the vertical axis represents the probability value. Thus,
an individual plot describes the probability distribution

Fig. 1 The PRODIGEN interface consists of several visual components: (left top) the ensemble Spaghetti Plots view shows the probability distribution
over time, for all the proteins in a system; (left middle) the 1D heatmap view shows a per-protein view of the probability peaks; (left bottom) the Peak
Glyph view (displayed as a small multiple) represents all the probability peak states in the system; (center) the 2D heatmap view is enhanced with
time-curves, and shows the probability peak correlation between protein pairs over space and time; (right) the animated 3D Surface view describes
the shapes of peaks over space and time
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over the states with the copy number from zero to the
maximum copy number for that protein.
We use color to encode different species of proteins, and

the intensity of the color to encode the probability dis-
tribution of the corresponding protein at different time
steps. The plot intensity from lighter to darker represents
the time from the beginning of the simulation to the end.
In our early prototyping stage a third dimension was

used to encode time, in the style of space-time cube
representations [28]. In practice, however, the encoding
suffered from occlusions whichmade difficult the tracking
of temporal peak changes, and was later discarded. The
domain experts specifically stated that the 2D ensemble
spaghetti plots yielded better performance than the cube
representations.
In Fig. 2 (top), the Protein A of spaghetti plots represents

the temporal probability distribution of protein A. In this
representation, the peak changes can be easily tracked in
terms of both peak location and value.We notice that pro-
tein A has only one peak, whose location shifts to the left
in time towards the state with a lower copy number, and
whose probability value increases over time. Protein B also
has one peak, which stays at the same location without

too much change in the probability value. Protein C has
three peaks. The locations of these three peaks do not
change over time. However, the probability value of one
peak in the middle increases as the other one on the right
decreases over time.
In most cases, the peaks either increase or decrease over

time, and thus do not cause overlaying or crossing issues.
Rare plot overlays and crossings bear in fact meaning, by
encoding frequent peak location changes (see Protein A in
Fig. 2) or peak changes in both directions (increasing and
decreasing).
However, it is not easy to detect the probability distri-

bution at a particular time step from the spaghetti plots.
To this end, a checkbox filter allows the users to draw
the plots at an interactively-selected time step. Figure 2
(bottom) displays the probability distributions of these
three proteins at the 10th time step.

Enhanced heatmaps
To show the lower-dimensionality projection of probabil-
ity landscapes we chose as a basis a heatmap encoding,
due to their efficiency in visualizing distribution data.
Our domain experts, like most bioinformaticians, were

Fig. 2 Spaghetti Plots (top) show the probability distribution of each gene and the changes in distributions over time. The Spaghetti Plots view on
the bottom displays the probability distribution of each gene at a user selected time step
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familiar with heatmap representations, compared to other
visual representations. We employ both one-dimensional
heatmaps and an enhanced version of two-dimensional
heatmaps, displayed each time in a small multiples view.
The spaghetti view uses a categorical color scheme
for the different species, while the aggregated views
described below employ a non-overlapping qualitative
color scheme to encode probability. The 1-dimensional
heatmaps described below (Fig. 3) help bridge the two
color schemes. The domain experts did not report or
experience during testing any issues related to this dual
use of color intensity.
1D heatmaps. 1D heatmaps display the probability dis-

tribution over the state space projected to one dimen-
sional space. The 1D state space is represented by the
horizontal direction in the heatmap. The color intensity of
each state represents its aggregated probability value. The
heatmaps are stacked up vertically, and each heatmap has
a border color-linked to the spaghetti plot for that protein.
Figure 3 shows the probability distribution over one

dimensional state space for three proteins at time 0.When
projecting to Pa which represents protein A, the only
probability peak is located mid-axis, which corresponds
to the state in which the copy number of molecule Pa is
10, half of the maximum copy number. Similarly, the peak
in the Pb (protein B) projection is also at the state with
the copy number of 10, and these two peaks have similar
probability values, as indicated by their similar intensities.
However, in the Pc (protein C) projection, there are three
peaks: a large peak leftmost along the axis (where the state
has a copy number of 0), one small peak nine states to the
right, and one much smaller peak twenty nine states fur-
ther right. The smallest peak in the Pc projection may not
be easily observed from the heatmaps, but can be quickly
detected through the peak glyphs that will be explained
below.
2D heatmaps. Similar to 1D heatmaps, 2D heatmaps

display the probability distribution over the state space,
but projected to two dimensional space. The horizontal
and vertical axes represent the copy numbers of molecules
for any two protein species in the system. The cell at
the intersection of two molecule copy numbers repre-
sents the state that aggregates the microstates with those

copy numbers. The intensity of the cell encodes the prob-
ability value. Figure 4 indicates there is only one peak
located at (3, 10) in the 2D state space projected to Pa
and Pb. The 2D heatmaps are arranged in a small mul-
tiple display, using identical axes mappings to support
comparison of the peaks. Per our collaborators’ request,
the heatmap can also be colored using a qualitative col-
ormap (Fig. 5), similar to the rainbow maps they had
used before in numerical software packages; the qualita-
tive map is derived from ColorBrewer (colorbrewer2.org)
and allows the users to highlight different peak classes and
thus presumably better identify small peaks.
Overlaid time curves. Heatmaps are able to provide

an overview of the probability distributions over the state
space in one and two dimensions. However, it is hard to
track temporal changes from this aggregated visual rep-
resentation. Since the changes in probability values over
time can be displayed as a line plot, we create an extended
heatmap representation by overlaying such line plots on
each cell (state) in the 2D heatmaps. The time curves show
the dynamics of the system, which include the changes
in probability values and peak locations over time. A
flat curve means no obvious change, while a steep curve
means a big change in the probability value. The user can
check the time-curves checkbox to display these curves.
In Fig. 4, two groups of steep curves indicate that the

peak in the state space projected to Pa and Pbmoves in the
direction in which Pa has lower copies at the early time,
and stays there during the rest of the simulation time. The
probability value of the peak increases as the location of
the peak changes.
Details-on-demand. Since the 2D heatmap can display

state spaces that contain thousands of states, it may be
difficult to observe how the probability of a specific state
changes over time. To support detailed inspection of a
particular state, we enlarge on demand the size of the
cell corresponding to a user-selected state. When the user
clicks on an interesting cell, a detail window is overlaid,
showing the time curve for that state. Figure 6 is an exam-
ple of the detail view of the state (5, 8), in which Pa has 5
molecule copies and Pb has 8 copies. We notice that there
is a steep and large increase in the probability value during
the first two time steps. Later, the probability decreases in

Fig. 3 Three 1D heatmaps represent probability distributions projected to one dimension of three proteins a, b and c. a and b have one peak each,
while c has three peaks
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Fig. 4 The 2D heatmap displays the probability distribution over the 2D state space projected for the pair of Pa and Pb. Time Curves overlaid on the
2D heatmap indicate how the probability values in the 2D state space change over time

the following four time steps, and keeps roughly constant
for the rest of time.

Peak glyphs
Although the heatmaps view can provide an overview
which indicates the location of peaks, users often wish to
identify the location accurately. Furthermore, the heatmap
representations can make small peak detection difficult.
To indicate the peak location, we have experimented
with a number of existing multidimensional encodings,
including star plots. However, since a stochastic gene sys-
tem consists of a large number of microstates and each
microstate is represented by the combination of copy
numbers of multiple molecular species at different scales,
existing encodings failed to provide the location informa-
tion of states in the system.
Instead, the end-result of the prototyping phase was a

glyph to display the detailed information of a peak state,

such as the combination of copy numbers. The peak glyph
is composed of a stack of horizontal bars filled with darker
or lighter intensities according to the probability value
(Fig. 7). The number of bars represents the number of pro-
teins, while the length of each bar represents the number
of molecule copies of the corresponding protein. When
displayed as a small multiple, the peak glyphs show all the
peaks in the system. Because very small probability peaks
are typically due to numerical error in the simulation, sus-
pect peaks are displayed in gray. The view is controlled by
the user selected timestep. Hovering over a glyph displays
the detailed information about the peak.
Figure 7 displays eight potential peak states in a 3-

protein system. However, five of these states appear as
peaks likely due to numerical error and are shown in gray.
Only three of the states are authentic peak states, at the
location of (3, 10, 0), (3, 10, 9) and (3, 10, 29). The details
on demand indicate, for example, that Pc has a peak at the

Fig. 5 2D heatmaps using a qualitative colormap
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Fig. 6 Probability temporal distribution on a user selected state in which Pa has five copies of molecules and Pb has eight

state with 29 copies and that its peak value at that location
is about 0.017. In general, the peak glyphs can be used as a
detailed guide through the peak set generated by a system.

3D surface view
Similar to the 2D heatmaps, the 3D surface plots also
display the probability distributions over the 2D state
space, but represent the probability value as height (z-
axis) instead of encoding it by the color intensity (Fig. 8).
As indicated above, the domain experts are particularly
receptive to 3D surface plots, which reflect their under-
standing of probabilistic landscapes. In contrast, the com-
plementary visual encodings were novel to our domain
experts, and thus benefited from scaffolding through
the familiar surface encodings. Compared to the 2D
heatmaps, the advantage is that the surface plots can
show the shapes of peaks in a manner similar to existing
representations of probability landscapes. Both represen-
tations, extended heatmaps and surfaces, capture well the
extent of peaks and the relative location of peaks with
respect to one another.

We use the library Plotly.js for plotting the 3D surface of
probability distribution; the library allows users to rotate
and zoom in/out the surfaces. Hovering over the surface
displays the location of the state and its probability value.
We implement an animation option for playing the prob-
ability distributions across the entire time period as a
movie, in which the dynamics of peaks including numbers,
locations, relationships, values, and shapes can be easily
detected. Similar to the heatmaps, the 3D surface plots are
also displayed as a small multiple across the potentially
multiple projections.
PRODIGEN is implemented as a web-based tool in

JavaScript and uses the data visualization libraries D3 and
Plotly.js.

Results
We evaluate the effectiveness of PRODIGEN through
two case studies completed with two experts, who are
co-authors on this manuscript. One expert is a senior
bioinformatics researcher with over thirty years of expe-
rience in the field, and the other is a junior researcher in

Fig. 7 A small multiple of Peak Glyphs with eight peak states, out of which only three are authentic peaks. The remaining five states, shown in gray,
were identified as computational errors
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Fig. 8 A 3D Surface Plot displays the probability distribution over the
state space projected to a and c. Three peaks are distinguishable

bioinformatics who specializes in stochastic gene network
modeling.
These two case studies demonstrate how our visual

approach can assist domain experts in the exploration of
probability landscapes in stochastic gene networks, and
allows them to track the temporal changes as well. The
first case study is an exploration of a transcription regula-
tion network with three genes, and the second one studies
a toggle switch system with two genes.

Case study I: transcription regulation network
We illustrate the performance of PRODIGEN using the
example of a transcription regulation network. A detailed
description of the model architecture will be published
by our collaborators. The system consists of three genes
GeneA, GeneB, and GeneC, which express ProteinA, Pro-
teinB, and ProteinC, correspondingly. C is the output of
the system, and it is regulated by both B and A. Tran-
scription regulations motifs such as this are common in
studies of biological systems as, for example, E. coli [29],
yeast [30], and mammals [31]. Their detailed modeling
in principle can answer important biological questions
such as the existence of multiple phenotypes correspond-
ing to different numbers of stable states, adaptability of
the systems to the change in one of the components [32].
These phenomena may be relevant for the study of impor-
tant biological events, such as differentiation of the cell
to a new cell type, tumor suppression, HIV latency versus
replication, and cell adaptation to a stress. In this simula-
tion, the domain expert decreased the expression level of
A by a factor of approximately 3. The goal of the visual
analysis was to observe how C responds to this change in
the expression level of A.

The spaghetti plot in Fig. 1 (left middle) indicates that
even a significantly decreased level of A does not affect
significantly the behavior of the system. The spaghetti
view clearly shows that A has one peak state, B has also
one peak state, while C, which is regulated by both A and
B, has three peak states. As simulation time advances, the
peak-state corresponding to A shifts towards the left along
the horizontal axis as the expression level of A decreases.
In the same spaghetti plot, the peak corresponding to B
is very stable; its clear signature in the plot shows very
little change in either location or probability value. The
three peaks of C also stay constantly in the same locations,
and show little change in probability values over time. The
spaghetti plot can be used to detect the number of peaks
(T2), and track their temporal changes in one dimension
(T4).
The 1-dimensional set of projections (Fig. 1 left) cap-

tures, as expected, the same number of peaks. The smaller
and fainter peaks in the C projection caught the interest
of the investigators, who remarked again on the biologi-
cal significance of small peaks. Small peaks are important
since they can correspond to a diseased state of the cell,
which could be non-prevalent or rare in the organism
and as such have a small number of molecules. It was
easier to detect small peaks in the one dimensional view
than in 2D, because in 2D the information gets distributed
over a larger number of states. The value and location
of the peaks are represented in both the spaghetti and
1-dimensional view in a qualitative way.
A step further, the peak glyph view (Fig. 1 left bottom)

captures the accurate locations and probability values of
the peak states (T2 and T3). The peaks with different
values at different locations can correspond to different
physiological conditions of the cell, e.g., healthy vs. dis-
eased state or pluripotent vs. differentiated in stem cells.
The gray glyphs show the pseudo peaks that are due
to numerical errors. As simulation time advanced, the
experts noticed an increase in numerical errors. With this
observation in mind, the users moved back to exploring
relatively more complex visual representations, such as
the 2D heatmaps overlaid with the time curves and the 3D
surface plots.
Next, we investigate the probability distributions over

the entire state space of the transcription regulatory net-
work (Fig. 1 center), and again focus on the same small
peak. The distributions are displayed through three 2D
heatmaps which are the projections of the three possi-
ble combinations of the original three components. The
time curves overlaid on the heatmaps further capture the
trace of peak movements (T4). For example, based on
the shapes of time curves, we can conclude that the peak
moves down in the heatmap projected to A and B. Last but
not least, the surface plot animation (Fig. 1 right) confirms
the smooth trajectory of the peaks. The 2D enhanced
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heatmap outperform other visual designs when the user
focuses on tracking the temporal changes of probability
distributions in 2D state spaces over time.
In conclusion, while the steady state probability land-

scapes of ProteinA and ProteinB are monostable, Pro-
teinC has three peaks at steady-state. The decrease of the
expression level of ProteinA drives the evolution of the
system to a new steady state, which has decreased level
of ProteinA, with the expression patterns of ProteinB and
ProteinC both altered.

Case study II: toggle switch system
The stochastic network module we study here is a genetic
toggle switch system consisting of two genes, A and B.
Figure 9 shows the network topology. In this second
model, single copies of gene A and gene B express pro-
tein products A and B. Gene A and gene B can repress the
transcription of each other through binding the dimers
of their protein products A and B on the promoter sites
of the other gene B and A to form protein-DNA com-
plexes [9, 10, 33]. Thus, this genetic network includes
six molecular species, which are described in detail in
Table 3. The genetic toggle switch network with two
genes has four distinct stable states: “on-on” representing
a state at which both gene A and gene B are unbound,
“on-off” representing a state with unbound gene A and
bound gene B, “off-on” for a state with bound gene A
and unbound gene B, and “off-off” for a state with both
bound gene A and gene B. In this work, the domain
experts computed the state spaces under the initial con-
dition of 0 copies of protein A and protein B, 1 copy
of unbound gene A, 1 copy of unbound gene B, and 0
copies of bound gene A and bound gene B. By using the
finite buffer method to solve the dCME of this system,
we obtain a state space of size 115,200. After that, we
directly compute the probability value of each state at
each time point, which forms the probability landscape,
and currently output for visualization the first 200 time
steps.

Fig. 9 The genetic toggle switch network [33]

Table 3 A descriptor of the 2-gene toggle switch network

Molecule name Molecule structure Max copy number

Pa Protein A 120

Pb Protein B 240

Da GeneA in the unbound state 1

Db GeneB in the unbound state 1

BDa GeneA bound by protein B 1

BDb GeneB bound by protein A 1

The toggle switch system is known to have four peaks in
the stable state, as captured by the peak glyphs (Fig. 10).
However, at the early time, the system has only one peak,
at the state (31, 63). The enhanced heatmaps (Fig. 11) and
the animation offer an opportunity to observe how the
peaks move in the state space in both the 2D heatmap
and the 3D surface plot (T4). In addition to tracking
the location changes, the surface plot shows efficiently
the changes in probability values (Fig. 12). As simulation
time advanced, we noticed three more peaks appear, as
the early peak was getting smaller and transitioned to
states with higher copy numbers of both protein species.
Figure 12 displays the four peaks in the 3D surface plot at
different time steps. Later on, the system becomes more
stable. These peaks stay in a roughly fixed location with
only small changes in the probability value. Thus, we can
confirm that the system reaches a steady state.
The peak glyphs successfully identified the largest peak

(T2).We see one of the three late peaks become the largest
peak, at last. Although the toggle switch has more states
in the 2D state space, compared to the transcription reg-
ulatory network discussed in the case study I, the time
curves overlaid on the heatmap, which includes nearly
thirty thousand map cells, can still provide an overview
of the temporal probability distributions (Fig. 11). How-
ever, we can only see three peaks according to the curves
shapes. The fourth peak is actually a spike at the location
(0, 0), which can be seen in the surface plot, and as such
was dismissed from the analysis.

Informal feedback
Over multiple discussion sessions, the domain experts
provided positive feedback. The junior researcher pointed
out that the visual approach would be beneficial to experts
working in the field when exploring the data. In particu-
lar, the lower-dimensional plots and encodings go beyond
current approaches to showing the data, especially for
exploring the dynamics of the system. The feature that
generated most excitement for both domain experts was
the ability to track the temporal changes of the probability
distributions. The senior expert specifically commented
on the potential of the tool to assist in deriving new
hypotheses, beyond the post-hoc abilities of explanatory
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Fig. 10 Peak glyphs for the toggle switch network showing four detected peaks and their exact coordinates

visualization. In addition to tracking the peak trajecto-
ries in the transcription regulatory network and the toggle
switch system, the senior expert also indicated the poten-
tial use of the visual approach to systems with potentially
oscillatory peak states, or to track the peak trajectory for
other types of stochastic networks.

Discussion and conclusions
The two case studies and expert feedback demonstrate
that PRODIGEN is an effective visualization tool for the
exploration of the probability landscape of stochastic gene
regulatory networks. The system successfully allowed
stochastic network researchers to perform the T1 through
T4 tasks we had identified in the domain characteriza-
tion stage, while handling gracefully the large scale of the
data. In particular, the domain experts were able to: 1)
visualize probabilities of stable states, 2) explore the tem-
poral aspect of probability distributions, and 3) discover
and analyze small peaks in the probability landscape that
had potential relation to specific diseases. In both case

studies they were able to identify new findings (including
numerical errors) as well as replicate previous findings.
The web-based implementation of the system makes it
potentially available to a wide audience. Furthermore, the
case studies performed with domain experts indicate the
interface is user-friendly and easy to learn.
With respect to the visual design of the system, the

overall design successfully supports the exploration of
probability distributions in both state and time space.
While some of the individual visual encodings employed
are not new, the enhanced 2D heatmaps and the peak
glyphs are novel contributions. The combination of visual
encodings to explore data in multiple dimensions is also
novel. As shown by the case studies, the visual encodings
proposed were able to capture probability distributions in
multiple dimensions and at multiple levels. The spaghetti
plots and heatmaps overlaid by time curves are able to
display the temporal probability distributions over the
state space. In addition to these overviews, detail views
embedded in the heatmaps provide the ability to track

Fig. 11 Toggle Switch 2D enhanced heatmap. The heatmap displays the probability distribution over the 2D state space projected for the pair of Pa
and Pb. Time Curves overlaid on the 2D heatmap indicate how the probability values in the 2D state space change over time
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Fig. 12 Probability landscape of the toggle switch system at three different time steps, showing four peaks; the least noticeable peak is located
at (0,0)

the probability dynamics of a user selected state. When
combined together with the peak glyphs and the ani-
mated surfaces, these visual encodings satisfy the require-
ments from experts for detecting the number of peaks,
the locations of peaks, the values of peaks, and their
dynamic changes. Because the peak values vary signif-
icantly, the experts required we do not normalize axis
or color; instead, we clearly indicate each scale in the
interface. For example, the fourth small peak in the
center plot in Fig. 12 is not perceivable when using
normalization.
In terms of limitations, the system currently requires

a copy of the data to be created locally and loaded
for processing and visualization. PRODIGEN can only
be used as a post simulation analysis tool, due to this
data pre-processing load. A direction of great inter-
est to our collaborators, although beyond the scope
of this work, is the ability to run the system directly
in situ, on the cluster where the simulations are
computed.
In terms of scalability, the tool can handle with no issues

models whose size in terms of species is on par with the
ones developed by our collaborators, and was built with
visual scalability in mind. Furthermore, we have tested the
system on a variety of state space size and timestep con-
figurations. As discussed in the Task Analysis section, the
systems modeled typically contain few molecular species.
However, the system modeled may be large in both the
state space and time. Our visual approach scales well,
in this respect, in either state space or time dimension.
The entire system behaves well for stochastic networks
with a relatively large state space size of 680430 states,
which is roughly 18MB, as long as the simulation of these
systems stays below several hundred timesteps. This last
limitation is related to the D3 library limitations regarding
loading large datasets. For practical purposes, to circum-
vent this limitation, simulations can be split into chunks
of time and loaded and analyzed sequentially. The time-
curve heat maps can further suffer from scalability issues

for very large state space sizes, which can lead to small
tiles and aliasing. On lower resolution displays, this issue
becomes visible for large state spaces with long runs of
close to a thousand timesteps, as indicated in Fig. 11.
Context+focus techniques [34] may help address aliasing
issues.
In conclusion, we have presented a novel web-based

visual approach for the systematic exploration of prob-
ability distributions over simulation time and state
space in stochastic gene regulatory networks. We pro-
vided a description of the domain data and tasks in
stochastic biological network modeling and analysis, and
designed a visual solution to meet the domain anal-
ysis challenges. Our visual approach combines visual
encodings that consist of spaghetti plots over 1D pro-
jection, heatmaps over 2D projections, enhanced with
time curves to display temporal changes, peak glyphs
displayed as small multiples, and animated probabil-
ity surfaces. We implemented an interactive web-based
visual explorer, PRODIGEN, that combines these visual
encodings to enable the exploration of probability dis-
tributions across both state and time, and we evaluated
the visualization system through two regulatory networks
case studies with domain experts. The case studies and
the domain expert feedback indicate the effectiveness
of this visual approach in helping biologists to explore
the probability landscape of stochastic gene regulatory
networks.

Additional file

Additional file 1: BioVis16-121-PRODIGEN.mp4. A video demo shows
how to use the application. (MP4 29901 kb)
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